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The partition of the symmetries of the 3j and 6j coefficients according to the possible expressions 
for the number of terms in their series representations are discussed. The canonical 
parametrization of the 3j and 6j coefficients introduced by Lockwood are also discussed. 

1. INTRODUCTION 

In our earlier studies1.2 we showed that the 72 (144) 
symmetries of the 3j (6J) coefficient can be partitioned into 
nine (twelve) sets of eight (twelve) each depending on the 
nine (twelve) possible expressions for the number of terms in 
the series representation for the 3j (6J) coefficient. 

It has been shown'" that the definition of a set of five 
(six) canonical parameters of the 3j (6J) coefficient intro
duces a nine (twelve)-to-one homomorphism of the 72 (144) 
element group of symmetries on to the eight (twelve)-ele
ment group of permutations of canonical parameters. To 
explicitly obtain the homomorphisms, the intermediate pa
rameters corresponding to each symmetry should be written 
following the initial order and thus the mapping on to the 
permutation of canonical parameters can be obtained. 

In this paper, we show that the above procedure of ob
taining the homomorphisms is exactly equivalent to the foI

I 

2. 3j COEFFICIENT 

lowing elegant procedure: 
(i) We first list the sets of symmetries corresponding to 

the possible expressions for n starting with the particular n to 
whose group of permutations of canonical parameters the 
homomorphisms are due. This n is determined from the 
minimum of the possible expressions for the number ofterms 
in the series representation for the 3j ( or 6j) coefficient. In 
the case of the 3j coefficient n is given by the minimum of the 
entries of the Regge square symbol. In our discussion n is 
taken asjl + j2 - j3 and c + d - e for the 3j and 6j coeffi
cients, respectively. 

(ii) We list the possible sets of canonical parameters of 
the 3j and 6j coeffiCients. 

(iii) The homomorphisms are then obtained by calcu
lating the canonical parameters corresponding to the possi
ble expressions for n. 

We discuss these procedures for the 3j and 6j coeffi
cients in Sec. 2 and Sec. 3, respectively. 

The 72 symmetries of the 3j coefficient can be partitioned! into nine sets of eight each depending on the nine possible 
expressions for the number of terms in the series representation for the 3j coefficient. We have explicitly calculated these sets of 
symmetries starting with n = jl + j2 - j3' 

The symmetries of the 3j coefficient were discussed in terms of a set of five canonical parameters by Lockwood. 3 The nine 
sets of canonical parameters5 corresponding to the possible expressions for n are listed in Appendix A. To explicitly obtain the 
homomorphisms the intermediate parameters corresponding to each symmetry should be written following the initial order 
and then the mapping on to the permutation of canonical parameters is obtained. We demonstrate this procedure for a few 
examples. 

Example 2.1: Consider the symmetry 

Writing the intermediate parameters, viz., (3 's and a's following the order in which we have defined! them, we have 

(31 =j2 +jl -j3' (32 =j2 +m2, (33 =jl -m1, 

a 1 =0, a 2 =jl -j3 +m2, a 3 =j2 -j3 -m 1 

Since n = jl + j2 -11' (30 = jl + j2 - j3 and ao = O. So, the mapping is obtained as 
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(j2 -m2)+(jl -m 1 ) 

2 

(j2 -m 2 )-(jl -m 1 ) 

2 
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The intermediate parameters corresponding to this symmetry are 

PI =jl +j2 -j3' P2 =jl +m l , P3 =(j2 -m2), 

a l =0, a 2 =jl -j3 -m2, a 3 =j2 -j3 +m l ,· 

n =jl +j2 -j3 ~PO =jl + j2 - j3' and a o = O. 

So, the corresponding permutation of the canonical parameters is d L C L;a L b L . 
Example 2.3: 

P2 =j3 +m3, 

a 2 =j2 -jl +m3, 

~Po =j2 - m 2, 

Hence, the corresponding permutation is b La L;d L C L . 
Example 2.4: 

j2 +j3 +m l 

2 

(j2 +j3 -jl)-(jl +m l ) 

2 

PI =j3 -m3, P2 =j2 +m2, P3 =j2 +j3 -jl' 

al=O a 2 =j2-jl-m3, a 3 =j3-jl+m2, 

n=jl+jl-j3 ~PO=j2+m2' a O=j3-jl+m1· 

The corresponding permutation is d L C L;a L b L . 
Example 2.S: 

( 

jl +j2 - m3 

(j, + j, - j,~ -; (j, - m,) 

2 

(jl + j3 - j2) - (j2 - m 2) 

2 

PI =jl +m l , Pl =j3 -m3, P3 =jl +j3 -j2' 

al=O, a 1 =j3-jl+m l , a 3 =jl-jl-m3, 

n=jl+jl-j3 ~po=jl+ml' a O=j3-j2+ m l' 

The corresponding permutation is aLb L;d L C L' 

P3 =j2 - m 2, 

a3 =j3 -jl -m2,· 

a o = j3 - jl - m 2· 

We have checked this procedure for all the 72 symmetries of the 3j coefficient. We find that this procedure is exactly 
equivalent to calculating the canonical parameters corresponding to the possible expressions for n after listing the nine sets of 
symmetries. 

The eight symmetries described by n = jl + j2 - j3 listed in Table II of Ref. 1 get mapped on to the eight-element group 
of permutations of canonical parameters corresponding to n = jl + j2 - j3 as follows: 

aLbL;dLcL 

bLaL;cLdL 

cLdL;bLaL 

dLcL;aLbL 

cLdL;aLbL dLcL;bLaL · 

Forexampletheeightsymmetrieseachdescribedbyn =j2 +j3 -jl,n =j3 +m3 ,andn =jl +m l and their mapping 
on to the eight-element group of permutations of canonical parameters corresponding to n = jl + j2 - j3 are given in Tables I, 
II, and III, respectively. The mapping is obtained by calculating the canonical parameters (listed in Appendix A) correspond
ing to n = jl + j3 - jl' n = j3 + m 3, and n = jl + m l , respectively. These mappings have also been obtained by writing the 
intermediate parameters for each symmetry and the two procedures are strictly equivalent. 

3. 6j COEFFICIENT 

The 144 symmetries of the 6j coefficient can be partitioned2 into 12 sets of 12 each depending on the 12 possible 
expressions for the number of terms in the series representation for the 6j coefficient. We have explicitly listed these sets of 
symmetries starting with n = c + d - e. 
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TABLE I. The set of eight symmetries of the 3J coefficient described by n = J2 + J3 - Jt and their mapping onto the eight-element group of permutations of 
canonical parameters corresponding to n = Jt + J2 - J3' 

( 

i, 
(-1)'. . 

j, - j. 

( ) (- 1)' . 

j. -), 

(- 1)' ( j 
-m, 

(j. +m,)+(j, +m,) 

2 

(j. +m,)-(j, +m,) 

2 

(j, -m,):(j, _m,») 

. . -+d{c,;a,b l (j, -m,)-(;, -m,) 

2 

TABLE II. The set of eight symmetries of the 3j coefficient described by n = J3 + m, and their mapping on to the eight-element group of permutations of 
canonical parameters corresponding to n = Jt + J2 - J,. 
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( 

i'+i~-m, 

(i, +i -l}-(j. -m,) 

2 

( 

i·+i.+m, 

(j +). -i,~-(j, +m,) 

j, +j, - m, 

(j, +i, -i,)-(j, -m,) 

2 

i, + j, + m, 

2 

(i, +j, -j,)-(j, +m,) 

2 

j, +j, -m, ) 
2 

. , " -b,Q/;c/d, 
U, +j, -j,~-(j, -m,) 

(

<J. -m,):(j, -m,) 

(j. -m,}-(j. -m.) 

(j, + m,) + (j, + m,) 

(j, +m,)-(j, +m,) 

2 

j, ) 
. . -b,G,;d,c, 

j .• - j, 

(

j, +m,):u +mJ (j, -m,):(j, -m,) 

(j. +m.)-(j, +m,) (j, -m,)-(j, -m,) 

2 2 

(

U' -m,):(j, -m,) (j, +m,)+U +m,) 

(_ I)' 2 
U -mJ-·(j, -m,) (i. +m,)-(j, +m,) 

2 2 

(

j +m.):.(j. +m) (j. -m,)+(j, -m,) 

(-1)' U+m)-(j.+m.) (j,-m,}-(j,-m,) 

2 2 

), +), + m, 

2 

j. ) 
. . -c,d,;a,b, 

j, - j, 

( 

j, +), + m, 

(-1)' (j' .. --2--
+), - j.) - (j. + m.) 

2 
(j. + j. - j, ) - (j, + m, ) 

2 

( 

j. +j, -m, 

(-1)' (j,+j-),~-(j,-m,) 

), +), - m, 

(j, +). -),)-(j, -m,) 

J. Math. Phys., Vol. 21, No.7, July 1980 K. Venkatesh 1557 



                                                                                                                                    

T ABLE III. The set of eight symmetries of the 3j coefficient described by n = j, + m, and their mapping on to the eight-element group of permutations of 
canonical parameters corresponding to n = j, + j, - jJ. 

( 

j, 
(j, - m,) + (jJ - m,) 

2 2 • 
(j, +m,)+U, +m,») 

(j, - m,) - (j, - m,) 

2 

-+a b ·c d 
(jJ +m,)-(j, +m2) I. I.. I. I. 

j, -j, 
2 

( 

j, 
(j, +m,)+U, +m,) 

2 

U, +m,)-(j, +m,) 

2 

2 -+ b a ·d c 

(j, -m,)+u,-m,») 

(jJ - m,) - (j, - m,) I. I.. I. I 

j, -jJ 
2 

j, +/, +m, 

2 

( 

j, +j, +m, 

(j, + j, - /,~ - U, + m,) (j, +/, -j,)-(j, +m,) 

2 

2 -+ b a ·c d 

j, +j, +m, ) 

(j, +j, -j2~-(j, +m,) I. I. I. I. 

j, +j, - m, 

2 

( 

j, +j, -m, 

(j, +j, -j,:-U, -m,) (j, +/, -j,)-(j, -m2) 

2 

j2 +j, -m, ) 

2 -+a b ·d c 
( '+' .) (. ) 1.1..1.1. h 11 -l, - l, -m, 

( 

l,+j'2-m, 

(_1)1 (j, +j, _j,)_(j, -m,) 

2 

( 

j, +j, +m, 

1 2 
(- I) . . . . 

(l, +h -l'~-(h +m,) 

j2 +j, -m, 

2 

(j, +jJ -j,)-(j, -m,) 

2 

j, +jJ + m, 

2 

(j, +/, -j,)-(j, +m,) 

2 

2 

j, +/, -m, ) 

2 -+d c 'a b 
( '+' .. ) (. ) I.I.'I./. l, h -h - h -m, 

2 

( 

j, 

(_ 1)1. . 

h -l, 

(j, +m,)+U, +m,) 

2 

(j, + m,) - (j, + m,) 

2 

U., -m 2
.):(jJ -m,») 

-+C d 'a b (j, -m,)-(j, -m,) L L. I. I. 

2 

( 

j, 

( _ 1)1. . 

l, -h 

(j, -m,)+U, -m,) 

2 

U, -m,)-(j, -m,) 

2 

TABLE IV. The set of 12 symmetries (Ref. 6) of the 6jcoefficient described TABLE V. The set of 12 symmetries (Ref. 6) of the 6j coefficient described 
by n = c + d - e and their mapping on to the 12-element group of perm uta- by n = a + / - c and their mapping on to the 12-element group of perm uta-
tions of canonical parameters. tions of canonical parameters corresponding to n = c + d - e. 

[: 
b 

;} -+ a,b,c/.;d,el.' e a 
;} -+ a,cLb,.;e,dl. [: 

/ ~} -+ c/ a/b/;d/e/.> [~ / 
;} --> b,a,c/. ;e,d/. 

c d e e 

{a, b, e, } {b, a, e, } {d, e, c, } {c, e, d, } 
-----+ C 1 b l Of ;dt e, , 

d, 
/, --> b,c,al.;e,d, 

/, 
----+ G,.C"br ;d,_e[, 

b, /, 
--> a/ blcl.;e/d/ 

d, c, /, c, a, b, a, 

~: 
b. a, } t: a, b, } {d. f, b. } { c, /, a. } - ~ b l a l C 1 ;dJ e l _, 

d, 
- ---+c1al.bl.;e/,dL - -----+ct.G1.b/;e/dll b, 

d; --> b/a,c,;d, e/ 
c. d, c, a, e, c, e, 

t, b, e,} {b, a, e, } 
Fe: 

d, b, } 
Fe: 

c, a, } 
d, j, ---+G,.b,.cL;el.dl _, d, j, ---+Gl_ct.bL;dLeL ---+cl.b,al.;d{e l .! 

b, d, ---+ bl.cLGJ.;et.d, 
c, c, a, c, 

~: 
a. b. } ~: 

b. a. } {d. b. !.} { c. a. !.} 
---+- b,.c, a l ;d{ e{, d. -+c/b/al.;el.dL ---+cl_bl.G/ ;el.dl .! 

b. d. 
---+ b1.c,.G1.;dt . e{ 

d. c. c. a. c. e. e. 

{b' 
e, a,} t, e, 

b'} t d, c, } t c, 
d'} 

----+ C{ 01 hI. ;dl.e f . I -----+ bLaLcL ;eLdL b'" -----+G/c,hl.;el.dl ., b, 
. -----+G,.bl.c1.;dl.e[ 

C, j;, d, d, /, c, a, a, 
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TABLE VI. The set of 12 symmetries (Ref. 6) of the 6j coefficient described by n = b + f - d and their mapping on to the 12-element group of permutations 
of canonical parameters corresponding to n = C + d - c. 

{~ C 
;} --'>b[cLaL;e[dL> {~ d ~} --'> cLbLaL;dLeL 

b a 

r b, d, } ~, 
a, c, } 

e, c, 
-+c1.b1.a[ ;e[,dL , 

d, 
b, --'> bLcLaL ;d[eL a, 

r c, e, } {:: d, e, } 
a, b, 

f~ -+al.ct.bL;et.dl., 
a, f: ----+ aLbLcL;dLeL 

{d' 
/, b, } r' /, a,} 

-+ c[,aLbL ;dLel _, 
b, 

d, --'> b[aLcL;eLdL a, e, c, e, 

{d. e. c. } {c. e. d. } 
a. J. 

b-t ------.,al.bl.c/.;el.dl ., 
b. J. 

a
4 

--'> aLcLbL;d[eL 

{a, c, f,} {b, d, f,} 
d, b, 

-----)0 bLal.cl.;dLeL' --'> cLaLbL;e[ dL e, c, a, e . , 

The symmetries of the 6j coefficient were discussed in terms of a set of six canonical parameters by Lockwood.4 The 12 
sets of canonical parameters corresponding to the 12 possible expressions for n are listed in Appendix A. As described above in 
the case of 3j coefficient, we give below a few examples of obtaining the mapping on to the permutation of canonical 
parameters by writing the intermediate parameters corresponding to each symmetry. Since we choose n = c + d - e in our 
calculation, fJo = a + b + c + d and ao = a + b + e. 

Example 3.1: Consider the symmetry 

{
b a e} 
c d f· 

Writing the intermediate parameters, viz, fJ 's and a's following the order in which we have defined them,2 we have 

fJI = a + b + c + d, fJ2 = b + c + e + J, fJ3 = a + d + e + J, 

a l =a+b+e, 

So, the mapping is 

a 2 = c + d + e, a 3 = b + d + J, a 4 =a +c+f. 

1559 

{~ : ;} -- aLcLbL;eLdL· 

Example 3.2: 

e+d+a-f 
2 

a+f+d-e 
2 

e+f~b-C} , 

e+f+c-b 

2 
fJl = b + c + a + d, fJ2 = b + c + e + J, fJ3 = a + d + e + J, 

Example 3.3: 

{d l el CI } 
a l II bl ~ {: 

c+e+f-b 
2 

e+b+l-c 
2 

a 3 = a + c + J, 

c+e;b-
f

} , 

c+b+l-e 
2 

fJl = a + d + e + J, fJ2 = a + d + b + c, fJ3 = e + f + b + c, 

a 2 = a + e + b, a 3 = d + b + J, 
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a, =c+d+e, a 2 =a +b+e, 

Example 3.5: 

{

d+e+l-a 
C2 e2 } 2 

b2 h = e + a ; 1 - d 

c 

b 

a 3 = a + c + J, 

d+e;a-/} 

a+d+l-e ' 
2 

p, = e + 1 + b + c, P2 = e + 1 + a + d, P3 = b + c + a + d, 
a 2 =e+a +b, a 3 =d+l+b, a 4 =c+a+J, 

Example 3.6: 

{ c+f+e-b c+l+b-e :l {c3 h a3 2 2 dJ ~ f+b~e-c b3 e3 c+b+e-I 
2 

a, =a+c+J, a 2 =b +e +a, a 3 =c+d+e, 

. {C3 13 
.. b

3 
e

3 

We have checked this procedure for all the 144 symmetries of the 6j coefficient. We find that this procedure is exactly 
equivalent to calculating the canonical parameters corresponding to the possible expressions for n, after listing the 12 sets of 
symmetries. 

The set of 12 symmetries described by n = c + d - e and their mapping on to the 12-element group of permutations of 
canonical parameters are given in Table IV. As examples, the 12 symmetries each describe by n = a + 1 - c and 
n = b + 1 - d, and their mapping on to the 12-element group of permutations of canonical parameters corresponding to 
n = c + d - e are given in Tables V and VI, respectively. The mapping is obtained by calculating the canonical parameters 
(listed in Appendx A) corresponding to n = a + 1 - c and n = b + 1 - d, respectively. This is exactly equivalent to the 
procedure of obtaining the mapping by writing the intermediate parameters corresponding to each symmetry. 7 
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APPENDIX A 

The sets of canonical parameters of the 3j and 6j coefficients. 
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TABLE VII. The nine possible sets of canonical parameters of the 3j coefficient. 

n a/. bl. 

j, +j, -j\ j, -j, +m, j\ -j, -m, 
j, -m , j, -j, +ml /, -j, -mz 
j, +m, j, -j, +ml j, -jl -m, 
jl +m , j, -j, -ml j, -jl +m, 
jl +j\ -j, j, -j\ -ml j, -jl +m, 
j, -m\ j, -j, -ml j, -jl +m, 
j, -m, jl -j, +m, jl -j, -m, 

/\ +m, j, -j, +m, jl -j, -m, 
j, +j, -)1 jl -/\ +m, j, -j, -m, 

TABLE VIII. The possible sets of canonical parameters of the 6) coefficient. 

n al. bL 

c+d-e a+b-c-d b+e-c-/ 
a+b-e c+d-a-b d+e-a-/ 
b+d-/ c+/-b-e a+/-d-e 
a+c-/ d+/-a-e b+/-c-e 
d+/-b a+b-c-d b+e-c-/ 
a+/-c c+d-a-b d+e-a-/ 
d+e-c c+/-b-e a+/-d-e 
a+e-b d+/-a-e b+/-c-e 
c+/-a a+b-c-d b+e-c-/ 
b+/-d c+d-a-b d+e-a-/ 
b+e-a c+/-b-e a+/-d-e 
c+e-d d+/-a-e b+/-c-e 

'K. Venkatesh, J. Math. Phys. 19,2060 (1978). 
'K. Venkatesh, J. Math. Phys. 19. 1973 (1978). 
'Loren A. Lockwood. J. Math. Phys. 17. 1671 (1976). 
<Loren A. Lockwood. J. Math. Phys. 18,45 (1977). 
5The canonical parameters of Lockwood are indicated by the sUbscript L. 
bThe sUbscript in the parameters indicate that the corresponding Regge 
symmetry is superposed on the tetrahedral symmetry. See T. Regge. 
Nuovo Cimento 11, 116 (1959). For example, 

{
a, e, b,} 
d, .f, c, 
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c/. dl. 

j, -j, -m, j\ -j, +m, 
j, -j, +m , j, -jl -m3 
jl -j, -m, jl -j, +m, 
/, -j, -m, j, -jl +m, 
j, -j, + ml jz -)1 -m, 
jl -j, -m, j, -j, +m, 
j, -j, -ml /, -jl +m, 
j, -j, +m, j, -jl -m J 

j, -j,-m, j, -j,+m\ 

cL dL eL 

a+e-d-/ e+/-b-c e+/-a-d 
c+e-b-/ e+/-b-c e+/-a-d 
a+c-b-d e+/-b-c e+/-a-d 
b+d-a-c e+/-b-c e+/-a-d 
a+e-d-/ b+c-e-/ b+c-a-d 
c+e-b-/ b+c-e-/ b+c-a-d 
a+c-b-d b+c-e-/ b+c-a-d 
b+d-a-c b+c-e-/ b+c-a-d 
a+e-d-/ a+d-e-/ a+d-b-c 
c+e-b-/ a+d-e-/ a+d-b-c 
a+c-b-d a+d-e-/ a+d-b-c 
b+d-a-c a+d-e-/ a+d-b-c 

means that the Regge symmetry R5 is superposed on the tetrahedral 
symmetry 

[: ; :}. 
7The complete listing of summetry relations and homomorphisms have 
been given in K. Venkatesh. Ph.D. thesis. Mysore University. 1979. 
unpublished. 
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Wigner-Eckart theorem for an arbitrary group or Lie algebra 
Vishnu K. Agrawala 
Department of Natural Sciences and Technology, Point Park College, Pittsburgh,Pennsylvania 15222 

(Received 15 June 1979; accepted for pUblication 21 August 1979) 

Circumstances sufficient for the validity of the Wigner-Eckart theorem are analyzed and the 
theorem is proved under very mild assumptions. The proof is purely algebraic and shows the 
theorem to be a direct consequence of Schur's lemma and complete reducibility of tensor product 
of irreducible representations. 

1. INTRODUCTION 

The Ubiquitous Wigner-Eckart theorem '.2 of angular 
momentum theory states that the matrix elements of a tensor 
operator are proportional to the corresponding Clebsch
Gordan coefficients. There have been several successful at
temptsnetic 2.3 to generalize the theorem and extend it to 
other contexts, such as unitary groups4-7 higher than SU(2), 
magnetic symmetry groups,s finite groups,9 compact 
groups, lOand unitary representations of locally compact 
groups. "The given proofs depend on the special properties 
of the operators (e.g., unitarity) or of the groups (e.g., com
pactness) that are limited to the particular case on hand. As a 
result the given proofs differ from case to case. Here a simple 
proof is presented which, perhaps because of its abstract na
ture, makes transparent which hypotheses are really neces
sary, and enables one to extend the scope of the theorem as 
fully as possible. 

The statement of the theorem, of course, needs the exis
tence ofClebsch-Gordan coefficients or the operators which 
they represent. This is insured by assuming that the tensor 
product of two irreducible modules (at least the two that are 
being considered) should be completely reducible as a direct 
sum of irreducible submodules. Of course, this requirement 
can be proved in a wide variety of particular cases-finite 
groups, compact groups, finite dimensional representations 
of semisimple Lie groups, or Lie algebras. '2 

It turns out that just one more assumption is sufficient 
for proving the Wigner-Eckart theorem-that in an irredu
cible module over a group, a linear operator which com
mutes with every element of the group is a multiple of the 
unit operator. This fact, often known as the second part of 
Schur's lemma, is easy to prove if we restrict ourselves to 
finite dimensional modules over algebraically closed fields. 

2. MODULES AND TENSOR OPERATORS 

The proofs of the Wigner-Eckart theorem are almost 
identical for groups and Lie algebras, so we shall simulta
neously consider representations of a group G or a Lie alge
bra L. It is not necessary for G and L to be related in any 
manner. Our treatment will be algebraic for most part and 
no topology is necessary for G. Let Vbe a vector space of 
arbitrary dimension over a field F and let lin(V) denote the 
set of all F-linear operators on Vand Aut( V) the set of all 
invertible ones. For more generality we shall allow our re
presentations to be projective. Thus, by a representation of G 

in V we mean a function p: G---+Aut( V) that satisfies the 
property 

p( g, g2) = a(g, ,g2 )p(g, )P(g2)' pee) = 1 v (2.1) 

for all g, ,g2 EG and the identity element e of G. Here, a is a 
function from G X G into the set F· of nonzero scalars. 

Similarly, a representation of the Lie algebraL is a map 
p: L---+lin(V) such that 

p([/''/2]) =(J(/, '/2)[P(/, )P(/2) - P(/2)P(/,)] 

for alII, '/2 d. Here, [ , ] denotes the Lie product in L and{J 
again is a function from L X L into F·. 

Given a representation p v of G (L ) in V, we can regard 
Vas a module (in the projective sense) over G (L ) by defining 
the action as 

g·v = Pv(g)(v) [/.v = Pv(/ )(v)] (2.2) 

for allgEG, Id, and VEV. Conversely, given a module Vover 
G (L), we obtain a representation of G (L ) by reading Eq. 
(2.2) backwards. Often, for the sake of neat notation, we 
shall simply write gv instead of p v (g)v. This is easily distin
guished from the module action because the latter is written 
g·v. 

A submodule ue V is an invariant subspace, i.e., 
GUe U (LUe U). A module Vis irreducible if only submo
dules are [0 land Vitself. We shall call a module completely 
reducible if it is a direct sum of irreducible submodules. 

Given two modules U and V, their vector space tensor 
productU ® V and the space lin( U, V) of all F-linear maps 
from U to V can be regarded as modules by means of the 
equations 

g·(u®v)=gu®gv [/(u®v)=lu®v+u®lv], (2.3) 

(g.t)u = g[t (g -'u)] [(It)u = I (tu) - t (/u)] (2.4) 

for all UEU, tElin( U, V), and gEG (/d ). 
According to the convention which we mentioned be

fore, g,g - , , and Ion the right hand side of these equations 
stand for the operators representing them in the appropriate 
spaces. Especially,g -, u meanspu(g) - 'u which may not be 
the same as Pu(g -, ) for projective representations. 

The field F is a module under the trivial action by G or 
L, i.e., g·a = a (/·a = 0) for all aEF and gEG (fd ). 

Of particular importance is the scalar operator sub
module home U, V) oflin( U, V). This consists ofthe so called 
scalar operators sElin( U, V) which satisfy g·s = s (/·s = 0) for 
each gEG (/d ). More explicitly, 

(g·s)u = g[s(g -, u)] = su [(l.s)u = I (su) - s(lu) = 0], 
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for every UEU. Thus, scalar operators are the ones which 
intertwine with all elements of G or L; therefore, they are 
module homomorphisms. 

Schur's lemma, part 1, states that if U and Vare irredu
cible modules and sEhom( U, V), then either s is invertible or 
else s = 0 (when U and Vare nonisomorphic). This is a direct 
consequence of the definitions because if s ¥- 0, then 
Kers¥- U and 1m s¥- [0 J, which by irreducibility of U and V 
implies Ker s = [0 J and 1m s = V. 

The second part of Schur's lemma is not so trivial and 
states that, under certain conditions, equality holds in the 
obvious inclusion F 1 w C home W, W), where Wis a irreduci
ble module. The assumptions under which this is valid will 
be anal yzed in Sec. 5. 

3. THE WIGNER-ECKART THEOREM 

As before, let G denote a group and L a Lie algebra over 
a field K. Let U and Vbe G or L modules with V irreducible 
and let T be a tensor operator submodule of line U, V). We 
assume that T ® U is a direct sum of irreducible modules 
(some of which may be isomorphic). Also, it is assumed that 
for every irreducible module W, home W, W) = F 1 w' In 
most applications, T and U will be irreducible but this as
sumption is not being made here 

The nucleus of the proof invol ves defining a scalar oper
ator <PEhom(T ® U, V) by means of the equation 

<P(t®u)=tu (3.1) 

for each tET, UEU, with extension to all of U ® Vby linearity. 
The following algebra shows that 1,6 is a scalar operator. For 
each tET, UEU, andgEG, we have [from Eqs. (2.3) and (2.4)] 

(g.<P )(t®u) =g[<Pg-l(t®u)] 

= g[<P (g-It®g- IU)] 

=g[(g-It)(g-IU)] 

= gIg - I [tg(g- IU)]J 

= tu = 1,6 (t ® u). 

In the case of L modules, we have, for each IEL, 

(/.1,6 )(t ® u) = 1[1,6 (t ® u)] - 1,6 [I (t ® u)] 

= I (tu) - 1,6 (It ® u + t ® lu) 

Now let 

= I (tu) - 1,6 (It ® u) - 1,6 (t ® lu) 

= I (tu) - (It)u - t (/u) 

= I (tu) - [l(tu) - t(lu)] - t(/u) = O. 

be a direct sum decomposition of T ® U into irreducible sub
modules. We assume the indexing to be one to one. Let Jbe 
the set of all indices such that each ~(jE J) is a copy of V. 
We allow J to be empty. Therefore, 

T®U= ffi JJjffi ffi Wi' (3.2) 
}€J ie/- J 

LetPi:T® U-Wi and qj: Wi_T® Ube the canonical 
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projections and injections, 13 respectively, associated with 
the above direct sum decomposition. It is easily verified that 
these are module homomorphisms. An element t ® u in 
T ® U can be written as 

t®u= LqiPi(t®U), 
iEF 

where F is a finite subset of I whose cardinality depends on 
t ® u. Therefore, we can write 

<P(t®u) = L<PqiPi(t®U). 
iEF 

Since 1,6 and the qj> iE!, are module homomorphisms, so 
are <PqjEhom( Wi' V) for each iE!. By Schur's lemma, <Pqi is 
nonzero only when Wi is isomorphic to V, i.e., only when 
iE.!. Letting./;: ~_V denote any isomorphism of modules 
for eachjE.!, the above sum can be written as [since the sec
ond sum in Eq. (3.2) gives zero] 

1,6 (t ® u) = L <Pqjpit ® u) 
}€JnF 

= L (<Pq~j-I'JI;pj(t®U). 
}€JnF 

If J is empty, i.e., if T ® Uhas no submodule isomorphic to V, 
the <Pqi = 0 for all iE! and hence 1,6 = O. Therefore, we shall 
follow the convention that a sum over an empty indexing set 
is zero. 

Now, for eachjE.!, 1,6 q~j - I belongs to home V; V) and 
hence, by Schur's lemma, part 2, it is a multiple Yj of the unit 
operator 1 v so that 

tu = 1,6 (t® u) = L Yj./; p/t® u). (3.3) 
}€JnF 

Equation (3.3) is the basis independent version of the 
Wigner-Eckart theorem stating that the action of tET on 
UE U is a linear combination of the projection maps./; Pj 
:T®U 
_v. The scalars Yj are called the reduced matrix elements 
and are independent of the particular vectors t and u. The 
number of nonzero reduced matrix elements quite naturally 
depends on t and u because this is the number of terms on the 
right hand side ofEq. (3.3), namely, the cardinality of JnF. 

The conventional statement of the Wigner-Eckart 
theorem is written in terms of matrix elements. For that pur
pose one has to choose bases [u a laEA J, [Vb IbEB J, ftc ICEe J, 
and I Wjd IdEB I in the modules U, V, T, and each 
~ (j E J). Then, {te ® Ua ICEe, aEA J is a basis of T ® U. 
From Eq. (3.3), the (b,a) matrix element oft can be written as 

(bltla)= I Yj(bl'/;pjlc,a). (3.4) 
jeJnF 

The matrix elements (b I./; Pj Ic,a) are simply the Clebsch
Gordan coefficients. 

4. APPLICATION TO REDUCIBLE MODULES 

Sometimes it may be necessary to find matrix elements 
of operators between reducible modules (e.g., multiparticle 
states 14). The Wigner-Eckart theorem could be used in such 
cases by first resolving the operator into its operator matrix 15 

as shown below. The general formula will be notationally 
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very cumbersome, so we prefer to present the essential fea
tures of the algorithm only. All modules in this section are 
finite dimensional over an algebraically closed field and 
completely reducible. 

Consider an operator tElin( U, V) where U and V are 
modules (over G or L ). Let 

be their direct sum decomposition with Pm (mEM) and 
P ~ (nEN) denoting the natural projections and Qm (mEM) 
and Q ~ (nEN) denoting the natural injections. The operator 
matrix of t is just an array whose (nm) entry is the linear map 
tnm from Um to Vn defined by 

Since the Qm 's are just inclusion maps, to evaluate 
tnm (urn) for any Um EU rn' one simply evaluates t (u m )and pro
jects it onto its nth component in Vn • Also, it follows easily 
from the properties of natural projections and injections l3 

that 

t = L Q ~tnrnPm' 
rneM 
neN 

Any vector UEU can be written uniquely as U 
= ~meMUrn' where Um = Pm (u). Thus, tu is known 

if tUm is known for each mEM. Moreover, tUm is known if 
each of its componentsP ~turn is known. However, from the 
above resolution of t, P ~ tUm = tnm Urn' In this sense, (tnm) is 
the matrix oft - tnm Urn acts on the mth componentofu, and 
gives the nth component of the result, whereas ~mEMtnm Urn 
is the nth component of tu. Thus, all information about tis 
contained in its matrix (tnm)' Each "matrix element" tnm 
belongs to lin( Urn, Vn). Since we have not made any assump
tion as to the irreducible nature of t, therefore tnm need not 
belong to an irreducible submodule of lin( Urn, Vn) and it is 
necessary to resolve it as a sum of irreducible tensor opera
tors in lin( U m , Vn ). This is achieved by taking the direct sum 
decomposition of lin( U m , Vn) ~ Vn ® U: = EB rER T;"n with 
the associated projections P ~ and injections Q ;'. The rth 
projection of t nm is the tensor operator t ~m = P ~ (t nm) be
longing to the irreducible submodule T;"n of lin( U m' Vn)· 
The Wigner-Eckart theorem can be applied to t ~m to find its 
matrix elements, knowing which one can find matrix ele
ments of tnm and ultimately those of t. 

5. ANALYSIS OF ASSUMPTIONS 

We now investigate conditions which enable us to prove 
the two assumptions used earlier for the Wigner-Eckart 
theorem. The first-Schur's lemma, part 2--can be proved 
under fairly mild conditions. To discuss them we introduce 
the following notation and definitions. 

Let G denote a group and L a Lie algebra over some 
field K. Let Wbe a module over G (or L) which is a vector 
space over a field F and p the corresponding representation 
of G (or L ) in W. It is more convenient to work with the 
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associative algebra A generated by 1 wand p(G) [or p(L ») 
over F. Clearly, W is an A module and a subspace of W is 
invariant under G (or L) ifand only if it is invariant under A. 
Thus, Wis irreducible for G (or L) if and only ifit is irreduci
ble for A. Also, an operator in lin( W, W) intertwines with 
elements of p( G) [or p(L ») if and only if it does so with ele
ments ofA. 

The algebra A is said to be n-fold transitive if given k<.n 
linearly independent (over F) vectors x I , .. • ,x k and any k vec
torsYI '''''Yk' there exists an element aEA such that ax) = Y)' 
j = l, ... ,k. Thus, A is onefold transitive if and only if W is 
irreducible. 16 The algebraA is called dense if it is n-fold tran
sitive for every positive integer n. 

In the course of proving his density theorem, Jacob
son 17 has shown that if A is twofold transitive then 
hom(W, W) = F 1 w. Of course, twofold transitivity implies 
onefold transitivity. Conversely, if A is onefold transitive and 
hom( W, W) = F1 w, thenA is dense and hence certainly two
fold transitive. Thus, for an irreducible A module W, the 
equality hom(W, W) = F1 w is equivalent toA being twofold 
transitive. 

To provide a simpler criterion for hom(W, W) = FI w, 
let us define the spectrum o(s) of sEhom( W, W) as the set of 
scalars AEF for which S - Al w is not invertible. A conve
nient criterion for hom( W, W) = F1 w is that o(s) be non
empty for each sEhom(W, W); for, if S = As 1 w, AsEF, then 
obviously AsEo(S). Conversely, suppose As Eo(S). Then, 
S - As 1 w in hom( W, W) is not invertible and hence, by the 
first part of Schur's lemma, it must be zero, i.e., S = As 1 w' 

Note also that As is the unique member of o{s) in this case. 
If W is finite dimensional and F is algebraically closed, 

the characteristic equation det(s - Al w) = 0 has solution in 
F and so the spectrum of sis nonempty. In the infinite dimen
sional case it helps to know if s is algebraic because then o(s) 
coincides with the roots of the minimum polynomial of s 
which factors into linear factors if F is algebraically closed. 

It is easily shown 18 that if the cardinality of F is strictly 
larger than the Fdimension of W, then every sEhom( W, W) is 
algebraic. For instance, if Fis the complex field and dimF W 
is countable, then every sEhom( W, W) is a scalar multiple of 
the unit operator. If W is an L module, where L is a finite 
dimensional Lie algebra over F, then even the cardinality 
condition on F is not needed for showing that S is algebraic. 19 

Assumptions of a topological nature can sometimes en
sure the nonemptiness of the spectrum. For instance, it is a 
standard result20 that every bounded linear operator in a 
normed vector space over the complex field C has a non
empty spectrum. In fact, if Wis a complex Hilbert space and 
the algebra A is self-adjoint (aEA~·EA ), then even the 
weaker type of topological irreducibility (W has no closed 
invariant subspaces except 10 J and W) is equivalent to 
hom(W,W) = C1w?1 

The second assumption--complete reducibility of 
modules-needs more stringent conditions. The classical re
sults in this area deal with only finite dimensional modules 
over real or complex fields. Every finite dimensional real or 
complex module is completely reducible under anyone of 
the following conditions 12: (1) G is a compact group, (2) L is 
the Lie algebra of a compact Lie group, (3) G is a semisimple 

Vishnu K. Agrawala 1564 



                                                                                                                                    

Lie group, or (4) Lis semisimple. 
The above conditions do not guarantee complete redu

cibility of infinite dimensional modules in general,22 but 
Kunze23 has shown that every square integrable unitary re
presentation of a locally compact group G in a Hilbert space 
is a Hilbertian direct sum of topologically irreducible square 
integrable representations. Recall that square integrable re
presentations (known also as discrete series) are those whose 
matrix elements are all square integrable (with respect to the 
Haar measure of G). 

For the Wigner-Eckart theorem we do not actually 
need complete reducibility of every module but just that the 
tensor product of two completely reducible (usually irredu
cible) modules be completely reducible. This holds if the 
modules in question are L modules but semisimplicity of Lis 
not required. 24 

A fairly satisfactory theory of infinite dimensional re
presentations exists provided one restricts oneself to mod
ules that are complex Hilbert spaces. 16.22.25,26 We shall follow 
the treatment of Ref. 16 as it uses minimum amount of topol
ogy, especially avoiding the use of direct integrals, and does 
not restrict to unitary representations. No topology is neces
sary for Gbut it is necessary that the operatorsp(g) [orp(L)] 
in lin(W, W) representing elements of G (or L) be bounded 
(= continuous). It is also convenient to require that the alge
braA generated by p(G) [orp(L)] or at least its weak closure 
Abe self-adjoint. This is not too restrictive because it is ful
filled by most practical representations, e.g., unitary and 
projective unitary representations. 

The set of bounded linear maps from a Hilbert module 
U to another one V will be denoted by BL (U, V) and its subset 
consisting of bounded intertwining operators or bounded 
module homomorphisms by BH (U, V). Isomorphisms of 
modules now will be required to be isometries, i.e., preserv
ing the inner products. Two modules are said to be disjoint if 
neither contains a submodule isomorphic to the other. The 
tensor product is taken in the sense of Hilbert space tensor 
product which itself is a Hilbert space. The direct sum of 
modules now means the Hilbertian direct sum which allows 
countable convergent sums instead of finite sums. 

Under these circumstances, the following Mackey's26 
version of Schur's lemma can be proved 16: 

(i) Let U and Vbe G modules. Then U and Vare disjoint 
if and only if BH (U, V) = ! 0 J . 

(ii) A G module W is topologically irreducible if and 
only if BH (w, W) = (:1 w. 

To prove the Wigner-Eckart theorem, we consider as 
before G modules U and V, where Vis topologically irreduci
ble, and a tensor operator submodule TEBL (U, V). We define 
rpEBL (T ® U, V) by Eq. (3.1). It is easily verified that rp is 
bounded. 

Now, T ® U cannot in general be written as a direct sum 
ofirreducibles but according to Theorem IV[Eq. (5.4)] of 
Ref. 16, it can be decomposed as 

T®U=H+H1, 

where H is a uniquely determined submodule that is a Hil
bert space direct sum of topologically irreducible submo-
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dules each of which is a copy of V, and H 1 is the orthogonal 
complement of H, also a submodule. If T ® Uhas no submo
dule isomorphic to V, then tu = rp (t ® u) = 0 and H = ! 0 J. 

Assuming H =1= ! 0 J, let P: T ® U---+H, P 1: T ® U---+H 1 be 
canonical projections and Q:H---+T® U, QI:Hl---+T® Uthe 
canonical injections. Then 

tu = rp (t ® u) = rp (QP + Q Ip 1)(t ® u) 

= rpQ P(t ® u), 

because the restriction rpQ 1EBH (H 1, V) = 0 since H 1 is dis
joint from V. 

Thus, the action of rp on T ® U is the same as the action 
of its restriction rpQ to H = P (T ® U). This is similar to the 
situation of Sec. 3 with rpQ replacing rp and H replacing 
T ® U. Letting 

H= Ell W 
}EJ } 

and proceeding as in Sec. 3 with the same notation as used 
there, we obtain the following form of the Wigner-Eckart 
theorem: 

tu = I rdj Pj [P(t® u)], 
}EN 

where N is a countable subset of J. The matrix version easily 
follows from this as before. 
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Three theorems are proved concerning the Gel'fand lattice polynomials (GLP) introduced by 
Gazeaux, Dumont-Lepage, and Ronveaux. In these theorems, subdeterminant initial conditions 
are assumed. (1) The Gel'fand states are linear combinations of G LP corresponding to left 
Gel'fand lattices. (2) The set of all GLP is a basis for the space of polynomial functions of the 
elements of a matrix. (3) If the left Gel'fand lattices are arranged in a natural order, then each 
Gel'fand state is a linear combination of the corresponding GLP and earlier ones in the same 
order. Finally, a formula is given for computing individual GLP. 

1. INTRODUCTION 

The irreducible unitary representations of the unitary 
groups have been studied from many viewpoints. Weyll,2 
classified them up to equivalence, and constructed a model 
of each equivalence class, in which he defined a basis that is 
generally not orthonormal. Using the branching law that 
Weyl discovered, Gel'fand and Zeitlin3 defined orthonormal 
bases; Gel'fand and Graev4 derived formulas for the matrix 
elements of the representations with respect to those bases. 
A general method for constructing irreducible representa
tion spaces for all compact Lie groups was first stated by 
Godement,5 was further developed by Zhelobenko,6 and has 
since been generalized to the Borel-W eil theorem.7 Barg
mann and Moshinsky,8,9 and Baird and Biedenharn lO de
scribed the same construction, for the case ofU(n), in differ
ent notation. An outstanding problem has been the 
evaluation of the Gel'fand states in these concrete represen
tations, and the further study of the matrix elements of the 
representations. Louckll ,12 has given a clear exposition of 
how these problems are related. Several authors 13-15 have 
found partial results on the explicit form of the Gel'fand 
states. Nagel and Moshinskyl6 have shown how the states 
can be constructed by successive applications of certain op
erators which, in these realizations, are partial differential 
operators. The results, and the proofs, in all of these works 
have tended to become quite complicated, and it is hard to 
see any general pattern amid the details. 

Recently, Gazeau, Dumont-Lepage, and Ronveaux,17 
have introduced a series of polynomials which offer some 
hope of simplification. These are called the Gel'fand Lattice 
Polynomials (GLP). In their most general form they may be 
regarded as polynomials on a space of en) -1 dimensions, 
related to the exterior algebra over C n; but a special case, 
called "subdeteminant initial conditions," defines polyno
mial functions of the components of an n X n matrix. The 
Gel'fand states, and more generally the matrix elements of 
representations, are such polynomials also; therefore it is 
reasonable to ask how these sets of polynomials are related. 
Gazeau, Dumont-Lepage, and Ronveaux made these con
jectures: 

(1) the Gel'fand states are linear combinations of cer
tain Gel'fand lattice polynomials; 

(ii) more generally, all the matrix elements are linear 
combinations ofGLP; 

(iii) if the Gel'fand states and the GLP are listed in 
appropriately chosen orders, then the transformation matrix 
whose existence is asserted by (i) is triangular. (Thus the 
Gel'fand states could, in principle, be computed by Gram
Schmidt orthogonalization.). 

In Ref. 17 it is proved that (i) holds for n <; 3 and (ii) for 
n<;2; explicit results, for (i) if n = 4 and (ii) if n = 3, are 
stated without complete proof. Conjecture (iii) is consistent 
with the results of Ref. 17. 

The present paper proves these three conjectures. The 
paper is organized as follows. Sec. 2-5 essentially repeat the 
definitions of the G LP and related objects from Ref. 17; this 
is done for ease of reference and also because the conventions 
chosen in Ref. 17 do not match those of most of the work on 
Gel'fand states. Section 6 proves the first conjecture and Sec. 
7 proves the second conjecture from a special case ofthe first. 
In these theorems the essence is the properties of the Gel
'fand lattice polynomials without reference to the Gel'fand 
states. For the third conjecture, however, we must use some 
means of constructing the orthogonal Gel'fand states. We 
choose to adapt the lowering operators of Nagel and Mo
shinsky to a realization by functions on the group of upper 
triangular matrices. After discussing in Sec. 8 the convenient 
orders in which to arrange either Gel'fand states or GLP, in 
Secs. 9 and 10 we transfer the lowering operators to that 
group. In Sec. 11 we compute the leading term in an arbi
trary Gel'fand state, and thus establish the truth of conjec
ture (iii). 

Finally, we note how individual GLP can be conve
niently computed. 

2. GEL'FAND LATTICES 

A Gel'fand lattice is an arrangement of integers in a 
certain framework. It is convenient to have some vocabulary 
for describing the places in the framework. These are an 
n X n array of cells; we shall denote a typical cell by (f] 
where i andjrun from 1 ton. We define a partial order on the 
cells by saying that (f].;;:; [/] ifj>/ and i>i'. We picture the 
framework as in Fig. 1. 
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FIG. I. The framework for Gel'fand lattices. 

The central column or median of the framework is the 
set of cells [~ ], 1 <;i<,n. The k th left column, for k between 1 
and n - 1, contains the cells U + k]' 1 <j<,n - k; the k th 
right column contains the cells [~+ k], 1 <,i<,n - k, These 
columns are denoted en _ k and en - \ respectively; the in
dex is the number of elements in the column. The central 
column is en = en. 

The partial diagonals (in Ref. 17 "quasi diagonals") ex
tend either to the left or to the right, and either up or down, 
from elements of the central column. A typical upper left 
partial diagonal contains the elements (f] where}<,i and i is 
fixed. 

A Gel 'fand lattice m of dimension n is an assignment of 
nonnegative integers m i j to the cells [f], such that if [/] 
<, [/] then m/<,m i , f. An equivalent form of this condition is 

(2.1) 

Figure 2 displays a typical Gel'fand lattice. The set of Gel' 
fand lattices of dimension n is denoted by ~ n . The transpose 
'm of a lattice m is defined by 

'm/=m/. 

A binary Gel'fand lattice is a member f!lJ of ~ n such that 
every integer b i j is 0 or 1. The set of binary elements of ~ n is 
denoted f!lJ ~ n' We shall take a special interest in those lat
tices which have constant values along each lower right par
tial diagonal; they will be called left Gel'fand lattices, and the 
set of them will be denoted 5t' ~ n • 

~ n is a semigroup, with this addition: 

(m + m')/ = m/ + m'/' 

The zero lattice is the \dentity element; we shall denote the 
set of nonzero elements by ~ n *. 

Among the many possible numbering schemes for the 
set of binary Gel'fand lattices, there is one that we shall find 
particularly useful. Let 1 <,l<,n; let R = (ra: 1 <,a<,l) and 
e = (ca : 1 <,a<,l) be sequences of integers, satisfying 

l<,ra<,n, l<,ca<,n, 
(2.2) 
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A binary Gel'fand lattice b = (3c R is defined by 

b/ = 1, if }<,l and i<,n + ) - c j or i<,1 

and }<,n + i - ri ; b/ = 0 otherwise. (2.3) 

The left side of (3c R is determined bye, and the right side by 
R. The condition in the first line of (2.2) may be restated 
thus: In the lower left partial diagonal starting from U], 
c j - ) cells are given the value 0 and the other n - cj + 1 
cells are given the value 1 . 

The transpose of a binary lattice is 

(2.4) 

3. GEL'FAND LATTICE POLYNOMIALS 

Every Gel'fand lattice m can be decomposed into a sum 
of binary Gel'fand lattices 

m = b(l) + ... + b(s) , 

b(a)Ef!lJ~n*' s=m 1
1
, (3.1) 

usually in more than one way. Letxb be an indeterminate for 
every b in f!lJ ~ n *. If mE~ n let 

(3.2) 

where the sum ranges over all b(!) , ... ,b(s) in f!lJ ~ n *, subject 
to the constraint (3.1). The Gel 'fand lattice polynomial (or 
GLP) associated to m is xm. 

Propositions relating to GLP can sometimes be proved 
by induction on the number of terms in the sum. For this 
reason it is convenient to observe [cf. Ref. 17, (17)] 

xm = I XbX
iii

, 

b+m=m 

where in the summation bEf!lJ ~ n * and iiiE~ n' 
iii! ! = m 1 1 - 1. Equation (3.3) can be regarded as a finite 
difference equation, the solution of which is completely de
termined by the values ofxb for binary lattices b. These val
ues are accordingly called "initial conditions". 

If m is a left Gel'fand lattice, then it is easy to see that in 
any decomposition (3.1) the summands must be left binary 
Gel'fand lattices. 

4. GENERATING FUNCTIONS 

The sum in (3.2) ranges over ordered partitions of m. 
We may describe the same polynomial in terms of unordered 

t! , 
t 1 t 2 

/2 1 
/ ""'-

/" t 2 ........ 

l/" /2 .... ...... 
t ..... ...... t n 

n ..- ...... 1 .... 
t 2 ..- ..... n 

n /" t2 
..... ..-..... 

"- '" ..... t n .... 
n 

FIG. 2. A Gel'rand Lattice. 
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partitions of m into distinct terms counted with varying mul
tiplicities. If we have such a partition, say 

m = I dbb, db >0, 
bE,;!} ,-;.. ". 

then its contribution to (3.2) is 

(4.1) 

Now this product has a familiar structure: it is a monomial, 

Ilbxb d", multiplied by the corresponding multinomial coeffi
cient. One recognizes that xm is part of the expansion of 

(~Xb)m". We shall obtain a generating function for the 
GLP's if we introduce additional independent variables into 
this expression, in such a way that it can be separated into 
individual GLP's. 

For this purpose we define a set of n2 + n 
indeterminates 

Agh , /-lgh' 1 <,g<k<n. 

If R = (rl, ... ,r,) as in (2.2), we set 

(4.2) 

(4.3) 

If b = Pc R, then the products A(C) and ~(R) can be charac
terized in terms of b/. Indeed, if we make the convention 
that for any element of f1 n' m i n + I = mn + I J = 0, then 

(i) the exponent of Agh in A(C) is 

and 
(ii) the exponent of /-lgh in /-l(R) is 

bn-h+g_bn-h+g+1 
g g • 

Because the exponents are linear functions of the numbers 
b i J, we can extend them to all Gel'fand lattices. If mE f1 n , 

define 

and 

(m,gh) = m~_h+g - m~_h+g+t' 

(gh,m) =m;-h+g_m;-h+g+t, 

A (ml = II Agh (m.gh), 
g<h 

~[m) = II /-lgh (gh,m). 
g<h 

Note that 

(m + m',gh) = (m,gh) + (m',gh), 

(gh,m + m') = (gh,m) + (gh,m'), 

A(m+m'l = A(mlA(m'l, 

~[m+m') = ~[m)~[m'), 

and if b = Pc R, then 

A(b 1 = A(c), 

~[b) = ~(R)' 

Let us set 

Xb = xc R, b = PCR; 

then the generating function is 
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(4.4a) 

(4.4b) 

(4.5a) 

(4.5b) 

(4.6a) 

(4.6b) 

(4.7a) 

(4.7b) 

(4.8a) 

(4.8b) 

[.f & A(C)~(R)XCR l';= TO~'_sA(Tl~[T)XT, (4.9) 

This generating function is found in Ref. 17, Eq. (54), in 
slightly different notation, notably, A/ of that paper is our 
Aj." -- i + I and /-li j = /-li,,, __ j + I . The constraint Aij = /-lij is 
imposed in Ref. 17, but it can be omitted without harm, 

A generating function for the left GLP can be obtained 
from (49) by taking special values of the indeterminates/-lgh • 

On the one hand, if Tis a left Gel'fand lattice, then the mono
mial A (1'1 determines T completely. On the other hand, the 
condition that Tbe a left Gel'fand lattice is that (gh, T) = 0 
if g<,h - 1. We isolate the left GLP in (4.9) if we set/-lgh = 0 
if g < hand /-lhh = 1. We find 

(4.10) 

4. SUBDETERMINANT INITIAL CONDITIONS 

From the definition of the Gel'fand lattice polynomials, 
it follows that we can assign arbitrary values to the "initial 
conditions" x b where b is binary, One interesting assignment 
is obtained by letting z be an arbitrary n X n matrix of com
plex numbers, and letting 

We shall then denote 

xT=LlT(z). 

(5.1) 

(5.2) 

In this paper we shall give most of our attention to GLP with 
either arbitrary independent initial conditions or subdeter
minant initial conditions. (Ref. 17 makes interesting use of 
other choices.) For the sake of brevity we shall sometimes 
refer to these two cases as "exterior GLP" and "matrix 
GLP" respectively. 

With subdeterminant initial conditions, the left GLP 
satisfy an important functional equation. Indeed, if 
R = (I, .. ,,/), then Llc R is a subdeterminant from the first I 
rows of z; therefore, if v is a lower triangular matrix with 1 's 
on the diagonal, then 

LlcR(v z) = LlcR(z) (5.3) 

and if ~ is the diagonal matrix diag(ot, ... ,o"), then 

LlCR(~ z) = Oto2,,·o,LlcR(z). (5.4) 

These equations can be generalized to left Ge1'fand lattices 
that are not binary. It is easily seen that (4.10) and (5.3) 
imply 

Ll T (v z) = Ll T (z). (5.5) 

To extend (5.4), we observe that 

AcLl c I··' (~z) = AcLl c I .. ·' (z), 

where 

Agh = OgAgh · 

It is easily checked that for any Gel'fand latice T, 
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i (T,gh) = t/ - t~!: 
h=g 

and so 

j.(T1 = 8[I]A(TI, 

where 
r I £' t /I 

bit I =DI ' ... u" ". (5.6) 

Therefore the generating function implies 

,j 7(8 z) = 8 1t l,j T(Z). (5.7) 

Now (5.5) and (5.7) are equations that have been stud
ied before; in the work of Baird and Biedenharn, 10 and Barg
mann and Moshinsky8.9 (see also Ref. 15) they are shown to 
characterize a space :J?J [I I of polynomial functions of the ma
trix elements of z. This space is invariant under right multi
plication by a matrix u; if we set 

L u l l 1j(Z)=/(zu), /E:J?J II ], 

then L [II is a unitary representation ofU(n), and a polyno
mial representation ofGL(n). It is the irreducible represen
tation with highest weight [t] = (tll, ... ,tn n). 

At this point the Gel'fand lattice polynomials become 
relevant to the theory of representations ofU(n). The rel
evance is heightened by the fact that the labeling system for 
the Gel'fand basis consists of (n 2 + n)/2 integers mij' 
1 <,i<J<,n, which satisfy 

(5.8) 

the representation ofU(n) is labelled by (min , ... ,mnn ). Ifwe 
set 

mij=t~_j+1 
then these integers are exactly the left half of a Gel'fand 
lattice. Therefore the left matrix GLP, which belong to:J?J [I I, 

enjoy a natural one-to-one correspondence with the Gel'
fand basis elements. It is attractive to conjecture that,j Tis 
proportional to the Gel'fand basis vector; ifn<,3, this is 
true. 10.15.17 For n;>4 it is no longer true, but one can still 
conjecture that the Gel'fand basis elements are linear combi
nations of the left matrix GLP. This conjecture amounts to 
saying that the left matrix GLP belonging to:J?J II I are a basis 
of :J?J [I ]. It will be true, if the left matrix G LP are linearly 
independent. 

The relation between Gel'fand lattices and representa
tion theory can be extended. The matrix elements of the irre
ducible representations with respect to the Gel'fand basis are 
labeled by two patterns of indices satisfying (5.8), with iden
tical values in the casej = n. These patterns are easily uni
fied-as nothing more nor less than a general Gel'fand lat
tice. The affinity between these two structures is enhanced 
by their harmonious treatment of a special case: The Gel
'fand basis elements are proportional Jl

·
12 to matrix elements 

in which one pattern of indices have their maximal values; 
and when the two patterns are put together the maximality 
of one side results in a left Gel'fand lattice. Therefore it is 
very plausible that there should be a relation between matrix 
GLP and representation matrix elements. Such a relation is 
known l7

; for n = 2 the former are proportional to the latter, 
and for n = 3 the matrix elements are a linear combination 
of matrix GLP. 
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It is known 11.12 that every polynomial function of the 
matrix elements of z is a linear combination of the represen
tation matrix elements. The elements of the representation 
(min , ... ,mnn ) are homogeneous polynomials in thez /' of de
gree min + .,. + m nn . It can also be seen that the matrix 
GLP,,j T(Z), is homogeneous of degree tl I + ... + tn n. So in 
order that every representation matrix element be a combi
nation of matrix GLP, it is necessary and sufficient that ev
ery polynomial which is homogeneous of degree S be a com
bination of matrix GLP,j T, for which tl 1+ ... + tn n = S. 
We note that exactly the same number of matrix GLP enter 
this relationship as do matrix elements of the representation. 
Therefore the former span the same linear space as the latter 
if and only if they are linearly independent. 

In the following sections we shall prove (a) the left ma
trix GLP for lattices with a given median [t] form a basis of 
the space f!lj [I I; (b) the matrix G LP form a basis for the space 
of all polynomials. It is expedient to prove (a) emphasizing 
linear independence, and (b) emphasizing the fact that the 
GLP span the space of polynomials. 

6. THE FIRST BASIS THEOREM 

In this section we shall prove that the polynomials 
,j T(Z), for left Gel'fand lattices T, are linearly independent. 
The proof depends on considering the polynomials expand
ed as linear combinations of monomials in the matrix ele
ments Zc r, and arranging these monomials in a certain order. 
Each monomial 

r.c 

is determined by a system of exponents, which we shall write 
as fol1ows: 

a = (an n,an n -I , ... ,an I ,a~ -I , ... ,a~ -I , ••. ,a l n, •.• ,a l
l
). (6.1) 

We arrange the monomials in dictionary order, that is, a;> P 
and ZU > z 13 ifin the rows a and p, written as in (6.1), the first 
unequal pair of exponents satisfy a c r > /3c r. 

This order is preserved by multiplication: if ZU > z 13, 

then zUzY> z I3zY. And if also zu';>z 13', then zUzu' > z I3zl3'. In 
any multiplication of polynomials, therefore, the leading 
term of the product is formed from the leading terms of the 
factors. 

When we consider the terms in the expansion of a sub
determinant of the matrix z, we see that the leading term is 
the product of the elements along the main diagonal. In par
ticular, the leading term of,jc 1 ... / is 

(6.2) 

where we have adapted the notation of (4.3). 
Now consider the generating function for the left ma

trix GLP; it is just a special case of (4. 10): 

[~~ A(C),jc I···'(Z) r = II~ S A (TJ,j T(Z). (6.3) 

On the left side, in each term of the sum the leading mono
mial in z has the same exponents as the monomial in A. We 
expect to find the same agreement of exponents on the right, 
that is, 
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Ll T(Z) = aTz<J} + lower terms. (6.4) 

The coefficient aT is a positive integer. A more formal proof 
of this is not difficult if we proceed by induction on tl I = s. 
For S = 1, the lattice Tis binary, say T = /3e 1 ... 1, and z<TI 
= z(C) as in (4.8a). Now [cf. (3.3)] if TI 1= s> 1 

Ll I(Z) = I Ll B (z)Ll T (z), (6.5) 

B-+ T~ I 

where BEY :?lJ ;g nand TEY ;g n *, (I I = S - 1. Suppose 
(6.4) is known for f., this is the induction hypothesis. Then in 
each summand of (6.5), the leading term is 

a -z<R Iz<1'1 - a-z<R 1+ <1'1 - a-z<TI 
T - T - T 

Therefore the leading term in Ll T is a 7 z< 1 I 

This proof also shows that the value of a T is the number 
of distinct ordered partitions of T into binary lattices. 

Now we observe that distinct polynomials Ll T (z) have 
distinct leading terms, and infer at once that they are linearly 
independent. This concludes the proof of the main proposi
tion of this section. 

The left matrix GLP for lattices with a given median, 

say [t]", belong to the representation space f!lJ It 1,'. Since the 
number of polynomials is exactly the dimension of the space, 
they form a basis. 

7. THE SECOND BASIS THEOREM 

In this section we prove that the polynomials Ll T (z) for 
all Gel'fand lattices Tspan the space of polynomial functions 
over the space of matrices. The proof depends on showing 
that the matrix GLP Ll T(Z) is equal, up to a sign, to a left 
matrix GLP Ll T (z) where Tis a certain left Gel'fand lattice 
of dimension 2n and z is a certain matrix of 2n rows and 
columns. We define z as in Fig. 3. 

The relation between T and T starts with the case of 
binary lattices. If Tis binary, thenLl T(Z) is a subdeterminant 
of z; there is a sub determinant of i, formed of the first n rows 
and a particular selection of n columns, which is proportion
al to Ll T(Z). Indeed, let T = /3c R where R = (rl, ... rl) and 
C = (cl, ... ,CI). Let S = (sJ)""s,,_ I)' where SI > '" >Sn _ I' be 
such that 

0 . 
~ . 
0 . 

. 

~ln 

Z 
nn 

0 

. 
0 

FIG. 3. Z constucted from Z. 

o 1 

1 o 

0 . 0 

. 
0 . . . 0 
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(7.1) 

is a permutation of(I, ... ,n), and let E(R,S) be the sign of that 
permutation. Let 

C = (cl, ... ,CI, 2n + 1 - sl, ... ,2n + 1 - Sn I), 

j[ = (1 ... n). 

Then 

LlcR(z) = €(R,S)Llc)f(i). (7.2) 

To prove this equation, consider Ll eR (z). It is the determi
nant of a matrix whose first I columns came form the left ofz, 
while the others came from the right half. We may permute 
these columns. We shall preserve the relative order of the 
former set, and dispose the latter so that each has a 1 on the 
main diagonal and O's elsewhere. That is, the column of Ll C

R 

which came from column n + 1 - Sa ofz is moved into col
umn Sa of the permuted matrix. The effect of this permuta
tion upon the determinant accounts for the factor €(R, S) in 
(7.3). Now the permuted matrix is easily seen to have deter
minant equal to Ll cR (z). 

We can restate (7.2) in notation closer to Gel'fand lat
tices. Let T = /3c Rand T = PeR, where Pis analogous to/3, 
in dimension 2n. Then 

Ll T(Z) = €(R,S)Ll T(i). (7.3) 

To use this equation we shall need to know how Tis related 
to T. The relationship is simple: 

I 

I, (7.4) 

o 
where I is the n X n lattice with every cell occupied by 1. The 
formal proof of(7.5) will be much easier to understand if the 
reader tries out one or two examples first. 

To begin, consider the lower left partial diagonals of T. 
The first I of these contain, respectively, 
n + 1 - c1, ... ,n + 1 - CI cells occupied by 1; the other cells 
are occupied by O. As for the upper right partial diagonals, 
the first I of them have all cells occupied by 1; after that each 
one has, respectively, n + 1 - sl, ... ,n + 1 - Sn _ I cells occu
pied by O. The last assertion is not very intuitive; it can be 
proved by the following way of describing how the cells of 
the right side of T are filled. Begin with the cell ['; ] in the 
right corner. If lER, then fill this cell, and those above it to 
the left, with 1. Otherwise, if lES, then fill this cell, and those 
obliquely below it, with O. In either case, move to the right
most of the remaining unoccupied cells, fill it with 1 or 0 
depending on whether 2ER or 2ES, and fill in those cells 
whose value is now constrained by (2.1). Proceed similarly 
for 3, ... ,n. Figure 4 shows the result of the process when 
n = 7, R = (1, 2, 4, 5), and S = (7,6,3). 

Let us take this description of T, and suppose Tis de
fined by (7.4). It is a left binary Gel'fand lattice; therefore 
T = PeR, where j[ = (1 , ... ,n) and Cis some set of n indices. 
We determine C by examining the lower left partial diagon
als in f. The first I of these are the first I lower left partial 
diagonals of T, each being extended upwards with n cells 
occupied by 1. So they contain, respectively, 2n + 1 - CJ)"" 
2n + 1 - c, cells occupied by 1. The other lower left partial 
diagonals of T are formed from the upper right partial dia-
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(1) 

'--I 
(2 ) ............... 1 1 

(4 ) 1 1 

~1 1 
1 

(5) 1 
1 

~1 
1 

1 

1 

1 
1 0 

(7)/ 
0 

1 

0 B. 
(6)/ 0 

0 
() 

o 

1 

(3)/ 

FIG. 4. Example of determination of C. 

gonals of T by this process: Extend upward with cells filled 
with 1 until the length of the diagonal is n + 1, extend down
ward with cells filled with O. The number of cells filled with 1 
is, respectively, SI'''''Sn _I' To summarize, C = (cI, .. ·,C1, 

2n + 1 - s\>' .. ,2n + 1 - Sn _I)' This definition of C agrees 
with that which was used in (7.2) and so shows the agree
ment of (7.2) with (7.4). 

Now let us consider the sign factor e(R, S), and show 
how it may be obtained from T. The permutation (7.1) can be 
sorted into increasing order by moving S I left until it is in 
correct position relative to r I, ... ,rl , then movings21eft until it 
is in correct position relative to the numbers already sorted, 
and so on. To put Sa in its place requires n - Sa transposi
tions, so the total is 

n -I 

L (n-sa)=n2 -nl- LSa' 
a=l 

This number is congruent, modulo 2, to 

n + nl + LSa 
and (7.5) is the sum 

"j+n.- ..-L L T/=v(T). 
j~ I i~ j 

(7.5) 

(7.6) 

Let us summarize what we have done in our investiga
tion of(7.2). We assume that z is related to z as in Fig. 3, and 
Tis related to Tas in (7.4). We define v(T) by (7.6). Then 

..::1 T(Z) = ( -1)v(T)..::1 T(Z). (7.7) 

This equation is proved for binary Gel'fand lattices. It clear
ly extends to general Gel'fand lattices if we generalize (7.5) 
thus: 

(7.8) 

o 
Indeed, the correspondence of Twith Tnow respects addi
tion of Gel'fand lattices, in that if T = T' + T" then 
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T = T' + T"; and veT) = v(T') + v(T"); so (7.7) is easily 
proved by induction. 

By the first independence theorem, the left matrix GLP 
..::1 T are linearly independent. This does not immediately im
ply that the matrix GLP,..::1 T(Z), are linearly independent, 
because in (7.7) z is restricted to be a matrix of the form of 
Fig. 3. A more indirect argument is needed. As remarked in 
Sec. 6, every polynomial in one ofthe Bargmann-Moshinsky 
spaces is a linear combination ofleft matrix GLP. We shall 
use this fact, together with (7.7), to prove that every polyno
mial is a linear combination of matrix GLP. 

Let! be a polynomial function of the matrix elements 
of an n X n matrix z. We may separate! into homogeneous 
parts, so it is no loss of generality to assume that!is in fact 
homogeneous: 

!(cz) = C 'fez). (7.9) 

Let w be a second n X n matrix, and let 

be the reversed-diagonal matrix. Define a function!1 by 

!I(Z w) = (det w) 'f(J w-Iz). (7:10) 

Then!1 is in fact a polynomial because the matrix elements of 
[det(w)w· l

] are polynomials in the matrix elements ofw. Ifv 
is a lower triangular matrix with l's on the diagonal, then 

!I(V z, v w) = !I(Z, w). (7.11) 

If {j is a diagonal matrix, then 

!I(b z,b w) = b ['···'YI(Z,W). 

N ow define a function!2 of 2n X 2n matrices: 

It follows from (7.11) and (7.12) that 
!2E f!/} [, ... ,.0 ... 0 1. 

(7.12) 

(7.13) 

By the corollary of the first independence theorem applied to 
V(2n), 

!2 = ~ L C cU)..::1 0. (7.14) 
UEY:§,,, 

Now in (7.13), the lattices U must have their median 
column equal to [t, ... ,t,O, ... ,O]; that is 

tl 
/'00. 

V =V tl, 

o 
where VE.'9' n and VI I..;;t. In analogy with (7.8), we set 

VIII 

o 
It can be seen that every partition of U into binary lattices 
contains t - V I I terms of the form f3 ~.: 1 ... 2n , while the re
maining terms constitute a partition ofU. Therefore 
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Ll U(z) - (t "I A I···n (Z)t - V, 'Ll fJ( ) (7.15) - VII; n+I···2n z. 

When we combine (7.10), (7.13), (7.14), and (7.15) we find 

fez) = L (~II)C(U)det(J)'- v,'Ll fJ(~ ~} 
by (7.7), this implies thatf(z) is a linear combination of the 
matrix GLP, Ll v (z). The proof of the second basis theorem 
is complete. 

One corollary of the second basis theorem is a weak 
form of the "multiplication theorem" (Ref. 17). This is con
cerned with Ll T(Z w) and its expansion as a sum of products 
Ll v (w)Ll V'(z). Clearly, there is such an expansion, but the 
theorem just proved offers little information on the lattices V 
and V' that appear in the sum, or the coefficients. Gazeau, 
Dumont-Lepage, and Ronveaux have worked out the case 
n = 3, from which it appears that a completely unrestricted 
sum is much too general. In fact it is reasonable to conjecture 
from their work that 

(a) the lattice elements of U to the left ofthe median 
coincide with those of T; 

(b) the lattice elements of U' to the right of the median 
coincide with those of T; 

(c) the elements of Uto the right of the median and 
those of V' to the left of the median are mutual transposes; 

(d) the coefficient in the sum depends upon T only 
through the median elements. 

It appears that new ideas are needed to prove these 
conjectures. 

8. THE ORDERING OF GLPAND GEL'FAND STATES 

The third result in this paper concerns the linear rela
tion between matrix Gel'fand lattice polynomials and orth
onormal Gel'fand states. It depends on arranging each set of 
polynomials in a certain order, which we shall describe here. 

We know that the matrix GLP, Ll T(Z), for left lattices 
with a given median [t], are contained in f!lJ [t 1. So it is suffi
cient to describe the order relation between left lattices with 
the same median. Essentially, it is the order which we used to 
prove the first basis theorem in Sec. 6. We shall say that 
T> U, and Ll T> Ll u, if zl T) > zl U). Now this relation can be 
defined by comparing differences of corresponding elements 
of Tand U. Given that the medians of Tand U are equal, the 
same effect can be obtained by comparing the elements 
themselves. 

An example will make the logic clearer than a formal 
argument. Consider Fig, 5, and an analogous figure for the 
lattice U. The lexical ordering OfZ(TI and z(UI would com
pare the differences between elements of Twhich are linked 
by solid lines with the corresponding differences for U; if 
these differences were all equal, then the differences repre
sented by dashed lines would become significant. Now if T 
and U have a common median, then equality of the differ
ences along the solid lines implies equality of those elements 
that are linked by the solid lines. Therefore we can describe 
the lexical order on left Gel'fand lattices by arranging the 
lattice elements, from the left side of the median. in this or
der: 
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t 2 
t 2 __ 2 

2 -- 3 
t -" 

2 .......... 4 
t .. 

,. 5 

FIG. 5. Ordering of Gel'fand lattices. 

tn n-I, .... t21,tnn-2, ... 't31, .... tn I, 

and saying that T> U if, in this arrangement. the first place 
where Tand U differ satisfies t/ < u/ 

9. f!lJ (IJ ON A SPACE OF TRIANGULAR MATRICES 

are 
The equations which characterize an element F of f!lJ [t I 

F(v z) = F(z), 

F(fJ z) = fJ [tIF(z), 

(9.1) 

(9.2) 

where v is an arbitrary lower triangular matrix with l's on 
the diagonal, and fJ is an arbitrary triangular matrix. Equa
tion (9.1) implies that F is determined by its restriction to 
upper triangular matrix. Equation (9.1) implies that F is de
termined by its restriction to upper triangular matrices (with 
arbitrary nonzero diagonal elements), because for almost all 
matrices z. there is a factorization 

z=v~, (9.3) 

where v is lower triangular, ~ is upper triangular, and the 
diagonal elements of v are all 1. 

We shall find it convenient to make certain computa
tions on members of f!lJ [tl, restricted to the upper triangular 
matrices. To be formal about it. let: 

M+ = {zEM(n,C): Zij = Oifi>j); 

ifF is a polynomial function on M (n, C), then F+ is its restric
tion to M+. The vector space {F+: FEf!lJ [t I) will be denoted 
f!lJ y I. Ifz admits a factorization as in (9.3), then we set 

v = P(z), ~ = Q+(z). (9.4) 

The construction of f!lJ + [tl is similar to the definition of 
the representation spaces as studied by Zhelobenko.6 He 
considers the restriction to upper triangular matrices with 
l's on the diagonal; (9.1) and (9.2) together imply that a 
function in f!lJ [t I is determined by that restriction. 

The action of GL(n, C) on qj Y 1 can be defined ab-

Christopher J, Henrich 1572 



                                                                                                                                    

stractly by 

L i'l)u (F+) = (Lu [t IF)+. 

To be a little more concrete, we can say 

(L i'l )uF+)(~) = F+(Q+(~ u», ~EM., uEGL(n,C). (9.5) 

There is a certain "abuse oflanguage" here, because Q+(~ u) 
is not defined for all ~ and u. As we shall see, however, its 
elements are rational functions ofthe elements of~ u; and the 
fact that F+ is the restriction to M+ of a polynomial satisfying 
(9.1) on M (n,C) implies that the right side of (9.5) turns out 
to be a polynomial in ; and u. (Not every polynomial func
tion on M+ can be extended to a polynomial on M (n,C) while 
satisfying (9.1). The requirement for such an extension to 
exist can, in principle, be formulated in terms of the behavior 
of F+ "at infinity"; so far as I know, this has never been 
worked out.). 

Clearly (9.5) will be easier to handle if we know the 
exact expression of Q+(z). The usual proof of (9.3) constructs 
the factors v and; one row or column at a time, by the 
process known to numerical analysts as "Gaussian elimina
tion." If explict formulas are carried along, then the process 
eventuates in this result: 

(Q ) _ A I···; ()/..1I ... i-l(z) ',;;:' 
+ Z ij -.Ll I ... i -I,) Z 1 ... / _ I , I""J, (9.6) 

(P) A I .. ) - I i( )1 A I .. ·) () ':;" 
Z ij =.Ll I .. ) 'z .Ll I ... J Z, I", J. (9.7) 

These equations, once found or conjectured, can be verified 
easily. Indeed, (9.6) is left invariant by the transformation 
z-+v z if v is lower triangular and has 1 's on the diagonal; and 
if zEM., then (9.6) reduces to Zi)' A similar argument vali
dates (9.7). 

10. LIE ALGEBRA OPERATIONS ON M+ 

We intend to use the "lowering" operators of Nagel and 
Moshinskyl6 to construct Gel'fand states, as polynomials 
over the space M+. The lowering operators are built up out of 
Lie algebra operators, so we shall first describe the action of 
the Lie algebra operators on &J + [t 1. In effect, we compute the 
infinitesimal form of (9.5), 

If C is any element of the Lie algebra of GL(n,C), then 
there is a one-parameter group r-+ur such that 

Ur = exp(rC), (10.1) 

In the representation space &J + [t 1 we define the action of Cby 

CF+ = «d Idr)L !tl)U,F+)r=O' (10.2) 

Now F+ is a polynomial function of the coordinates til' i<,j. 
We can therefore compute (10.2) if we know the action ofC 
onti): 

CF.( t) = L (aF+( t)! atij)( ctij)' (10.3) 
i<;.j 

From (9.5) we see that 

Ctij = [(alar )Q+(tu r )i) ]r=o' 

To make this equation more explicit, we can refer to (9.6) 
and the action of C on subdeterminants such as ..1J I ... i. 

Let us assume that C = Cb G in the notation of Ref. 11. 
Acting on a polynomial function of a matrix Z = (Zi)' 
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CbG= LZkb~' 
k JZkG 

We find Cb G..1 J I .. ·i = 0 unless aEJ and biJ; if these conditions 
are satisfied and J = J / a J", then 

Cb G..1/ ... i = ..1 }:tJ'" 

One can now apply Cb a to (Q.z);j for any choice of a, b, i, and 
j, using (9.6). The number of different cases is unwieldy, so 
we shall examine just one, which will be useful in the next 
section. 

The case we consider is that of Cb a(Q.z)hk where 
a <h <b <k. We compute 

C aA I .. ·h (l)h-a-IA I .. ·h 
b .Ll I ... h -I.k = - .Ll I ... a - I ... h -I.b.k , 

C aA I .. ·h-I _ ( l)h-a- I..1 I ... h- 1 
b.Ll I ... h-I - - 1 .. ·a-I,a+I .. ·h-I,b' 

Cb a(Q.z) = ( - l)h - a -I [..1 ::::Z =: ]-2 
[..1 I ... h - I ..1 I .. ·h . I .. ·h - I I .. ·a -I,a + I .. ·h -I,b.k 

A I .. ·h - I ..1 I .. ·h ] 
-.Ll 1 ... a-l.a+I ... h-I.b I ... h-I,k· 

We restrict the last expression to Z in M+. There are some 
simplifications: 

..1 ::::~=: (z) =Z\1'''Zh_l,h_I' 

..1 ::::Z-I,k =Zl\'''Zh-l,h-1 Zh.k' 

..1 ::::: _ I,a + I .. ·h - I,bk = Zhk ..1 :::~ = La + I .. ·h - l.b 

- Zhb ..1 ::::: = La + I .. ·h - I,k 

The result, for the group action on the upper triangular 
manifold, is 

Cb at hk 

= ( - 1)h - a( t\1· .. th -l,h -I tit hb 
x..1 ::::: = La +1-.. h -I,k (t), (10.4) 

The determinant in (10.4) has, in general, 2 h - a -I terms, 

11. COMPUTATION OF THE LEADING TERM OF A 
GEL'FAND STATE 

The main result of this section is that if the orthonormal 
Gel'fand states r (T) are restricted to M., then the leading 
term in the polynomial expansion of r(T) is proportional to 
t(T]. Together with the first basis theorem, this result will 
imply that 

r(T) = L Jl(T',T)..1 T', (ILl) 
T'<T 

so that the Gel'fand states can be obtained from the GLP, 
ordered by increasing leading terms, with a Gram-Schmidt 
orthogonalization process. 

Before starting on the proof, we may look at some 
cases l7 where r(T)(t) is known, If Tis maximal, then it is 
well known8

•
10 that 

r(T)=constx fI (..1 ::::~)'""-':!:. 
a=l 

Now ..1 :::::: (t) = t \1 .. ·t aa ; when we rearrange factors we 
find 

r(T) = constX fI taa'~· 
a=l 

If Tis semi maximal, i.e., maximal for Un -I' then 

Christopher J. Henrich 1573 



                                                                                                                                    

reT) = constX IT" (.:1 I···a )'a"-':::: 
I···a - I,n 

a=l 
n -1 

X IT (.:1 I···a )'" , , ' , , - ':: : : 
I···a 

Q=1 

Using thefact that.:1 ::::~ I,n (S) = Sll"'Sa -I,a 1 San' we 
find 

n "" n = I " 
r(T)=constX ITSan'"-''''' ITSaa'"'' 

a = 1 Q = 1 
n ,,-1 

= constX IT r (1;an) IT r (T,aa) 
~an ~Qa' ( 11.2) 

a= I a= 1 

This formula is worth dwelling on for a moment; it shows 
that a semimaximal polynomial, on M+, is a monomial in the 
diagonal elements of S and the elements of the last column. 
The simplicity of this relation is our motive for computing 
over M. in the present section. 

What we shall prove about the general Gel'fand state 
over M. is slightly more than we stated at the beginning of 
this section. To state it conveniently, let us generalize some 
of the notation of Sec. 4, in particular (4.5 a, b). If 7 = ( 7 gh ) 

is a system of integers indexed by (g, h ) ranging over the 
trapezoidal pattern defined by the inequalities p + 1 <h<n, 
1 <g<h, then let 

(11.3) 

If 7 gh = (T,gh ) for some Gel'fand lattice T, then set 
7 = «p)T]. The notation S «p)T] generalizes (4.5a); S «p)T] 
does not depend on the p columns to the far left of T. Let S( p) 

denote the submatrix of S containing the first p columns. 
Every polynomial function F over M. can be written 

F(~) = I FT (~(p»~T. 
T 

We shall prove that if the left Gel'fand lattice Tis maximal 
for U(p -1) reT) has this special form: 

1 
t -p-1 

2 
t ,P 
I 

, 
I n-p+2 
.t ........ 

-

n ....... 

t 1 -- 1 

-t 2 
2 

r 
I 
I 

...... 

FIG. 6. Indices before application of Le'n. 
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.,., 
t 1 ....... 
I p-1 

I , 
t 

t
m 

-1 
I p+m-2 

I 

I 
t n -p+2 

n -
FIG. 7. Indices after application of Lp"'. 

r(T)(~)=COnstx~(TJ+ I FT(~p)~T.(11.4) 
TOT < «p)TJ 

The proof of (11.4) goes by induction on T, starting 
from the "least" possible lattice for a given representation 
space. Because of the way we defined the order on states and 
lattices (see Sec. 8), this lattice actually belongs to the maxi
mal state. Equation (11.2) shows that the proposition is valid 
for that state, in fact for all the semimaximal states as well. 
The step to lower states is made by application of the lower
ing operators of Nagel and Moshinsky. 16 We need not go 
into the full details of the construction of these operators; 
what we need to know is that operators Lp m are defined, 
where 1 <m < p<n, so that 

(i) Lp m is a polynomial in the Lie algebra operators Cb a 

where m<a<b<p; 
(ii) if <P maximal with respect to Up _ \ , belonging to a 

representation space of type (SI""'Sp _ 1)' then Lp m<p is also 
maximal with respect to Up _ 1 and belongs to a representa
tion space of type (SI"",sm """sp _ 1 ). 

If Tand T' are the left Gel'fand lattices of Fig. 6 and 7, 
then 

reT') = constXLp mr(T). (11.5) 

The induction step in proving (11.4) is to suppose it is known 
for Tand to prove it for T'. We have 

reT') = constXLp m(~(TJ) + I Lp m(FT ~). (11.6) 
TOT< «p)TJ 

Look at the first term on the right side of (11.6). We can 
expand it as 

const X [Lp m( IT Sa p (T.a P)IT Saa (1:ao») ] ~« p)TJ 

+ constX~ [Ma(IT Sap (7:a p)IT Saa (Y,aa») ]Na(~«P)TJ), 
(11. 7) 

where Ma and Na are various differential operators; like 
Lp m, they are polynomials in Cb a where m<a<b< p. The 
first part of the expansion is simple, because in it Lp m is 
acting on a semimaximal state for Up' and must transform it 
into another semimaximal state, that is, 
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= constxII ;ap (T',ap)II ;aa (T',aa), 

Therefore the first part of the expansion is 

constx~ (T'], 

To complete the proof we must show that the remaining 
terms in (11.7), and all the other terms in (11.6), can be 
gathered together in a summation 

I F', ~', 
,07 < « p)T' 1 

Note that «p)T'] = «p)T]. For this purpose, we use the 
following lemma. 

Lemma: Leta.;;;;b.;;;; p, andleth.;;;;k, k> p, Let Cb a acton 
; hk as described in Sec, 10. Then the result is either 0 or a 
sum of terms all lower than; hk • 

Proof Given those constraints on the values of a, b, 
h, and k, there is only one combination in which Cb a;hk #0, 
and that is the case that a < h < b < k, Equation (10.4) ap
plies. The leading term in a subdeterminant is the main diag
onal, so the leading term in Cb a;hk is found to be 

~aa''';h-I,h-I t l
;a,a+I"·;h-2.h-1 ;h-l,k;hb' 

Factors from the rightmost columns take precedence in de
termining the order of monomials, and;h -I,k < ;hk' so the 
whole term is less than; hk' 

We now apply the Lemma to (11. 7) and (11. 6). In 
(11,7), all the parts except the first contain at least one Lie 
algebra operator acting upon the monomial ~« p)T I. The op
erators in question are Cb a, where a.;;;;b.;;;; p, and the variables 
in ~«P)TI are;hk' whereh.;;;;k, k> p. The Lemma shows that 
when such an operator meets such a variable, the result must 
be lower. Thus all the terms which are generated are lower 
than ~« p)T I. As for the other terms in (11.6), they can be 
expanded into terms (Lp mF, )~' where l' < «p)T], and oth
er terms where Lie algebra operators act on ~ T and lower it 
even more. Therefore (11.5) implies that (11.4) is true with 
T' in place of T, and this completes the proof. 

12. COMPUTATION OF INDIVIDUAL GLP 

In this section we return to the case of arbitrary initial 
conditions to describe a means of computing individual 
G LP. We start with the left G LP. The essence of the method 
is to relate the generating function for left G LP of dimension 
n to the similar function for dimension n - 1. Let X(c) 
= Xc 1 ... 1. 

It is helpful to introduce some notation for a certain 
map from left Gel'fand lattices of dimension n to those of 
dimension n - 1. If TEX' f1 n' we characterize 
T(n -1) = T' in 5t' f§ n -I by 

(T',ab) = (T,ab), l.;;;;a.;;;;b.;;;;n-1. 

Equivalently, 

(t ')/ = t~ + I' i> j, 
(t '),1 = t; + I' i < j. 

With the notation «n -1)T] of Sec. 11, we have 
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A (TI = A (T'I A «n -I)T I, (12.1) 

Consider the generating function for left GLP of di
mension n: 

On the left, we may partition the summands into those for 
which nEC and those for which mEC; there are 2 n - I of the 
former and 2 n - I -1 of the latter. Let A (/,n - 1) denote the 
set of multi-indices D = (d" ... ,dl ) where 
l.;;;;d , < ... <dl.;;;;n -1. Then 

n ~ I 

+ I I AD(X(D) +AI+I.nX(Dn»· 
I~ I lJEA(/,n -1) 

Let 

Y D = X(D) + Al + I,n X(Dn) ,DEA (/,n - 1). 

Then 

Therefore, from (12.2), 

T'~~ sA (T)X
T 

= (AlnX(n) + ~ A(D) Y(D) Y 
= ~ (;)(A ln X(n)Y - r( ~ A(D) Y(D) r 
= I I (S)(A I n X(n) Y - r A (T'IyT'. 

r= d T' r 

We use (12.1) to find, for a fixed choice of T (n - 1), 

I A «n -I)T IXT 

(n~I)T:tIJ=s 

= (tl I}A X )(T,ln)yT(n -I) 
I In (n) • 

t2 

From this generating function, individual terms can be 
extracted: 

Ifwe introduce these differential operators: 

Din = I X(Dn)J/JX(D» 1>2, 
lJEA (1- I,n - I) 

then 

XT = C<)xn (T,ln) IT (Din (T'/n) /(T,ln)!)XT'. (1.24) 
2 1~2 

We can make this equation a little more convenient by intro
ducing another indeterminate X( )' corresponding to the 
empty set, and 

Din =X(n) J/JX(). 

Then, because (T,ln) = tl 1_ t21, 

X "'XT 
( ) 
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= n (Din (J.ln)J(T,in)!)X( /"XT'. (12.5) 
I~ I 

Let us define 

D«n 1)1' I = IT (Din (T.ln) J(T,ln)!). (12.6) 
I~ I 

Then (12.5) can be restated 

X ,,'X T -X (nn)o«n--l)TIX (T.ln)(x ,,'XT') 
() - () () () . 

We have arranged the powers of X( ) in this equation to show 
how the process of constructing X l' from X T' may be iterat
ed. If we start from 

XO = 1, 

then we have 

X( /"X J = IT [X() (T.lm)o«m-I) TIX( ) (T,lm)} l. 
fn = 1 

(12.7) 

To extend this result from left GLP to arbitrary GLP, 
we shall use the relations between Gel'fand lattices of differ
ent dimensions that we developed in Sec. 7. In fact, the map 
p:T -..T, defined by (7.8), is a homomorphism from the se
migroup Y n to the semigroup o? :1 2n • It maps the gener
ators of :1 ", i.e., the binary lattices, onto certain generators 
of .Y' :1 n; specifically, p( fJ s R) = fJ y/ with the notation of 
(7.2). Every partition of Tis the image of a partition of T; 
therefore if we set 

p(XT ) =Xf 

and extend p to homomorphism of polynomials in the inde
terminates X 1'> then 

(1.28) 

Equation (12.8) may be compared with (7.7). In (7.7) the 
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sign factor was necessary because we were concerned with 
the values of matrix GLP for certain matrixes. Equation 
(12.8) implies that we can construct (12.7); then apply p-l, 
replacing each factor Xc(l···n) by Xc R according to the rule 
given in Sec. 7. 

A program, written in the programming language Pas
cal, for computing individual left GLP is available from the 
author. 
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A formula simplifying the quartic trace in exceptional simple Lie algebras is derived and used for 
expressing higher order Micu-type invariants as polynomials in the second order Casimir 
invariant. 

1. INTRODUCTION 

In an earlier paper,l an algorithm was described for 
computing the eigenvalues of Micu-type invariants for the 
c1assicalsimple Lie algebrasA r ,Br ,Cr ,andDr . However, 
the techniques used there could not be used for the excep
tional Lie algebras because the expressions for the projection 
operators are much more complicated for these algebras. An 
independent method is presented here which takes advan
tage of the fact that for the exceptional simple Lie algebras 
Er (r = 6,7,8),F4 ,and G2 , the tensor product of the adjoint 
module with itself decomposes as a direct sum of only five 
irreducible modules, no two of which are isomorphic. This 
fact turns out to be so restrictive that all Micu-type invar
iants are found to be simple polynomials of the second order 
Casimir invariant. In Micu's paper,2 the question of algebra
ic dependence of his series of invariants was left moot for the 
exceptional case. Our Eq. (3.1) explicitly shows them to be 
algebraically dependent. 

The notation of Ref. 1 will be maintained here without 
any change, except that L will now stand for any of the sim
pie exceptional LiealgebrasEr (r = 6,7,8),F4 ,orG2 • Greek 
indices will run from 1 through dimL and summation over 
repeated indices is implied. In any L-module M, we write 
M a = G a (M) for the operators representing the basis ele
ments G a of L. The module L itself in the adjoint representa
tion will be denoted by A. For our application in Sec. 3,Fwill 
be the fundamental (lowest dimensional) module, but all re
sults of Sec. 2 hold even when F is an arbitrary faithful irre
ducible L-module. 

2. QUARTIC TRACE 

The main feature of the present method of computing 

TABLE I. Basic data about exceptional simple Lie algebras. 

E. E7 E, F. G, 

dimL 78 133 248 52 14 
Adjoint module, A W6 W6 WI W. W, 

Fundamental 
module,F WI WI WI WI WI 
dimF 27 56 248 26 7 
rCA) 1 1 1 1 1 
reF) 13/18 19/24 1 2/3 1/2 
TrF(FuF{J)/gu{J 1/4 1/3 1 1/3 1/4 
OF 1/576 1/648 1/300 1/324 1/192 
bF 1/24 1/18 1/6 1/18 1/24 

invariants is the representation (2.2) of the quartic trace 
TrF(FaF (3FyF{j) as a linear combination of simpler tensors. 
In order to analyze the mathematical structure behind it, we 
first show that dim hom (L ® L ® L ® L,C) = 5 by ex
ploiting the isomorphisms hom(L ® L ® L ® L,C) 
~ hom(A ® A,A· ® A .)~ hom(A ® A,A ® A ).Nowfor 
the exceptional simple Lie algebras, A ® A is a direct sum 

5 

A®A= eM. 
j= 1 J 

of five irreducible submodules, no two of which are isomor
phic (Table II in Appendix). If 11" j : A ® A -+ M j and i j 
:M j -+ A ® A denote the canonical projections and injec
tions associated with this direct sum decomposition, then 
any operator u in hom (A ® A, A ® A) may be written as 

5 5 

U = L L i j 11"pik 11"k . 
j= I k= I 

By Schur's lemma, 11" j Uik E hom(Mk ,M) is zero if 
j=l=k and is a multiple Sj of the unit operator if j = k; hence, 
the above sum reduces to 

5 

U = L Sij11"j • 
j= I 

(2.1) 

The five orthogonal projectors i j 11" j (j = 1, ... ,5) are obvi
ously linearly independent while Eq. (2.1) shows that they 
span hom (A ® A,A ® A). These five projectors thus form a 

~ 
I 2 J ~ 5 

~ 
I 2 3 ~ 5 6 

• I 

8 

2 3 ~ 5 6 7 

a:::::::c--o 
2 3 ~ 

FIG. \. Dynkin diagrams showing the numbering of simple roots. Black 
dots represent the shorter roots. The ratio (length oflarger root)/(Iength of 
smaller root) is 2 for F. and 3 for G, . 

1577 J. Math. Phys. 21 (7). July 1980 0022-2488/80/071577-02$1.00 © 1980 American Institute of Physics 1577 



                                                                                                                                    

TABLE II. Clebsch-Gordan series for A ® A, where A is adjoint module. M (A ) denotes the module with highest weight A. 

Algebra type 

basis of hom (A ® A, A ® A) which must have dimension 
five. 

Now the operation of taking the trace defines a tensor 
tEL· ® L· ® L· ® L • by 

t (Ga ® G (3 ® Gy ® Go) = Trp(Fa F (3Fy Fo), 

with extension to the entire space by linearity. This tensor is 
invariant, i.e., t E hom (L ® L ® L ® L,C) because the 
trace form is always invariant. To see this, let G denote the 
Lie group corresponding to L. Then for every g E G we have 

(g·t )(Ga ® G (3 ® Gy ® G/j) 

= (g·Trp)(Fa ® F (3 ® Fy ® Fo) 

=g.(Trpg-l·(Fa F{3 Fy Fo» 

= Trp(g-l(Fa F (3 Fy Fo)g) 

= Trp(Fa F (3 Fy F/j) 

= t (Ga ® G (3 ® Gy ® Go)· 

We shall expand the fourth order invariant tensor t as a 
linear combination of five linearly independent fourth order 
tensors made out of second and third order trace forms. 
More explicitly, in terms of components, we write 

TrF(Fa F (3 Fy Fa) 

= a lga{3gy8 + a2 ga yg {3/j + a 3 galJg {3y 

+ a4 f/lu{3f/ly8 + as f/l{3y f/llJ a . (2.2) 
The tensors on the right-hand side are invariant because 

they are obtained by tensoring and contracting 

ga{3 = TrA (Aa A (3)' 

f a{3y = TrA (Aa A (3Ay - AaAyA (3)' 

which are themselves invariant, being linear combinations of 
trace forms. 

To find the coefficients a l ,a2 ,a3 ,a4 ,as in Eq. (2.2), 
we can contract it with~{3 ,g{3Y ,gya , f~.{3 and f fY there
by getting a system of five equations. The matrix of the sys
tem is nonsingular showing that the tensors used on the 
right-hand side of Eq. (2.2) form a basis of hom (L ® L 

® L ® L,C). The solution is a l = a2 = a3 = ap and a4 = 
as = bp where 

a _ dimFy(F) (6y(F)-1) 
p - 6 dim L (dim L + 2) , 

bp = dim Fy(F)/(6 dim L). 
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Clebsch-Gordan series for A ® A 

M(2w.) 61 M(w.) 61 M(w, + w,) 61 M(w) 61 M(O) 
M(2w.) 61 M(w.) 61 M(w,) 61 M(w,) 61 M(O) 

M(2w,) 61 M(w,) 61 M(w,) 61 M(w,) 61 M(O) 

M(2w,) 61 M(2w,) 61 M(w,) 61 M(w) 61 M(O) 

M(2w2 ) 61 M(2w,) 61 M(3w,) 61 M(w,) 61 M(O) 

We wish to remark that Eq. (2.2) provides a quick and 
direct proof of Okubo's quartic trace identity.l If X is any 
nonzero member of L, it can be extended to a basis I Xl = X 
X 2 , ... ,xdim L J of L. Let the corresponding representatives in 
the module Fbe denoted by Fa (a = 1, ... dim L ). Then set
ting a = {3 = y = 8 = 1 in Eq. (2.2), using Eq. (5.1) of Ref. 
1, and the fact that f /"l! = 0, we get the quartic trace 
identity 

Trp(Fi) = 2apgl! = 2~;::1 ~ ~) Trp(FD . 

3. EIGENVALUES OF INVARIANTS 

In view of their definition, Eq. (3.8) of Ref. 1, the eigen
value of a Micu-type invariant U2k in any module M is ob
tained by contracting Eq. (2.2) with V(2k _ 3) (M) M (3 M Y 
XM lJ , where M a = G a(M) . The result of contraction, 
simplified with the help ofEqs. (4.3), (4.7), and (5.1) of Ref. 
1, reduces to 

U2k (M) = Cp(M)U2k _ 2 (M) , 

where 

Cp(M) = dimFY(F)([6 Y (F)-I)[6 Y (M)-I] + 1). 
12 dim L 2 + dim L 

Iteration of this finally yields 

U2k (M) = [Cp(M)]k-l y (M). (3.1) 

APPENDIX 

Some useful information about exceptional simple Lie 
algebras is collected here for easy reference. Figure 1 shows 
the numbering of simple roots. We have chosen to number 
them so that for each Lie algebra, the fundamental represen
tation has highest weight WI = (1,0, ... ,0). The data in Table I 
were computed by a program written by Agrawala and Be
linfante" while the Clebsch-Gordan series given in Table II 
was taken from Seligman'S book.' 

'Y.K. Agrawala, "Micu-type invariants of simple Lie algebras," J. Math. 
Phys. 20, 2178 (1980). 

2M. Mieu, Nucl. Phys. 60, 353 (1964). 
's. Okubo, J. Math. Phys. 20, 586 (1979). 
'Y.K. Agrawala and J.G. Belinfante, BIT 11, 1 (1971). 
'G.B. Seligman, Rational Methods in Lie Algebras (Dekker, New York, 
1976), Appendix A. 
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Representations of the components of complex angular momentum operator have been carried 
out in three different subspaces of the space in which the generators of proper, orthochronous 
homogeneous Lorentz group operate. Addition of complex angular momentum operators have 
been derived in the canonical basis of their eigenvectors. 

1. INTRODUCTION 
Some noncom pact groups have played a major role in 

the understanding and development of important physical 
ideas. Among these the most striking one is the use of 
SL(2,C) for the group theoretical treatment of Vir as oro
Shapiro model. 1 Group SL(2,C) is the universal covering 
group of the homogeneous Lorentz group SO(3, 1), the cor
respondence of the elements from the former to the latter 
being one to one. Developments in the last ten years in phys
ics have made important expansions with respect to SL(2,C) 
representations which include infinitesimal non unitary re
presentations2 as well. Unitary representations of the homo
geneous Lorentz group have been obtained and classified by 
Bargmann,3 Gel'fand and Naimark,4 and Barut and Wil
son.5 Though the representation theory of the homogeneous 
Lorentz group SO(3, 1) [or the covering group SL(2,C)] is of 
great importance in physics and the knowledge of its 
Clebsch-Gordan (CG) coefficients is offundamental impor
tance in various areas of elementary particle physics be
cause, in addition to its extensive use in scattering theory and 
the theory of wave equations,6 it serves as the group of mo
tion of space of independent kinematical variables in one 
approach,7 as the invariance group of the zero angle elastic 
scattering amplitude in the second approach8

,9 and as the 
group generating a complete set of basis functions in the 
third, 10 it is surprising that up to 1970 the attention had 
hardly been paid to reconstructing and investigating the re
presentation of SL(2,C) groups in an explicitly analytically 
continuable form while most of the work had been devoted 
to ll

-
14 construct its representations explicitly. 

The question of obtaining the unitary CG coefficients 
by analytically continuing the known spinor CG coefficients 
was first considered by Anderson et al. 15 who obtained the 
recursion and symmetry relations and obtained the CG coef
ficients associated with the coupling two SL(2,C) principal 
series representations. It has recently been shown by Wong 
and Yeh 16 that the boost matrix elements ofSO(3, 1) obtained 
by Smorodinskii and Shepelev17 are connected to those of 
SO(4) by analytic continuation and that the CG coefficients 
of SO(3, 1) are analytic continuation of X functions from 

"'On leave from Physics Department, Kurukshetra University, Kurukshe. 
tra, India. 

SO(4) but their results are very complicated due to the sum
mation of two Fourier series. In view of such considerations 
we developed in our earlier paperlS a compact operator for
mulation to reformulate the Gel'fand-Naimark theory of 
representations ofSL(2,C) by combining the generators of 
the homogeneous Lorentz group to undertake the studies of 
operators associated with the collective relativistic motion of 
a body rotating about one axis and moving with relativistic 
velocity along the other. Diagonal elements of this operator 
have been interpreted as the components ZI' Z2' and Z3 of 
complex angular momentum operator Z in complex space 
and its representations have been derived in the basis of the 
eigenvectors of the third component of the usual angular 
momentum operator. 

In the present paper the representations of the compo
nents of complex angular momentum operators have been 
derived in three different subs paces R 1 _ 1 , R I' and R 1 + 1 of 
the space R in which the generators of the homogeneous 
Lorentz group operate and the eigenvalues of the complex 
angular momentum operator and its third component have 
been calculate in the canonical basis of its eigenvectors. It 
has been shown that the eigenvector of the components of 
complex angular momentum operator forms the complete 
set in the subspace R 1 while in the subspaces R 1_ 1 and R 1 + 1 
separately the sets of eigenvectors are not complete, Addi
tion of complex angular momentum operators has been car
ried out in the subspace RI and the corresponding value of 
CG coefficients19 ,20 have been derived, The operator method 
introduced here for the representation of SO(3, 1) has al
ready been used in generalized21 form to treat the projective 
representation ofSL(3,C), Similarly, it can find applications 
in the representation theory of other noncom pact groups 
relevant to physics such as the de Sitter groups or the confor
mal groups. 

2. REPRESENTATIONS OF COMPLEX ANGULAR 
MOMENTUM OPERATORS 

Denoting by ~ and Kj (j = 1,2,3) the generators of ro
tations about and boosts along thejth axis, respectively, we 
have shown in our earlier paperlS that the linear 
combinations 

(2.1a) 

and 
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(2.1b) 

satisfy the Lie algebra of two independent angular momenta 
in complex spaces (J,K) and (J, - K) and they have there
fore been defined as the components of complex angular mo
mentum operators in these spaces. These operators have also 
been introduced by Bars and Gursey22 as left handed and 
right handed vector operators to treat the Gel'fand-Nai
mark Z basis for the homogeneous Lorentz group. 

Since the operators Zj and ~ given in Eqs. (2.1) com
mute, the representation of the homogeneous Lorentz group 
can be considered as a direct product of the two groups gen
erated by Zj and ~ as has already been shown by Smoro
dinskii and Huszar23 by considering the two parameter sub
groupH = SO(2) ® SO(I,I). Combining the componentsZI 
and Z2 in the following manner: 

Z+ =ZI +iZ2 , 

(2.2) 
Z =ZI -iZ2' 

we have shown 18 that the space R in which the generators of 
the homogeneous Lorentz group operate may be analyzed 
into a linear sum of invariant subspacesR[, in each of which 
an irreducible representation of weight "I" of the group of 
ordinary rotation is obtained. Choosing the eigenvectors of 
the operator J 3 as the canonical basis I I,m ) in each subspace 
R, the following representations of the operators Z + ,Z _ , 
and Z3 have been obtained: 

Z31/,m) = mAII/,m) -A2W - m2y12l/_ I,m) 

+ A3 [(I + V - m2] 1/211 + I,m), (2.3a) 

Z + I/,m) = Al [(/ - m)(l + m + 1)] I12II,m + 1) 
- A2 [(1- m)(l- m - 1)] 1121/_ I,m + 1) 

-A3[(/+m+ I)(/+m+2)]I12 

X II + I,m + 1), (2.3b) 

Z _ I/,m) = Al [(/ + m)(/- m + 1)] 1121 I,m - 1) 

where 

+ A2 [(/ + m)(1 + m - 1)] 1/21/_ I,m - 1) 

+A3 [(/ - m + 1)(1- m + 2)]112 

X II + I,m - 1), (2.3c) 

(2.4) 

where m = -I, -I + 1, ... ,0, ... ,/-1,/, 1= 10, 10 + 1,.·· and 
II is some complex number. It is obvious from Eqs. (2.3) that 
each representation is uniquely defined by the pair of num
bers 10 and II' where 10 is the smallest weight participating in 
the irreducible representation and the number II is arbitrary. 

Let us now consider the following particular cases of 
representations of these operators. 

Case I: When only the weight I participates in the repre
sentation, the general equations (2.3a)--(2.3c) reduce to the 
following form: 
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Z31/,m) = mAII/,m), 

Z + I/,m) = Al [(1- m)(1 + m + 1)] 1I21/,m + 1), 

Z_ I/,m) =AI [(I + m)(/- m + 1)] 112 I I,m -1). 

(2.5a) 

(2.5b) 

(2.5c) 

In this basis of representations we obviously get the follow
ing matrix elements of the operators Z + , Z _ , and Z3 : 

(I,m'IZ31/,m) = mA I 8m ,m" (2.6a) 

(/,m'IZ + II,m) = Al [(1- m)(1 + m + 1)] I128m,m + I' 
(2.6b) 

(/,m'IZ _ I/,m) = Al [(I + m)(/- m + 1)] I128m m _ I' 
(2.6c) 

Let us now introduce the operator Z 2 as 

Z2 = Z + Z _ - Z3 + zL (2.7) 

for which the following commutation rules may be readily 
derived by using the commutation rules 18 of the components 
of the complex angular momentum operator: 

[Z2,ZI] = [Z2,Z2] = [Z2,Z3] = O. 

Using Eqs. (2.8) and (2.5a)-(2.5c), we get 

Z 21/,m) =AI {AI [/(1 + 1) + m] - m}l/,m) 

and 

Z31/,m) = mAII/,m). 

Similar results may be derived for the operators X 2 

(2.8) 

(2.9) 

= X + X _ - X3 + X~ andX3 and it may be shown that in 
the space R{ the basis I/,m) give's the simultaneous eigen
states of the four commuting operators Z 2, X 2

, Z3' and X 3 , 

with mA I and mB being the complex eigenvalues of the last 
two operators where A I is given by Eq. (2.4) and B may be 
derived to have the following value: 

( 
loll) 

B= 1- 1(1+1) . (2.10) 

Changing the canonical basis from I/,m) to IL,M), whereM 
represents the eigenvalues of Z3 and L (L + 1) are the eigen
values of Z 2, we get 

Z 2IL,M) = L (L + I)IL,M), 

Z3IL,M) =MIL,M), 

where 

(2.11a) 

(2.1Ib) 

-1 ± [1 +4A i/(1 + 1) + 4AIM -4M ]l/2 
L=---=:.......:....---=---~~----.:..---=---

2 
(2.12a) 

and 

M=mA I 
(2.12b) 

are complex angular momenta and magnetic quantum num
bers, respectively. From these relations we may get the dif
ferent allowed values of M in terms of L corresponding to 
various allowed values of m in terms of I. For instance, if 
m = -I, we get 

L = A I I or - A I (I + 1), 

with the corresponding values of M given by 

M= -L or L + 1, 

(2.13) 

(2.14) 

where we choose only first value in accordance with its cor-
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respondence with the value of m. Similarly, corresponding 
to the values of m = - 1+ 1, - 1+ 2, ... ,0, ... ,1- 1,1, we get 
M = - L + A I , - L + 2A I , ••• ,O, ... ,L - A I ,L. In this way, 
corresponding to (21 + 1) values of m, we get 
[(2L + A 1)/ A I] values of M. In the special case when 
AI = 1, i.e., II = 0, we get the components of the operators 
K corresponding to the pure Lorentz transformations van
ishing. Then, L = I and consequently the components of 
complex angular momentum operator reduce to those of or
dinary angular momentum operator. 

Case II: When only the weight "I - 1" participates in 
the representations of the complex angular momentum oper
ator, the general equations (2.3) reduce to the following 
form: 

Z31/- I,m) = -A2(/2 - m2)1121/_ I,m), (2.15a) 

Z+ 1/- I,m) 

= - A2 [(/- m)(/- m - 1)] 1121/_ I,m + 1), 
(2. 15b) 

Z~ 1/- I,m) =A2 [(I + m)(1 + m -1)]1121/- I,m -1). 
(2. 15c) 

Then, for the operator Z 2 given by Eq. (2.7), we get 

Z 21/_ I,m) =A2(P - m2)1I2{A2([2 _ m2)112 

-A2 [12 - (m - 1)2]112 + 1}1/- I,m). 
(2.16) 

Similar results may be derived for the operator X 2 and X3 
and it can be shown that, in the space R 1_ I' the basis 
11- I,m) gives the simultaneous eigenstates of the operators 
Z 2,X2, Z3' andX3 with =F A2 (12 - m 2), respectively, being 
the complex eigenvalues oflast two operators. Changing the 
canonical basis from 1/- I,m) to IL,M), Eqs. (2.16) and 
(2. 15a) reduce to 

Z 2 IL,M) =L(L+ 1)IL,M) and Z3IL,M) =MIL,M), 
• (2.17) 

respectively, where 

L= - !+{1 +4M2_4M+ 4A zM 
X [12 - (m - 1)2] 112}1I2/2 

and 

(2.18a) 

(2. 18b) 

From these relations we may readily get the following values 
of M corresponding to different allowed values of m: 

M = 0, - A2 (2/- 1)112, - A2 [2(2/- 2)] 112, ••• , 

(2.19) 

which are all negative and each value is repeated twice. 
Case III: When only the weight "I + I" participates in 

the representations of the complex angular momentum oper
ator, the general representation equations (2.3) reduce to the 
following form: 

Z311 + I,m) = A3 [(I + 1)2 - m2] 11211 + I,m), (2.20a) 
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Z+ II + I,m) 

= -A3 [(I + m + 1)(/ + m + 2)] 11211 + I,m + 1), 
(2.20b) 

Z_ II + I,m) 

=A3 [(/- m - 1)(/- m + 2)]1/211 + I,m -1). 
(2.2Oc) 

Then, for the operator Z 2, given in Eq. (2.7), we get the 
following representation: 

Z 21/+1,m) =A 3 [(/+1)2_ m2]112 

X{A 3 [(I + 1)2 - m2 ]1!2 

- A3 [(I + 1)2 - (m _1)2] 1/2 - I }II + I,m). (2.21) 

In the canonical basis IL,M), Eqs. (2.20) and (2.21) may be 
written as Eq. (2.17), where M and L have the following 
values: 

L= - !+{1+4M 2 -4M-4A 3 M 
X [(l + 1)2 - (m _1)2]1/2}1/2/2 

and 

M =A3 [(I + 1)2 _ m2
]1!2, 

(2.22) 

(2.23) 

which give the following values for M corresponding to the 
values ofm = -I, -I + 1, ... ,0, ... ,1- 1,1: 

M =A3(21 + 1)112, A3(2.21)IIZ, A3 [3(2/- 1)] 112, ... , 

A3(1 + 1), ... ,A3(2.2/)IIZ,A3(21 + 1)1i2, (2.24) 

which are all positive and each value is repeated twice. 

3. ADDITION OF COMPLEX ANGULAR MOMENTUM 
OPERATORS 

In the space when only the weight I participates in the 
representations of the components of the complex angular 
momentum operator, we get the similar set of values of Min 
terms of L in the basis IL,M) as that of m in terms of I in the 
basis I/,m). Therefore, the addition of complex angular mo
mentum operators in the canonical basis IL,M) may be de
rived in the way similar to that of the addition of ordinary 
angular momentum operators in the basis I/,m). As such, 
the eigenstates IL,M) of the operators Z 2 and Z3' when 
Z = ZI + Z2, may be given as follows in terms of eigenstates 
IL I ,MI ) and ILz ,M2 ) of Z ~ and Z ~, respectively: 

IL,M) = L C(LIMI,L2Mz,LM)ILpMpL2,M2),(3.1) 
M1,Mz 

where 

ILI,MpLz,Mz) = ILI,MI) IL2,M2), (3.2) 

and the coefficients C (LI MI ,LzMz ,LM), which are nonze
ro only when M = MI + M 2 , are given by 

C(L IM I ,LzM 2,LM) 

(
2L+A I )I12 

= AI V(LI LzL;MI MzM), (3.3) 

where 
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X(L2 -M2)!(L +M)!(L _M)!]1I2 L {( -IY/z!(L) +L2 -L +z)!(LI -MI -z)! 
z 

X(L2 +M2 -Z)!( -L2 +L +MI +z)!( -LI +L -M2 +Z)!}, (3.4) 

wherez runs through zero and integers. This value of C (LI M) ,L2 M2 ,LM) in the basis IL,M > is similar to that of the Clebsch
Gordan coefficients for addition of ordinary angular momentum, operators in the basis I/,m> except that we get a factor 
[(2L + A 1)/ A) ] 114 in place of (21 + 1) 112 and angular momenta and magnetic quantum numbers given by Eqs. (2. 12a) and 
(2. 12b), respectively, are complex. We may therefore consider these coefficients as CGC for complex angular momentum 
operators in the basis IL,M >. The existence of these Clebsch-Gordan coefficients with complex angular momenta and 
magnetic quantum numbers has already been utilized by Wong and Yeh 16 to demonstrate that CG coefficients ofSO(3, 1) are 
the analytic continuation of well known functions from SO( 4). Actually, the boost matrix elements of SO(3, 1) should be 
connected to those ofSO(4) by analytic continuation. 

We conclude that in the subspaceR I _) the allowed values ofM given by Eq. (2.19) are only negative values and therefore 
the basis vectors IL,M> do not form the complete set in this subspace. Similar is the case in subspace RI + I where all the 
allowed values of M are only positive. It is therefore not possible to derive the addition of complex angular momentum 
operators in these subspaces separately in the simple way discussed above for the subspace R I • 
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We report several important additions to our original discussion of Ermakov systems. First, we 
show how to derive the Ermakov system from more general equations of motion. Second, we show 
that there is a general nonlinear superposition law for Ermakov systems. Also, we give explicit 
examples ofthe nonlinear superposition law. Finally, we point out that any ordinary differential 
equation can be included in many Ermakov systems. 

I. INTRODUCTION 

In an earlier paperl we have proven that the quantity 

f
X1P 

J'PIX 
I = ~(px - xp? + J('TJ)d1] + g(1])d1], 

is constant if p satisfies the equation 

Ii + OJ2(t)p =J(xlp)/(p2X), 

and x satisfies the auxiliary equation 

x + OJ2(t)X = g(plx)/(x2p), 

(1.1) 

(1.2) 

(1.3) 

where OJ2,J, and g are arbitrary functions and the overdots 
indicate differentiation with respect to t. The proof of this 
result, following Ermakov,2 can be obtained by eliminating 
OJ2 between 0.2) and (1.3) and then carrying out a few simple 
manipulations to arrive at the result that (I.l) is constant. 
We refer to (1.2) and (1.3) as an Ermakov pair of equations 
and call I the Ermakov invariant associated with this pair. 
Several cases of these equations have proven useful for de
scribing various physical systems with explicit time depen
dence. For example, the caseJ = xlp, g = 0 leads to the 
Lewis invariane 

(1.4) 

which can be used to give an exact quantum treatment of the 
time-dependent harmonic oscillator.4 

Katzin and Levine5 and Lutzky6 derived the invariant 
(1.4) and the auxiliary equation for the time-dependent har
monic oscillator starting from the Lagrangian 

L = Hp2 - OJ2(t )p2], (1.5) 

and employing Noether's theorem. In a later paper7 we ex
tended Lutzky's procedure and derived the Ermakov invar
iant and auxiliary equation for a Lagrangian of the form 

L = ~[p2 - u/(t)p2 +2+G;(t)Fi(P»)' (1.6) 

Applying Noether's theorem to this Lagrangian leads to 

J(xlp) = LCi(xlp)2m, -I, 

g( pix) = kplx, 

(1.7) 

(1.8) 

wherec i , k, and m i #0, -1/2, -1 are constants (see Ref. 7 
for details). The Ermakov invariant follows by employing 
(1.1), with the forms (1.7) and (1.8). An advantage of the 

Noether theorem approach is that one obtains both the Er
makov invariant and auxiliary equation starting from a giv
en equation of motion. For example, starting from the La
grangian for the equation of motion 

we obtain both the auxiliary equation 

x + OJ2(t)X = k Ix3
, 

(1.9) 

(UO) 

and the Ermakov invariant for this pair. In the Ermakov
type calculation, e.g. the elimination of OJ2 between (1.1) and 
(1.2), one must know both equations before one can derive 
the Ermakov invariant. For a general equation of motion one 
does not always know the auxiliary equation (or equations, 
since there may be an infinite number of different auxiliary 
equations). A disadvantage of the Noether theorem ap
proach is that one obtains only special cases of the general 
results (1.2) and (1.3). 

In view of the foregoing comments one would like a 
constructive procedure for starting with a given nonlinear 
equation of motion and deriving the auxiliary equation and 
Ermakov invariant. We present such a procedure for the 
Ermakov pair (1.2) and (1.3) in Sec. II of this paper. The 
hints for developing this procedure are contained in a paper 
by Bandit.s 

The techniques used in the proofs in Sec. II suggest a 
general method of relating the solutions of (1.2) and (1.3) 
using the Ermakov invariant. We shall develop this general 
relationship in Sec. III. In Sec. IV we present explicit exam
ples of the use of the theory of Sec. III to obtain solutions of 
one of the equations (1.2) or (1.3) in terms of solutions of the 
other equation. These results are sometimes referred to as 
nonlinear superpostion laws in the literature. 9 In Sec. V we 
present our conclusions and suggestions for further work. 

Before introducing the analysis of Sec. II we present a 
simple generalization of the Ermakov system (1.1), (1.2), 
and (1.3). This system can easily be converted into a form 
having linear friction. To prove this assertion we change to a 
new independent variable s defined by 

ds 
B(s) =dt, (1.11) 

where e (s) is an arbitrary function. Equations (1.2) and (1.3) 
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are converted into the equations 

dZp +p(s) dp +!1Z(s)p= f(xlp) 
dsz ds (pZxO Z) , 

(Ll2) 

and 

dZx + () dx + nz() _ g(plx) -- ps - u sx- , 
dsz ds (XZpO Z) 

(Ll3) 

where 
1 dO 

p(s) = --, 
o ds 

(1.14) 

Z (tJz 
!1 (s) = -Z . (Ll5) o 

The Ermakov invariant (Ll) is converted into the form 

I=_()2 p....!.....-x 1 + f(1])d1] + g(1])d1]. 1 (d d)2 fX1P JP1X 

2 ds ds 
(Ll6) 

Thus the Ermakov set with linear friction, (1.12), (1.13), and 
(1.16), can be derived directly from the Ermakov set without 
friction. For this reason we shall work with the friction-free 
case for simplicity and without loss of generality. Lutzky in 
Ref. (10) has noted the case with friction. 

II. Derivation of the Ermakov System8 

Consider the differential equation 

p + (tJ2(t)p = qt(t )f(qzCt )p), (2.1) 

where qt, q2' andfare arbitrary functions along with the 
related equation 

x + (tJ2(t)X = q3(t )g(qit )x), (2.2) 

where q3' q4' and g are arbitrary functions. We seek condi
tions on qt, qz, q3' and q4 which allow the solutions of (2.1) 
and (2.2) to be related by the equation 

p = xr, (2.3) 

where r is required to satisfy an ordinary differential equa
tion of the type 

dZr 
- =F(r), dr 

(2.4) 

where the variable 7 and the function Fwill be defined below. 
Thus, the function r, which relates the solutions of (2.1) and 
(2.2), satisfies Newton's law for a one-dimensional system. 

In order to derive the form of Fwe substitute (2.3) in 
(2.1) to obtain the equation 

rex + (tJzx) + xi +li; = qJ(q1fJ). (2.5) 

We next use (2.2) in the first term in (2.5) which yields 

rq~(q4x) + xi +2x; = qJ(q1fJ). (2.6) 

Now by changing to a new independent variable 7 defined by 

d7 = dt Ix2, (2.7) 

we convert (2.6) to the form 

rq3x3g(q4X) + r" = x 3qJ(qzrx), (2.8) 

where the prime denotes differentiation with respect to 7. 

We now require that equation (2.8) be of the form (2.4). This 
implies the functions ql' qz, q3' and q4 have the form 

ql = lI(x3r'), (2.9a) 
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and 

q2 = lI(x?), 

q3 = lI(x3r), 

(2.9b) 

(2.9c) 

(2.9d) 

These expressions for the q's are not unique, since we could 
multiply any of them by any function of rand (2.8) would 
still have to form (2.4). However, since the functionsfandg 
in (2.8) are arbitrary the choices (2.9a-d) do not introduce 
any loss of generality; we have made these choices for sim
plicity in later results. With these choices for the q's, (2.8) 
becomes 

r" = f(lIr)l? - g(r). 

This equation has the immediate energy integral 

V Z + VCr) = 1= const, 

where the potential energy V (r) is 

VCr) = Flj(1])d1] + f g(1])d1]. 

(2.10) 

(2.11) 

(2.12) 

Next, using the above expressions for the q's in the original 
equations (2.1) and (2.2), and using (2.3) to eliminate r, we 
obtain 

p + (tJ2p =f(xlp)/(pZx), 

x + (tJ2X =g(plx)/(x2p). 

(2.13) 

(2.14) 

These last equations are precisely the Ermakov pair 
(1.2) and (1.3). The energy integral, (2.11), when expressed 
in terms of pix and t, becomes the Ermakov invariant (1.1). 
Thus we have given a constructive derivation of the Erma
kov system. The assumption that r = pix satisfy a Newton's 
law equation, (2.4), implies that the pair of equations (2.1) 
and (2.2) are an Ermakov pair. The energy associated with 
the equation satisfied by r is exactly the Ermakov invariant 
for the related pair of equations. 

III. NONLINEAR SUPERPOSITION-GENERAL THEORY 
We now assume that we have the Ermakov system 

(Ll), (1.2), and (1.3). Using the results of the previous sec
tion, we can write the Ermakov invariant (1.1) in the form 
(2.11 ) 

~ r'2 + V (r) = I, (3.1) 

where r = pix and VCr) is given by (2.12). The derivative in 
(3.1) is with respect to 7 where t and 7 are related by (2.7). 
Equation (3.1) can be integrated immediately to yield 

1 f dr 
7 + c = y'2 [1 _ V(r)]I/Z ' (3.2) 

where c is a constant of integration. If we can perform the 
integral in (3.2) then we obtain the general solution for r, the 
two integration constants being I and c. Thus, if we know 
any particular solution to the x equation, say x I' then we 
obtain the general solution to the p equation as 

(3.3) 
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after eliminating r through (2.7). Clearly if we know a par
ticular solution to the p equation and can solve for r via (3.2) 
then we obtain the general solution to the x equation as 

x =plr. (3.4) 

Thus, the nonlinear superposition works either way in x and 
p. Equation (3.3) and (3.4) represents a nonlinear superposi
tion law for the Ermakov pair (1.2) and (1.3). Lutzky, in Ref. 
6, used the procedure discussed above to obtain nonlinear 
superposition with the Lewis invariant (1.4). He also used 
the same general procedure to derive nonlinear superposi
tion for a particular nonlinear equation discussed in Ref. 7.10 
We shall discuss these results in the next section. The general 
nonlinear superposition law represented by (3.3) does not 
seem to have been previously mentioned. 

The Ermakov invariant provides a link between the two 
equations. It also allows one to derive the nonlinear superpo
sition law (3.3). Although the Ermakov pair (1.2) and (1.3) 
have a special form, they still represent many equations of 
motion sincefandg are arbitrary functions. Thus, we have a 
general nonlinear superposition law for a large class of non
linear equations of motion. 9 

IV. NONLINEAR SUPERPOSITION-EXAMPLES 

As a first example of the general theory developed in the 
previous section we choose the Ermakov-Pinney equation, 
f = xl p, and the time-dependent harmonic oscillator equa
tion for the auxiliary equation g = 0, i.e., 

p + w\t)p = lIp 3, (4.1) 

i + w2(t )x = O. (4.2) 

The Ermakov invariant for this case is just the Lewis invar
iant. The nonlinear superposition law for this Ermakov pair 
has been discussed many times starting with Ermakov in 
Ref. 2. The result is that if x I and X 2 are linearly independent 
solutions of (4.2) with Wronskian W = X IX2 - XIX 2, then 
the general solution to (4.1) can be written 

p = (AXT + Bx~ + 2CX IX2)1/2, 

where A, B, and C are constants related by 

AB - C 2 = lIW2. 

(4.3) 

(4.4) 

Here we shall derive (4.3) using the general theory of the 
previous section. For the potential V (r) for the pair (4.1) and 
(4.2) we obtain 

I
llr 

VCr) = f(TJ)dTJ = l/2r. (4.5) 

Equation (3.2) can be integrated and solved for r to yield 

(4.6) 

The nonlinear superposition law then yields 

(4.7) 

We may pick x to be a particular solution XI' and write (4.7) 
in the form 

p = [ (2~ + 2Ie
2 

)XT + ::2 x~ + 4~ XIX2] 1/2, (4.8) 

where X 2 is a solution of (4.2) which has Wronskian Wwith 
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XI' The solution X2 is introduced into (4.7) with the Wrons
kian formula, 

I dt 
X2 = WX I - = WXIT, 

X2 
I 

(4.9) 

which defines a second linearly independent solution of (4.2) 
from a given solution XI' Solution (4.8) isjust the known 
nonlinear superposition law (4.3). Although the result (4.8) 
is not new we believe the simple proof we have given of this 
result is new. The other proofs of (4. 8) use an algebraic pro
cess first discussed by Ermakov. In this procedure one writes 
two Ermakov invariants for x I and X 2, keeping thep solution 
the same. Then one eliminatesp between the resulting invar
iants. This procedure leads, after considerable algebra, to 
(4.8). This algebraic method works when the Ermakov pair 
are uncoupled, i.e., essentially only for the pair (4.1) and 
(4.2). 

As a simple variation of the previous example consider 
the Ermakov pair 

p + w\t )p = 0, (4.10) 

(4.11 ) 

or f = 0, g = pix. This pair leads to a different form of the 
superposition law. Here the potential is 

I
(r) 

VCr) = g(TJ)dTJ = r/2. (4.12) 

The solution for r yields 

r = y' 21 siner + c) = pix. (4.13) 

The result (4.13) was obtained previously by Lutzky.6 Equa
tion (4.13) is not as useful as (4.7) in our previous treatment 
because here the variable T involves the solution to the non
linear equation (4.11). 

As another example we mention the Ermakov pair dis
cussed in Ref. 7. These equations are a special case of (1. 7) 
and (1.8) derived from Noether's theorem, and have the 
form 

or 

p + w2(t)p = clxm -4pl - m + czX2m -4pl -2m , (4.14) 

i + w2(t)x = k Ix3
, (4.15) 

f(xlp) = cl(xlp)m - 3 + Cz(Xlp)2m -3, 

g(plx) = kplx. 

(4.16) 

(4.17) 

Here the potential V is 

V(r) = !kr + C I + C2 

(m - 2) yin -2 2(m _ 1)y2(m -I) 
(4.18) 

The integral (3.2) for rcan be performed in simple form only 
for 1 = 0 for VCr) given by (4.18). LutzkylO has considered 
this case with k =1= 0 and using the associated Ermakov invar
iant and the theory of Sec. III, has derived the particular 
solution of( 4.14) found earlier by Reid [see Ref. 7, Eq. (3.7)]. 
The resulting solution, (3.7) of Ref. 7, is only a particular 
solution since one must set 1 = 0 to do the r integral. In 
carrying out his derivation Lutzky made use of the following 
particular solution to the auxiliary equation (4.15) 
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(4.19) 

where x I and X 2 are linearly independent solutions of the 
time-dependent harmonic oscillator equation with Wrons
kian W. We shall not present further details of this example 
but shall refer the reader to Refs. 7,10. 

As another example of the system (4.14), (4.15), we 
consider the case k = 0 for the Ermakov pair (4.14) and 
(4.15). The potential energy is (4.18) with k = O. As in the 
previous example the r integral (3.2) can be performed in 
simple form only for the case I = O. Performing the integral 
and solving for r yields 

r = pix = (ar + 2acr + ac2 + b) 11m, (4.20) 

here the constants a and b are defined by 

a = m 2c l /{2(2 - m», 

b = c2(m -2)/{c l (1 - m». 

(4.21) 

(4.22) 

By picking any particular solution x I we obtain a particular 
solution to the p equation in the form 

(
a m-2 2 2ac m-I (2 b) m)llm 

p = W 2 XI X2 + -WXI X2 + ac + XI , 

(4.23) 

where r has again been eliminated in favor of X 2 through the 
Wronskian theorem (4.9). In summary, (4.23) is a particular 
solution to 

p + w\t) = CIX l
m -4pl - m + CzXI 2m 

-4pl -2m, (4.24) 

if X I and X 2 are linearly independent solutions of 

x + w 2(t)x = 0, (4.25) 

with Wronskian W. Thus (4.23) is a nonlinear superposition 
law for the Ermakov pair (4.24) and (4.25). 

We shall not work out further examples in this paper 
but shall let the above examples serve to illustrate the nonlin
ear superposition law (3.3). 

It seems clear from the form of(3.3) that explicit super
position rules such as (4.8) or (4.23) will obtain only when 
the x-equation does not containp. From (1.3) we see that the 
only uncoupled case occurs when g = kplx, the resulting x
equation being 

x + w\t)x = k Ix3
. (4.26) 

The only viable auxiliary equation is, therefore, the Erma
kov-Pinney equation: the linear auxiliary equation follows 
with k = O. However, even when both equations of an Erma
kov pair are coupled with each other, the functions p = xr or 
X = plr, along with integral (3.2) for r, still provide a general 
solution to one member of the Ermakov pair in terms of a 
particular solution to the other member. We may say in this 
coupled case that the nonlinear superposition is of an implic
it form. 

V. CONCLUSIONS 

In this paper we have extended our study of the Erma
kov system, 
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p + w2(t)p = j(xlp)/(p2X), 

X + w2(t)x =g(plx)/(x2p), 
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(5.1) 

(5.2) 

(5.3) 

in two important ways. First we presented a constructive 
procedure for arriving at the Ermakov system starting from 
equations of motion having the general form (2.1) and (2.2). 
The central idea in this procedure is to require the ratio 
r = pix to satisfy an equation of the form of (2.4), or New
ton's second law. This requirement forces the general equa
tions (2.1) and (2.2) to be the Ermakov pair (5.1) and (5.2). 
The equation for r has a simple energy integral and the ener
gy is exactly the Ermakov invariant (5.3). The second major 
result is that since the energy equation for r (2.11) can be 
solved, the Ermakov invariant provides a general connection 
between the solutions of the form 

p = xr (J :~ + c,I ). (5.4) 

We refer to (5.4) as a nonlinar superposition law for the Er
makov pair (5.1) and (5.2). We have given several examples 
showing how this formal nonlinear superposition law gives 
explicit nonlinear superposition laws in special cases. 
Lutzky was the first to exploit this procedure, in Ref. 10. 
Although this method probably only gives explicit nonlinear 
superposition laws when the x equation has the Ermakov
Pinney form (4.26) there are still a large number of possible 
cases because the p equation contains the arbitrary function 

f 
As a final point we mention the following interesting 

fact concerning the Ermakov set (5.1)-( 5.3). In the Ermakov 
derivation of the invariant (5.3) one eliminates w2(t ) between 
the two equations (5.1) and (5.2) and carries out a few simple 
manipulations to arrive at invariant (5.3). We usually think 
of w2(t) as a given function of the independent variable t. 
However, a little reflection on this derivation of (5.3) shows 
that in fact w 2 can depend on the dependent variables x,p in 
an arbitrary way, i.e., in the form w2(p,p,p, .... ;x,x,x, .... ;t) 
and the Ermakov elimination procedure is still valid. This 
means that formally, any differential equation can be written 
as a member of an Ermakov pair 

p + w2(p,p,p,. .. ;x,x,x,. .. ;t)p =j(xlp)/(p2X), (5.5) 

x + w2( p,p,p,. .. ;x,x,x,. .. ;t)x = g(plx)/(x2p), (5.6) 

with I given by (5.3) being constant. This may not lead to 
important results in all cases, but it is at least interesting that 
every ordinary differential equation belongs to an infinite 
number of Ermakov pairs. It also follows that the nonlinear 
superposition law (5.4) also holds for an arbitrary ordinary 
differential equation. Again we emphasize that the elimina
tion procedure for a generalized w2 will probably not lead to 
practical results for every differential equation, however, we 
find it a somewhat remarkable result. 

We believe, based on the results of this paper, along 
with those in the references, that Ermakov-type systems are 
a fruitful field for study. 
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On the intrinsic geometry of certain nonlinear equations: The sine-Gordon 
equation 

F. J. Chinea 
Dept. de Mf~odos Matemdticos, Facultad de Ciencias F{sicas, Universidad de Madrid, Madrid-3, Spain 
Dept. de FIslca Fundamental, UNED, Madrid-3, Spain 

(Received 27 November 1979; accepted for publication 22 February 1980) 

The classical relation between two-dimensional spaces of constant curvature and certain 
nonlinear partial differential equations is formulated in group-theoretic terms by means of the 
underlying semisimple isometry group. Rather than working with the metric and curvature in the 
gi~en constant curvature space, it is then possible to consider the equivalent system consisting of a 
pair of first-order partial differential equations in flat space for two so(2, 1) vectors satisfying a pair 
ofSO(2, 1 )-invariant algebraic constraints. Such equations determine a SL(2,R ) principal bundle 
with flat connection. The construction is carried out in detail for the case of the sine-Gordon 
equation. The connection is shown to give rise to a spectral problem of the inverse scattering type 
by means of a gauge transformation. Backlund transformations are shown to be automorphisms 
of the connection characterized by a certain so(2, 1) null vector. The generation of solutions of the 
nonlinear equation from known ones is seen to be determined by gauge transformations leaving 
invariant a fixed set of gauge conditions. 

1. INTRODUCTION 

Some geometric ideas developed during the last century 
are at the root of many concepts now widely used in the 
study of certain nonlinear partial differential equations of 
interest in physics. In recent years, comparatively more em
phasis has been put in the development and use of very pow
erful analytical techniques bearing on the functional analysis 
aspects of the subject, among which the method of the in
verse scattering is especially important. Quite recently, how
ever, there has been a simultaneous and renewed interest in 
the geometric approach. 1-6 

In the present work some of these geometric aspects are 
developed. The point of view that the central feature is the 
existence of an underlying isometry group is adopted. 

The more prominent role given here to the group struc
ture, as opposed to the purely differential-geometric con
cepts, may be supported by the following reasons: 

(i) The generalization to higher dimensions of construc
tions based on spaces of constant curvature seems unlikely, 
as a consequence of the additional differential constraints 
forced on the metric by the constant curvature condition in 
such dimensions. 

(ii) Such a structure is very powerful in terms of finding 
exact solutions of a given equation. Its absence renders such 
a task almost impossible. 

(iii) A natural generalization of the quantization proce
dure for linear equations seems to require a certain invari
ance group in order to provide a particle interpretation for 
quantized fields obeying nonlinear equations. 

In this spirit, the classical relation among certain non
linear equations in 1 + I dimensions and two-dimensional 
Riemannian spaces of non vanishing constant curvature 7 is 
formulated in terms ofa maximal (three-parametric) iso
metry group, whose existence is assured by the condition of 
constant curvature. 

Section 2 is concerned with the geometric setting. Rath
er than working with the two-dimensional metric and the 
Killing equation it satisfies, one deals with the equivalent 
problem of considering a pair of Lie algebra structure equa
tions satisfied by two 3-vectors p and q and the algebraic 
constraints among such vectors. The equivalence of the two 
approaches is made possible by the fact that the isometry 
group is semisimple. Section 3 deals with the relation among 
the said constraints and the type of nonlinear equation ob
tained. It is also found that the integrability condition for the 
structure equations is precisely the desired nonlinear 
equation. 

The consequences of this approach are developed in de
tail in the following sections for the sine-Gordon system. In 
Sec. 4 the basic equations are written down. They take the 
form of first-order evolution equations for an orthonormal 
frame of so(2, 1) vectors. Interestingly enough, one of the 
vectors in the frame is seen to obey the equations for a 
0(2, I)-invariant chiral field. 

Representing the mentioned equations for the so(2, 1) 
frame in SL(2,R ) spinor language, a SL(2,R ) principal bun
dle with connection is constructed in Sec. 5. It has been pre
viously recognized that the spectral problem corresponding 
to the inverse-scattering method for the sine-Gordon equa
tion and certain others may be put in the language of bundle 
connections. 5 In the present approach, the bundle and con
nection, as well as the vanishing curvature condition for 
such a connection, are derived as a consequence of the equa
tions in Sec. 4. The resulting connection is shown to give rise 
to the spectral problem by means of a gauge transformation. 

In agreement with the basic aim of emphasizing the 
group-theoretic aspects of the problem, all geometric con
structions are intrinsic and make no use of embeddings of the 
original two-dimensional manifold in a higher-dimensional 
space. In particular, the Bianchi-Backlund transformations, 
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which were originally derived by a rather complicated and 
clever construction using a three-dimensional embedding 
space,7 are here obtained in an intrinsic fashion. In Sec. 6, the 
Backlund transformations for the sine-Gordon equation are 
shown to be a particular case of invariance transformations 
(gauge transformations leaving the connection invariant). 

Finally, the matter of generation of solutions from 
known ones is shown in Sec. 7 to be equivalent to the study of 
gauge transformations that leave a given set of gauge condi
tions invariant. Such gauge conditions, which turn out to 
consist of both linear and quadratic equations, are written 
down explicitly. 

2. GEOMETRIC DESCRIPTION: SEMISIMPLE 
ISOMETRY GROUPS 

Let J( be a complete, connected, simply connected 
two-dimensional (pseudo-) Riemannian manifold with met
ric g and constant scalar curvature R. The latter condition 
implies the existence of a maximal transitive isometry group 
on vIi. 8

,9 In particular, in the case of constant negative cur
vature, the connected isometry group is isomorphic to 
SO(2, I). As a consequence, there will exist three indepen
dent Killing fields of infinitesimal isometries. Let them be 
denoted by s; 1')' where the index J-l describes a given field 
(J-l = 1,2,3) and the index i a given contravariant compo
nent (i = 1, 2). In the case R 7'= 0, the metric g may be ex
pressed in terms of the Killing fields s( 1') by means of the 
following relation 10: 

(2.1) 

where <7 is a constant and K I' Y the Killing-Cartan metric for 
the corresponding isometry group. The possibility of writing 
such an expression clearly depends on the fact that the iso
metry group is semisimple for R 7'=0; it has no analog in the 
R = 0 case, which corresponds to the (pseudo-) Euclidean 
group in two dimensions. Equation (2.1) may be shown to 
hold by checking its validity for a particular model of a two
dimensional space of constant curvature, such as a sphere 
(hyperboloid) in ]R3 with Euclidean (Minkowski) metric, 
and then using the fact that all spaces of equal constant cur
vature and dimension are isometric. 8 

The Killing equations 

2" sg = 0 

are trivially satisfied by g as given by (2.1), taking into ac
count the structure equations for the Lie algebra of the iso
metry group and the expression for the Killing-Cartan form 
in terms of the structure coefficients. In particular, in the 
case of a SO(2, I) isometry group, the following holds 

(2.2) 

where £1""" is the Levi-Civita tensor in three dimensions, 
greek indices being raised and lowered by means of K 1''' and 
its inverse and K flY = diag (+ + -). 

Equation (2.2) may be rewritten in three-dimensional 
vector notation by defining 
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(2.3) 

Equation (2.2) now reads 

where the cross product of two vectors a and b is defined by 

(a X b )U = £I'V ual'b v 

and the subindices u and v respectively denote partial differ
entiation with respect to coordinates x I and x 2 in vii. 

3. NONLINEAR WAVE EQUATIONS AND CONSTRAINTS 

Let us now suppose that the metric g on vii depends on 
a certain field <p(u,v) defined on vii (and possibly on its de
rivatives). This will be denoted by 

ds2 = gij [<p ]dxi dx j 
• 

The scalar curvature R will then be given as a functional 
expression in terms of <p and its derivatives. The condition of 
constant curvature, 

R [<p] = constant, 

is then a partial differential equation for <po Such an equation 
is obviously of second order if g depends on the field <p only, 
and not on its derivatives. In particular cases, the resulting 
expression takes the form of a nonlinear wave equation 

o <p = .7(<p), 

where .7(<p) is a certain functional of <p and 0 the two-di
mensional d' Alembertian operator inflat space. It is a classi
cal fact 7 that the sine-Gordon equation 

<Put> = sin <p (3.1) 

may be obtained in this fashion from the metric 

ds2 = du 2 + 2 coS<p du dv + dv2
, (3.2) 

where u and v play the role of light-cone coordinates in the 
corresponding equation (3.1). 

Similarly, it is easy to see that the Liouville equation, 
characterized by .7(cp) = - e"', corresponds to the metric 

ds2 = e'f'du dv . (3.3) 

A number of other equations, such as the Korteweg-de 
Vries-equation, may be associated with spaces of constant 
curvature. 6 

The preceeding correspondence among spaces of con
stant curvature and nonlinear partial differential equations 
may be translated into the language of Killing fields, which 
will playa central role in the sequel due to the possibility of 
expressing g in terms of such vector fields by means of (2.1). 
From (2.1) and (2.3), one gets 

(3.4) 

(where the scalar product of two 3-vectors a and b is defined 
by a·b = Kilyal'b '). 

It is clear that the vectors p and q must satisfy certain 
constraints in order for g to give rise to a particular nonlinear 
equation. For equations of the second order, such con
straints are algebraic. For instance, inspection of (3.2) and 
(3.3) shows that in these examples the constraints are] I 
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p2 = 0, l = 0 (Liouville), 

l(1 - p2) + (p.q)2 = 0, p2(1 _ q2) + (p.q)2 = 0 
Gordon) . 

(3.5) 

(sine
(3.6) 

The complete information about a particular nonlinear 
equation and its symmetries is thus given by Eqs. (2.4) to
gether with an appropriate pair of invariant constraints sat
isfied by p and q. As p and q depend on the field q; through 
(3.4), Eqs. (2.4) will contain expressions in the field q; and its 
first derivatives. Their integrability condition is precisely the 
requirement that q; satisfy the desired equation. It is easy to 
see that this is the case by means of the following consider
ation: The integrability conditions for (2.4) are equivalent to 
the requirement of the existence of three Killing fields that 
satisfy an so(2, 1) algebra. But we have seen that the existence 
of a corresponding maximal isometry group is equivalent to 
the condition that JI has constant negative curvature. By 
construction, the latter is satisfied if and only if q; is a solu
tion of the given nonlinear equation. 

As a consequence, we shall deal in the following with 
Eqs. (2.4) and the appropriate constraints rather than with 
metrical quantities such asg and R. Notice that it is crucial 
in this respect that the derivatives involved in (2.2) may be 
considered as ordinary ones, due to the antisymmetry of 
(2.2) in the covariant derivatives of the 5( p.) • 

4. THE SINE-GORDON EQUATION 

In what follows, the preceeding approach is developed 
in the specific case of the sine-Gordon equation. For conve
nience, variables t = u - v and x = u + v will be used. The 
sine-Gordon equation 

o q; = - sin q; (4.1) 

then corresponds to the metric 

ds2 = sin2 ! q; dt 2 + cos2 ! q; dx2. (4.2) 

The algebraic constraints satisfied by the transformed varia
bles ft and ij (denoted in the following by the same symbols p 
and q) are now 

l/p2 + l/q2 = 1, p.q = 0 . (4.3) 

Introducing the vectors t, 1/, U), defined by 

t = (p2) -112p , 1/ = (q2) -1/2q, U) = t X 1/ (4.4) 

[where (p2) -1/2 = sin! q; and (q2) - 112 = cos! q;, due to 
(4.2) and (4.3)], the following relations hold: 

t2 = 1/2 = 1, U)2 = -1, t'1/ = 1/'U) = U)·t = O. (4.5) 

The vectors t, 1/, and U) thus form a trihedral, orthonor
mal with respect to the Killing-Cartan metric. 

Equations (2.4) may be written in terms of the new var
iables t, 1/, and u). Using (4.5), the resulting equations may be 
solved explicitly for the first derivatives of these variables 
and the following expressions are obtained: 

t, = -!q;x1/, tx = -!q;,1/+ coqq;U) , 

1/x = ! q;,;, 1/, = !q;x; - sin! q; U) . (4.6) 

The evolution of the trihedral is completely specified by 
(4.6). The remaining equations 

(4.7) 
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are just a consequence of the definition of U) and of conditions 
(4.5). Incidentally, (4.4) and (4.7) imply 

p = (U);)-I(U);)-IU)x, q = - (U);)-I(U);)-IU), 

and hence Eqs. (2.4) may be written as second-order equa
tions for U), where q; and its derivatives do not appear 
explicitly. 

The so(2, 1) vector U) admits a definite geometric inter
pretation as a vector in three-dimensional space. First notice 
that U) satisfies the following equations: 

U)2 = -1, 

U); + U); = 1 , (4.8) 

U),'U)x = 0, 

as implied by (4.5) and (4.7). 
Suppose now that a two-surface is defined in three-di

mensional space, with a Minkowski metric given by Kp.,' , by 
the condition 

oi(t,x) = - 1 . (4.9) 

The metric induced by Kp.v on the embedded surface (4.9) is 

where (4.7) and (4.8) have been taken into account. The 
original metric g on JI is thus obtained. The vector U), which 
was constructed by an intrinsic procedure in terms of the 
isometries of JI, turns out to represent the radius vector in 
a3 whose locus, when t and x take all possible values, deter
mines an (at least local) embedding of JI in a3 with a Min
kowski metric. 

Finally, it should be noticed that (4.8) are just the con
straint equations characterizing a 0(2,1 )-invariant chiral 
field. In a very interesting article, 12 it has been shown how to 
derive the sine-Gordon equation from the 0(3)-invariant 
chiral model. In the present context, the converse construc
tion is obtained, namely, the 0(2,1 )-invariant field U) is con
structed from the isometries of the manifold JI associated 
with the sine-Gordon equation. A similar construction may 
be carried out for a SO(3)-invariant sine-Gordon surface JI' 
with positive curvature, thus showing the complete equiv
alence of the sine-Gordon and chiral 0(3) theories. The rea
son for our preference for working with a SO(2, 1) invariance 
group rather than with the corresponding compact group 
SO(3) is merely technical and will become apparent in Sec. 6. 

5. SL(2,R) BUNDLE ASSOCIATED WITH THE SINE
GORDON EQUATION 

with 

Equations (4.6) and (4.7) may be written as 

A, =MA, Ax =NA, 

o 
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0 - !q7t OO~~) N~( l~, 0 o , 
cos! cp 0 0 

A~(D 
The integrability condition for (5.1) is 

(M" -Nt + [M,NDA =0 

(5.2) 

(5.3) 

or, taking into account the linear independence of~, 17, and 
(i), simply 

Mx -Nt + [M,N] =0. 

The matrices M and N are elements of the Lie algebra 
so(2, 1); they may be expressed as 

with appropriate vectors rna, na. 

(5.4) 

(5.5) 

Equations (5.1)-(5.4) may be expressed in the corre
sponding SL(2,R ) spinor representation for convenience. 
The correspondence is (the same symbols are used for the 
original and transformed variables): 

A _A =AJ1 P", M _M= mJ1 PJ1 ' N -N= nJ1 PJ1 ' 

where the sl(2,R) matrices PJ1 are defined by 

PI=(~ ~J, P2=(~ ~), P3=(~ -;1) 
and satisfy the relation 

PJ1 Pv = €J1V" Pa + K J1,1, 
where I is the 2 X 2 identity matrix. Equations (5.1)-(5.4) 
now read 

At = [M,A], Ax = [N,A ] , (5.6) 

(5.7) 

(5.8) 

(5.9) 

Let us now look at the transformation properties of the 
matrices A, M, and N. The natural requirement that the 
transformed quantities again describe the evolution of a cer
tain orthonormal frame will be imposed. In particular, the 
trihedral~, 17, (i) should transform in such a way that the 
orthogonality conditions (4.5) hold for the transformed vec
tors t, ij, and iii. That amounts to transforming~, 17, (i) by 
means of a rotation in SO(2, 1), or, equivalently, to transform 
A as given by (5.8) in the following way: 

A =S -lAS, (5.10) 

where S is a SL(2,R ) matrix depending in general on the 
coordinates t and x. 

The transformation rules for M and N are then derived 
from the required invariance of equations (5.6), giving as a 
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result 

M=S -IMS-S -IS" IV=S -INS-S -ISx ' 
(5.11) 

It is an immediate consequence of (5.11) that the null trace 
condition which M and N should satisfy as elements of 
sl(2,R ), as well as the integrability condition (5.9), are auto
matically satisfied by the transformed quantities M and IV. 
Equations (5.11) are obviously the transformation rules for 
the gauge fields in a non-Abelian gauge theory. In other 
words, M and N are the components of a connection in a 
principal SL(2,R ) bundle with base JI. Condition (5.9) just 
asserts that the curvature of such a connection vanishes. 

A given connection (M, N) gives rise to a spectral prob
lem by means of a gauge transformation in the following 
manner: A scattering problem may be set up for the sine
Gordon equation by means of a certain pair of 2 X 2 matri
ces, 13 which in coordinates t-x and using the present nota
tion read: 

1 . ) - 1 (l{J, + l{J,) + 4:i Stnl{J 

1 ' 
-A- -coSlfJ 

4A 

where A is a spectral parameter. It is easy to see that these 
particular(M, IV) and an arbitrary pair(M, N) given by (5.7) 
are in fact related by a gauge transformation (5.11). Notice 
that M and IV are traceless and satisfy the vanishing curva
ture condition.5 As a consequence, they must be of the form 

M = - Q - I Qt' IV = - Q - I Qx , 

for a certain nonsingular matrix Q with determinant equal to 
a constant (which may be obviously considered to be unity). 
Similarly, 

M= -R -IR" N= -R -IK" 

for a certain matrix R with det R = 1. (M, IV) is then ob
tained from (M, N) by a transformation of the type (5.11) 
with S = R -IQ. 

6. BACKLUND TRANSFORMATIONS AS INVARIANCE 
TRANSFORMATIONS OF THE CONNECTION 

The connection (M, N) transforms as a one-form under 
coordinate transformations, as may be easily seen from (5.6). 
Going back to u-v coordinates, (5.7) and (5.9) read 

cos~ ~ - !q7u), 
-sm!cp 

(6.1) 

N=l 2 

(

-sin 1 cp 

2 coS! cp - ! cp" 

M" -Nu + [M,N] =0. (6.2) 

Consider now infinitesimal gauge transformations that 
leave M, N invariant. Putting 

S~I +€s 
in Eq. (5.11) (where 5 is a traceless matrix), the following 
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equations are obtained to first order in E: 

Su = [M,s]' sv = [N,s] . (6.3) 

We shall consider in detail the case where S is a nilpotent 
matrix, S 2 = 0 (that is to say, S is the spinor representative of 
a null vector). The matrix S may be then represented as 

S = a(cos !8pI + sin! 8 P2 + P3)' 

where a and 8 are functions of u and v. Equations (6.3) take 
the following form: 

Hip - 8)u = sin Hip + 8), Hip + 8)v = sin Hip - 8), 
(6.4) 

(lna)u = cos Hip + 8), (lna)v = coS! (ip - 8). (6.5) 

Equations (6.4) are just the Backlund transformations for 
the sine-Gordon equation (or, more precisely, the Bianchi 
transformations 7 -in order to get a one-parameter family of 
Backlund transformations, it is sufficient to use the invari
ance of the resulting sine-Gordon equation under the trans
formation u -+ ku, v -+ k -IV). It is well known that the in
tegrability conditions for (6.4) imply that both ip and 8 
satisfy the sine-Gordon equation. The integrability condi
tion for (6.5) is satisfied by virtue of (6.4). 

It is a rather remarkable fact that in the case S 2 = 0, S 
satisfies S = I + ES exactly, with E no longer restricted to 
being infinitesimal, and equations (6.3) become finite, exact 
equations. This explains the rather puzzling fact that Back
lund transformations were classically obtained by afinite 
geometric construction, rather than as an infinitesimal de
formation, the latter being the usual way to derive similar 
results in the differential geometry of surfaces. 

Infinitesimal transformations generated by S with 
s 2 =f- 0 may also be considered. They also depend on two 
functions, 14 combinations of which satisfy the sine-Gordon 
equation, but their separation is not so clean as that of 8 and 
a in (6.4) and (6.5). It is for this reason that we prefer to 
consider a SO(2,1 )-invariant rather than a SO(3)-invariant 
theory. In the latter, due to the positive definite metric on 
SO(3), it is not possible to have a nontrivial matrix represent
ing a vector with S 2 = O. Again, this is related to the classical 
fact that surfaces of positive curvature do not admit Back
lund transformations.7 

7. GENERATION OF SOLUTIONS AND GAUGE 
CONDITIONS 

The gauge transformations (5.11) play an important 
role in the theory. It is through them that the bundle connec
tion found by considering the isometries of J( leads to a 
problem of the inverse-scattering type. On the other hand, 
they include the Backlund transformations as a special case 
of invariance transformations. 

Another point of great interest is connected with Eqs. 
(5.11): The generation of new solutions of the given nonlin
ear partial differential equation from known ones. IS Given 
matrices M, N satisfying the trace condition and the integra
bility condition (5.9), new matrices M, IV satisfying the same 
properties may be obtained by means of an arbitrary S in 

1592 J. Math. Phys .• Vol. 21, No.7, July 1980 

(5.11). However, for the purposes of solution generation, one 
important requirement has to be added: M, IV have to be of 
the same from as M and N. This guarantees that it is possible 
to extract from M, IV a new field if! satisfying the desired 
equation. 17 In order to formulate this requirement, the al
lowed class of matrices must be restricted by some additional 
conditions, which may be considered as "gauge conditions" 
on the connection. For the sine-Gordon connection, such 
conditions are 

(M + M T)u = (M + M T)(M - M T) , 

(N + NT)" = (N + N T)(N _ NT) , 

P2(M + M T) P2 = N + NT, 

(M +M T)2 =i, 

(7.1) 

(7.2) 

where the symbol T denotes the transpose of a given matrix. 
Equations (7.1) and (7.2) are easily seen to be equivalent to 
requiring M, N to be of the form (6.1). Equations (7.1) lead to 

Dip= -rsinip, 

where r is a constant, while Eq. (7.2) normalizes the value of 
r to unity. 
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A differential geometric method of constructing Backlund transformations for a second-order 
partial differential equation in n independent variables (n arbitrary) is developed and several 
examples worked out. 

INTRODUCTION 

Backlund transformations have appeared in the recent 
literature on those nonlinear partial differential equations 
which admit special solutions called solitons. Until now 
these transformations have been limited to differential equa
tions in two independent variables. This paper describes a 
way to construct Backlund transformations for second-or
der partial differential equations in any number of indepen
dent variables. The technique is based on a differential geo
metric approach which views a partial differential equation 
as a submanifold of an appropriate jet space. In this ap
proach a Backlund transformation between equations in n 
independent variables is a 3n-dimensional submanifold M 
(with certain regularity conditions) oU l(R n,R) XJ l(R n,R) 
where J I(R n ,R ) is the space of I-jets of maps from R n to R. 
The differential equations related by the transformation 
arise from integrability conditions for the two differential 
systems on M inherited from the two contact system on the 
respective factors of J I(R n,R )XJ I(R n,R). 

1. BACKGROUND 

For the sake of simplicity all manifolds and all func
tions will be assumed to be Coo. Moreover, all arguments 
concerning the existence of solutions to partial differential 
equations will be local. 

Let M be a real Coo-differential manifold. Then C (M) 
denotes the ring of Coo-functions on M, T (M) and T *(M) 
denote the tangent and cotangent bundles, and r(M) and 
r *(M) denote the C (M)-modules of global Coo-sections of 
T (M) and T *(M). The r-jet of a mapfM~Nbetween differ
ential manifolds M and N at a point pEA! will be denoted by 
j; U). The set of all r-jets of maps of Minto N forms a differ
ential manifold which will be denotedJ'(M,N). The r-graph 
of a map fM~N is the map 

lU):M~J'(M,N) 

defined by 

j'U)(p) = j;U)· 

There are natural projections 

1T,.k:J '(M,N~J k (M,N), r;;.k 

and 

a:J '(M,N)~M, 

defined by 

(1.1) 

(1.2) 

1T"k(J;U)) =j~U) and a(j;U)) =p. 
Definition I: A system of rth-order partial differential 

equations for maps of Minto N is a differential manifold ~ 
together with a one-one differentiable map 

i:~~J '(M,N). 

A solution is a map 

fM~N 

(1.3) 

such that the image of the r-graph J 'U) lies on the image of 
~ under i. 

J'(M,N) admits a globally defined Pfaffian system 
n '(M,N) called the rth order contact system. Its impor
tance is due to the following proposition. 1 

Proposition: Let 1]:M/~J'(M,N) be a map such that 

A=ao1]:M/~M 

is diffeomorphism. Then a necessary and sufficient condi
tion for 

1] 0 A -I:M~J'(M,N) 

to be the r-graph of a map ;:M~N is 

1]*n '(M,N) = O. (1.4) 

We shall only need the contact systems n I(R n ,R ) and 
n 2(R n,R), defined onJ I(R n,R) andJ 2(R n,R ), respective
ly, by their generators as 

n I(R n,R) = {dz - ittidXi} ' 

{ 

dz - IPidx;. 
n 2(Rn,R)= ;:1 

dpi - LPijdxj , i = 1, ... ,n, 
j~l 

(1.5) 

(1.6) 

where X;. z, andpij are global coordinates onJ 2(R n,R), and 
Xi> z,P; are global coordinates on J I(R n,R). The coordi
nates are defined by 

Xi (j;U) = xi(p), the ith coordinate of pER n, 

z(j;U) =/(p), 

Pi(j~U) = :: (p), 
I 

Pij(j;U) = aa
2

a'f (p). 
Xj X; 

(1.7) 

In the development of Sec. 3 we shall need the following 
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results from the theory ofPfaffian systems. For the standard 
concepts of Pfaffian systems refer to Gardner. 1,2 

Definition: Let O)EI' *(M) be a I-form on a manifold M. 
We shall say that 0) is regular at a point pEM if there exists 
some neighborhood U of p and some integer r;;. 1 such that 

dO)r A 0) = 0 for all qEU 

and (1.8) 

dO)r - I A 0) =1= 0 for all qE U. 

We say that 0) is regular in an open set Vifit is regular at each 
point of V. 

Theorem (The Classical Pfaff Problem 3
): Let O)EI' *(M) 

be a regular I-form at a point pEM so that there exists a 
neighborhood U of p such that 

dO)r A 0) = 0 for all qEU 

and 

dO)r -I A 0) =1= 0 for all qE U. 

Then there exists a neighborhood V of p and functions 
f" ... ,jr,g" ... ,grEC(V) such that on V 

r 

0) = IJ:dg; 
i-I 

and g I, ... ,gr are functionally independent. Moreover, as spe
cial cases we have (i) If dO)r =1=0 for qEU then the functions 
f" ... ,J,.,g" ... grEC(V) are all functionally independent. (ii) If 
dO)r = 0 for all qE U then there exists a neighborhood V of p 
and functionally independent functions Z,jI, ... ,jr_1 , gl 
... ,gr I EC(V) such that on V 

r-I 
0) = dz + IJ:dg;. (1.9) 

i= I 

(Note that a I-form 0) may be regular without falling into 
either of the above cases, e.g., if dO)r = 0 atp but is not identi
cally zero in any neighborhood of p.) 

We would like to draw a corollary from this result but 
must first introduce the concept of the Cartan system of a 
Pfaffian system. Let I be a Pfaffian system on a manifold M. 
Then there is an intrinsically defined vector field system 

CharI = IXEI'(M):(X,O) 

= 0 and X J dO)El for all O)Elj 

called the characteristic system of I. Here ( , ) is the bilinear 
pairing of the exterior algebra Ar (M), of r (M), with the 
exterior algebraAr *(M), of r *(M), and the symbol X J de
notes the so-called "interior product by X" defined as fol
lows. LetXEI' (M),nEA T*(M),andYEA r- ' r(M)(r;;.I), 
i.e., X is a vector field on M, n is an element of the rth 
exterior power of r *(M) (an r-form), and Yis an element of 
the (r -1 )th exterior power of r (M). Then X J is a mapping 
X J : A T *(M )-+A r - I r *(M) defined by the relation 

( y,x J n ) = (X A Y,n ). 

The annihilator 

C(!) = Char(!) 1 = I rpEI' *(M):(X,rp ) 

= 0 for all X EChar(I) j 

is called the Cartan system of I. The basic property of this 
system is given by the following local theorem of Cartan. 4 
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Theorem: Let I be a nonsingular Pfaffian system with a 
nonsingular Cartan system C(!). Then C(!) is completely 
integrable. Moreover, if (Xl , ... ,xP) is a local system of first 
intergals then locally there exist generators for I which only 
depend on (x I, ... ,XP) and their differentials. 

Corollary: Let O)EI' *(M) be a I-form on an m-dimen
sional manifold M satisfying 

dO)r A 0) = 0 for all pE V (1.10) 

and 

dO)r I A 0) =1= 0 for all pE V, (1.11) 

for some connected open set Vand some integer r;;. 1. Then 
the maximum dimension (actually attained) of an integral 
manifold of 0) in V is m - r. 

Proof Since dO)r A 0) = 0 and dO)r - I 1\ 0) =1= 0 for all pE V, 
then for any qE V there is a neighborhood U of q on which 

dO)r - I A 0) 

is monomial and 

C(O) = ! 1TEI' *( U):1T A dO)r - I A 0) = 0 j. ( 1.12) 

(See Ref. 5). Clearly then the Pfaffian systems [0) J and C(O) 
are nonsingular so that Theorem (1.10) is applicable. From 
Eq. (1.12) we see that there are 2r -1 first integrals of C(O) 
and hence there exists a coordinate system (u I , ... ,u rn

) on a 
neighborhood of q which we can take to be U, with 

C(O) = Idu ' , ... ,du2r - ' j. 

Theorem (1.10) then implies that there is a generatorrp of the 
Pfaffian system (0) j which depends only on (u l 

, ... ,u2r - I) 
and their differentials. Since rp and 0) both generate the same 
Pfaffian system on U they must have the same integral mani
folds in U. However, since rp depends only on (u I , ... u2r - I) 
and their differentials we must have 

drp r = 0 for all PEU, 

while, of course, 

drp r -I A rp =1=0 for all pEU. 

The latter follows since rp and 0) generate the same Pfaffian 
system and therefore 0) = prp on U for some nonzero func
tionpEC(U). It is the presence of the functionp which leads 
us to use rp rather then 0) in our argument since dO)r 
= pr - I drp r - I A rp A dp may not fall into either of the two 

cases of Theorem (1.9) while rp necessarily falls into case (ii). 
Hence by Theorem (1.9) there is a neighboorhood of the 
arbitrary point q of V, which again we may without loss of 
generality take to be U, and functionally independent func
tions Z,jl, .. jr I ,gl, ... gr-I EC(U) such that on U 

r-I 
rp = dz + IJ:dg;. 

i --= I 

Clearly z = z(q), g; = g;(q), i = I, ... ,r -1 define an integral 
manifold of 0) through q with dimension m - r as desired. 

To show m - r is the maximum dimension of an inte
gral manifold of 0) in VIet u:N-+Mbe an integral manifold of 
0) through qE V. Then, because in the neighborhood U of q 

r-I 
rp = dz + IJ:dg; , 

j=;;;:: 1 
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and 
r-I 

d¢ = I d/; A dgj> 
;= I 

we must have 
r -I 

u*¢ = u*dz + u* I/;dgi = 0, (1.13) 
;=1 

r-I 

u*# = I u*d/; A u*dgi = O. (1.14) 
;= 1 

By th~ lemma below, Eq. (1.14) implies that 

dim t u*dfl,···,u*dfr _ I ,u*dg I,···,u*dgr _ I l <r - 1. 

But ifweextendfl,.·.,h_1 ,gl,···,gr -I ,ztoalocalcoordinate 
system about q we see that T * a I (q) N is spanned by 
u*dfl,. .. ,u*dfr_1 ,u*dgl, ... ,u*dgr_ 1 ,u*dz plus u* of 
n - (2r -1) other I-forms. By Eq. (1.13) u*dz is a linear 
combination of u*dgi, i = 1, ... ,r -1 and hence the dimen
sion of T* a l(q)N is <n - (2r -1) + r -1 = n - r. Thus 
the dimension of N is <n - r and the proof is complete. I II 

Lemma: Let xI, ... ,x" 'YI""'Y" be elements of a vector 
space V. Then ~7 ~ I Xi AYi = 0 implies that the span of 
XI""'X" 'YI""Y" has dimension <no 

Proof The proof is by induction on n. The result is 
clearly true for n = 1. Now assume it is true for n = k. We 
must prove that ~7 ~ i Xi AYi = 0 implies that the span of 
xI' ...• Xk + I 'YI""'Yk + I has dimension <k +1. If any one of 
the terms Xj AYj in the sum is zero the result follows immedi
ately from the inductive hypothesis. If none of the terms 
Xj AYj is zero than in particular Xk + I AYk + I #0 so that 
X k + I , Y k + I are part of a basis for V. Relative to this basis let 
5k +-1 EV* be dual to Xk + I so that 5k + I JXk + I = 1 but 
5k + I JYk + I = 0 [the interior product by 5k + I' 5k + I J, is 
defined in the paragraph preceding Theorem (1.10)]. Then 

k+ I 

0= 5k + I J I Xi Ay, 
i= 1 

=(5k+1 JX I)YI-XI(5k+1 JYI)+'" 

+ (5k + I JXk)Yk - x k( 5k + I JYk) + Yk+ I (1.16) 

expressesYk + I as a linear combination of xI"",Xk'YI"",Yk' 

Now let E ( V) be the exterior algebra of Vand define ¢: 
E(V)_E(V) by 

¢(a)=a-xk+IA(5k+1 Ja). 

¢ is easily seen to be an algebra morphism and clearly 
¢ (Xk + I AYk+ I) = O. Then 

implies by the induction hypothesis that the span of 
¢ (XI)""'¢ (Xk ),¢ (YI)""'¢ (Yk) has dimension <k. But for 
any vector XEV ¢ (x) = X - Xk + I (5k + I Jx) and thus the 
spanof¢ (XI)""'¢ (xd,¢ (YI)""'¢ (Yk),xk + I equals the span 
of XI, ... ,xk'YI"",Yk,xk + I' which therefore has dimension 
<k + 1. Finally, the proof is completed by the observation 
thatEq. (1.16) implies thaUhe span ofxl, ... ,xk + I 'YI,···,yk + I 
equals the span of xI,···,xk + I 'YI,···,yk ·111 
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2. BACKLUND TRANSFORMATIONS: THE 
DIFFERENTIAL EQUATIONS 

Let 1TI and 1Tz be the canonical projections from 
J I(R ",R )XJ I(R ",R) onto the first and second factors re
spectively, and let i: S-J I(R ",R )XJ I(R ",R) be a 3n-di
mensional submanifold of the product such that 1Tloi: 
S-J I(R ",R ) and 1T20i:S-J I(R ",R ) are submersions, (i.e., 
their differentials (1Tj

0l). are of maximal rank). We show 
that with the addition of one more condition S leads to two 
single second order partial differential equations for func
tions from R " to R. It is these two differential equations 
which will be related by the Backlund transformation S. 

J 2(R ",R ) is a bundle over J I (R ",R ) with projection 
r,l. The map 1Tloi: S-J I(R ",R) induces a bundleEI over S 
constructed by letting the fiber over xES be the fiber over 
(1T I0l)(X) inJ I(R ",R ). Similarly 1T20i: S-J I(R ",R ) induces 
a bundle E z over S. 

U I 
JZ <e- - - - - EI 

,," I ,",oj V, \ I 
~ 

I 
I 

I 

/ 

u 2 
E

2
-----7J z 

'YJ2 

J I ~( ______ S _____ .-;~ J I 

'YJ/ Ej-S projections, (1Tj 0l) and uj submersions, 

r,l 

j = 1,2. (2.1) 

Let w denote the contact form on J I(R ",R ) 

w = dz - ip,dxi. 
i~ I 

Then dw" Aw = (~7dxi Adpi)" A (dz - ~7Pidx,) 

= n!dxlAdplA .. ·A dx" Adp" A dz#O. Since 1T IOi and 1Tzoi 
are submersions, WI = (1T I°l)*W and Wz = (1Tz0l)*W are both 
nonzero I-forms on S which also satisfy 

(dw i )" Aw, #0, for all pES, i = 1,2. 

In tum, since 'YJI: EI-S and 'YJz: Ez-S are projections, 

'YJI*(dw"zAwz)#O for all pEEl' 

'YJz * (dw " I Awl)#O for all pEEz' 

(Note that'YJT acts on Wz and 'YJT on WI') 
Recall that the contact system {} 2(R ",R ) on J 2(R ",R ) 

is generated by the (n +1) I-forms 

{} Z(R ",R) = i~ I i = 1, ... ,n. 

{ 

dz - ip,dx" 

dpi - jttijdXj , 

Let,u be the (n + 1 )-form obtained by wedging together the 
(n + 1) generators of {} 2(R ",R ). By the construction of the 
bundles EI and E z over Sthe maps u l: EI_JZ(R ",R) and 
U z: Ez_JZ(R ",R) are submersions, since they cover the 
submersions 1Tloi and 1Tzoi, respectively. Hence ul*,u and 
uz*,u are nowhere vanishing (n + I)-forms on E I and EZ, 
respectively. 

Now consid~r the 3n-forms 
V z = 'YJT(dw7 -I A WI) A uT,u on E2 (2.2) 
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and 

v,=1]i(dw~-'Aw2)Aaf/-l onEI· (2.3) 

Recall that a Pfaffian system I defined on a bundle 1T: B-+M 
is said to be semibasic if 

kenT.CI I = !xETM:(x,w) =0 for all wElj. 

The Pfaffian systems 

lo1!l2(R",R),1]fw , j on E2 

and 

I af!l 2(R ",R ),1]iw2 J on EI 

are easily seen to be semi basic, and as such we have that 
locally 

V2 = 1]f(dw;' -I A WI) A o1/-l = h21]f(dV,), 
(2.4) 

VI = 1]i(dw~ - I A(2) A O'iJi = h ,1]i(dV,), 

for some functions hIEC(EI) and h2EC(E2), where dVs is a 
local volume form on S. (This follows since both are semiba
sic 3n-forms over a 3n-dimensional manifold.) Thus, if the 
map Vi: Ei-+A 3" r *(Ei) is nontrivial and vanishes indepen
dently of the fiber of O'i (i = 1,2), the image under O'i of the 
zero set of Vi will define a single second-order partial differ
ential equation in J2(R ",R ) for each i = 1,2. That they are 
single equations follows since the vanishing of Vi is equiv
alent to the vanishing of the function hiEC(EJ,i = 1,2. We 
have proved the following theorem. 

Theorem: Let i: S-+J I(R ",R )XJ I(R n,R) be a 3n-di

mensional submanifold of J '(R ",R )XJ '(R ",R). Then S 
determines two single second-order partial differential equa
tions for functions from R /l to R if the following conditions 
are satisfied. 

(i) 1T1
oi: S-+J'(R ",R) and 1T2oi: S-+J'(R ",R) are 

submersions. 
(ii) The 3n-forms 

VI = 1]'f(dw~ I A ( 2 ) A afJiEA 3/lr *(Ea 

and 

V2 = 1]f(dw'; I A w I) A o1JiEA 3"r *(E2) 

are not identically zero and vanish independently of the fiber 
of 0'1 and 0'2' respectively. That is, 

Vi (x) = Oimpliesvi!O'i- ' [O'i(x)]j =0, i= 1,2. (2.5) 

The differential equations are 

O' I[Z(v l )]CJ 2(R/l,R) and O'2[Z(V2)]cJ2(Rn,R), 

where Z (Vi) = zero set of Vi' i = 1,2. Notice that one begins 
with the submanifold S and proceeds to the differential equa
tions. One cannot, in general, construct a submanifold S 
which will give rise to two given differential equations in this 
way. The reasons are similar to those for the classical case of 
two independent variables (see Ref. 6).6 

3. BACKLUND TRANSFORMATIONS: THE SOLUTIONS 

To better understand Backlund transformations and 
the way that they lead from a solution of one differential 
equation to a solution or family of solutions of the related 
differential equations, let us compare them with the well-
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known contact transformations. A contact transformation is 
a diffeomorphism u: J '(R ",R )XJ '(R /l,R ) such that 
u*w = pw,p=/=O, wherew is the contact form. Note that u- I is 
also a contact transformation. If i: 2-+J '(R /l,R ) is a differ
ential equation then uoi: 2-+J '(R ",R ) is another differen
tial equation. Moreover, iff R "-+R is a solution to the first 
equation so that im[j'(f)] lies on the image of i: 
2-J '(R ",R) and/(f)*w = 0, then clearly uo/(f): R /l 

-+J '(R /l,R) has its image on the image of 
uoi;2:_J '(R /l,R ), and [uo/(f)]*w 
= /(f)*ou*w = /(f)*pw = 0. Hence uo/(f): R /l 

-+J '(R /l,R ) is a local solution to the differential equation 
uoi: 2-+J '(R /l,R ) if only aouo/(f): R n_R /l is a local dif
feomorphism, i.e., if only the image of uo/(f): R /l 

J '(R /l,R ) is transverse to the fiber of a: J '(R ",R )-+R fl. 

As an example consider the Legendre transformation u: 
J '(R 2,R )-J '(R 2,R ) defined by 

X=p, 

Y=q, 

u: Z = xp + yq - z, 

p=x, 

Q=y, 

and the so called Clairaut differential equation 7 

z - xp - yq - !(p,q) = 0. 

Under the transformation u: J '(R 2,R )-J '(R 2,R) this 
becomes 

-Z-!(X,Y) =0, 

which is not a differential equation at all. In fact, if a, bare 
arbitrary constants the map 8: R 2-+J '(R 2,R ) defined by 

8 (5,1]) = [a,b, - !(a,b ),5,1]] 

has its image in the set I - Z - lex, Y) = OJ. Moreover, 

8 *w = 0, 

and therefore u- 'o8: R 2-+J '(R 2,R ) has its image in the set 
lz - xp - yq - !(p,q) = OJ and satisfies 

(u-1oO)*w = 8 *o(u-I)*w = 8 *( - w) = 0. 

8: R 2-+J '(R 2,R ) is, however, nottransverse to the fiberofa 
and so is not the I-graph of a function. It is merely a two
dimensional integral manifold of w. u- 'o8: R 2_J '(R 2,R ) 
will be a solution of the Clairaut equation if only its image is 
transverse to the fiber of a: J '(R 2,R )-+R 2. Since 

u- 'o8 (5,1]) = [5,1],a5 + b1] + !(a,b ),a,b], 

we see that, indeed, the image of u- 'o8 is transverse to the 
fiber of a, for aou- I

( 5,1]) = (5,1]). Hence 

z = ax + by + !(a,b ) 

is a two-parameter solution of the Clairaut equation. It is in 
just this way that a contact transformation is used to find 
either a simpler differential equation or, as in this case, an 
obvious integral manifold of w which, when transformed 
back, yields a solution to the original equation. 

It is important to observe that a solution to a given dif
ferential equation when transformed under a contact trans
formation may not lead to a solution to the transformed dif-
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ential equation. For under a contact transformation the base 
and fiber coordinates may well be intermixed as in the Le
gendre transformation. Thus, although one is guaranteed 
that iff R n -+R is a solution to the original differential equa
tion then uO/(f): R "-+J I(R n,R ) will have its image on the 
image of the transformed differential equation and will be an 
integral manifold of w, one is not guaranteed that the image 
of uo/(f) will be transverse to the fiber of a-a necessary 
condition if uo/(f) is to be a I-graph of a function from R II 

-+R and hence a solution of the transformed equation. There 
is, then, a transversality condition on a given solutionf 
R "-+R ifit is to give rise to a solution to the transformed 
differential equation. In the case of the Legendre transfor
mation, sinceaouo/(f) = (p,q), it is clear that thetransver
sality condition is 

a(p,q) = f I' ~ (I' )2....L0. 
a(x,y) xx.! yy J xy r 

Notice that given a contact transformation some solutions 
will give rise to a transformed solution and some will not. 

Since a contact transformation is a diffeomorphism its 
graph is a (2n + I)-dimensional submanifold 

i: S '-+J I(R n,R )XJ I(R ",R ) 

of J I(R n,R )XJ I(R n,R) and satisfies the condition that 
1T I Oi and 1T20i be submersions. Generalizing, we might con
sider relations on J I(R n,R) rather than functions,-in this 
case submanifolds 

i: S-JI(R n,R )XJI(R n,R) 

of J I(R n,R )XJ I(R ",R ) which still satisfy the condition 
that 1TI Oi and 1T20i be submersions. This is exactly what we 
have done to define a Backlund transformation, lettingSbe a 
3n-dimensional submanifold of J \R n,R )XJ I(R n,R). Be
cause a Backlund transformation is really a relation on 
J I(R n,R ) and not a function, we should expect a solution of 
one of the related equations to give rise to possibly a whole 
family of solutions to the other. However,just as for contact 
transformations, a given solution of one differential equation 
may lead to no solution of the other if the appropriate trans
versality condition fails to be satisfied. Of course, a Backlund 
transformation relates second-order partial differential 
equations while a contact transformation relates first-order 
partial differential equations. 

With this background let us begin to investigate how a 
Backlund transformation, which we have just seen should 
more properly be called a Backlund relation, uses a solution 
of one of its related differential equations to create possibly a 
whole family of solutions to the other, provided that the 
appropriate transversality condition is satisfied. Recall that 
we are dealing only with local solutions. 

For any functionf R n-+R ! whether or not 
im(/(f» e 0"1 (Z (VI» J 0"1- I [im(/(f»] isanintegralmani
fold of 0"1 • il 2(R n ,R ) of dimension 2n ~ 1. Let MI 
=0"1- 1 [im(/(f»] and 15 1: MI-+EI be the canonical 

injection. 
Lemma: If VI = 17f(dw~ - I A ( 2) A uff-l = 0 at 

DI(p)EEI then 

Dfo17f(dw~ -I A(2) = 0 atpEMI. 
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(3.1) 

The same result holds if we exchange the sUbscripts I and 2 
so that we are in the bundle E2• 

Proof To prove that VI = 0 at DI(p) implies that Dr 
017f(dw~ - I A (2) = 0 at p we prove that Dfo17f(dw~ - I A ( 2) 
#0 atp implies that VI #0 at DI(p). c5fo17r(dw~ -I A(2)#0 
atp implies that there exist vectors X I, ... ,X2n _I ETpMI such 
that 

(c5 l'x I A ... A c5 l.x2n _ I ,17f(dw~ -I A (2» #0 

at DI(p)EEI. Since O"ff-l is nowhere zero on EI and since 
c5f0ufil 2(R ",R) = 0, there must exist vectors 

YI'''',Y,,+I ET{j",,,E I 

not tangent to c5 l(MI) (i.e., not in the image of 151, at p) for 
which 

(YI A .. · AYn + I ,uff-l) #0 
at c5 l(p)EEI. Now at c5 l (p), 

(15 1, X I A ... A 151, x2n - I A Y I A ... A Y n + I , 

17f(dw~ - I A ( 2) A uff-l) 

= (c5l.x2A .. ·Ac5lox2n_1 AYI· .. AYn+I' 

[15 10 X I J 17f(dw~ - I A (2) ] A uff-l) 

= VI A .. ·AYn+1 ,[c5lox2,,_1 J ... 

Diox i J17f(dw; -I A(2)] AO"ff-l), 

since c5 l oxi Juff-l = 0 (i = 1, ... ,2n ~I) by virtue of the fact 
that c5f 0ufil 2(R ",R) = O. Then the above becomes 

(c5 l ox I A .. · A c5 1ox2n _I ,17r(dw~ -I A (2» 

-VI A .. · AYn + I ,O"ff-l), 

which being nonzero, proves that 
VI = 17f(dw~ -I A (2) A uff-l is in fact nonzero in 
A 3n(Tt,(p)EI), as desired. III 

Lemma: If MI contains an integral manifold NI of 151' 
017fw2 of dimension ;;.n then 

(3.2) 

The same result holds if we exchange the subscripts I and 2 
so that we are in E2 . 

Proof T{j,(p)El/ker17l* is a 3n-dimensional vector 
space and since VI' 17rW2, 17rdw2, and ufil 2(R n,R) are all 
semibasic, each can be thought of as belonging to the appro
priate exterior power of 

(T{j,(p)El/ker17IO ) •. 

Let we T/j,(p)EJker1710 be the (2n ~2)-dimensional vec
tor space defined by 

W = ! wET/j,(p)EJker17lo: 

(W,17rw2) = (w,O"; il 2(R n,R » = 0 J. 
Then, since VI = (17rdw2)" -I A 17rw2 A uff-l, where f-l is the 
product of the n + I generators of il 2(R n ,R ), we have from 
the theory of exterior algebrasS that VI #0 at 81(p) is equiv
alent to the nondegeneracy of the skew-symmetric bilinear 
form 17rdw2 on W. We thus must show that 171'dw2 is degen
erate on W. 

Let NI be an at least n-dimensional integral manifold of 
8fo17fw2 passing throughpEMI' Then 

V = 15 10 (TpNI)/ker1710 

Dean A. Payne 1591 



                                                                                                                                    

is an at least n-dimensional subspace of W. Let 

Vi = {XEW: (x,yJ7JTdw2) = 0 for all YEVj 
be the orthogonal complement relative to 7JTdw2 of V in W. 
(Note the different use of the notation V 1 here from else
where in this paper.) Since NI is an integral manifold of 
8To7JTw2' for any x,YE81, (TpNI)' 

(x,yJ7JTdw2) = 0 
and therefore VC V 1

• 

Now 
dim(VnV i) + dim(V + Vi) = dimV + dimV 1 

or, since VC Vi, 
dimV + dim(V + Vl) = dimV + dimV i, 

which implies 

dim(V + Vi) = dimVi. 
Thus dim V l>n since dim V>n. But this is impossible for a 
nondegenerate bilinear form since for such a form dim V 
= dimVo, where 

VO = {WEW*: (x,w) = 0 for all XEV j 

has dimension «2n -2) - n = n -2. Thus 7JTdw2 is de
generate on Wand so VI = 0 at 8 1(p) as desired. III 
Now let! UI CR n---+R be a local solution about the point 
xoER n of the differential equation 

U I [Z (VI)] CJ 2(R n,R) (3.3) 

determined in Sec. 2. Subject to a transversality condition, to 
be introduced, we must show how this leads to a solution or 
family of solutions of the differential equation 

U2[Z(V2)]CJ 2(R n,R). (3.4) 

Again letMI = U I-
I [im(f(f»], and let 81: MI---+EI be 

the canonical injection. Since/is a solution of(3.3), VI = 0 
along the image of 8 1 in EI and hence by lemma 3.1, 

8To7JT(dw~ -I 1\ ( 2) = 0 

everywhere in MI' 8To7JTw2 may be regular at some points of 
the fiber (uI08Itl(j~, (f» and fail to be regular at other 
points of the fiber (see Ex. 2 in Sec. 4). Assuming that 8T 
°7JTw2 is regular at some point PoE(UI 081)-1(j~, (f», there 
exists a neighborhood U of Po such that 

8To7JT(dw; 1\ ( 2) = 0 for all PEU 

and 

8T o7JT(dw; - I 1\ (2) =1= 0 for all pE U, 

for some r<n -1. (In most cases of interest it seems the 
regularity condition (1.8) is satisfied with r = n -1.) 

By the proof of Corollary (1.11) we know that in some 
neighborhood V about Po, 8To7JTw2 can be expressed as 
8T o7JTw2 = P2¢2 for some nonzero function pEC(V) and 
some I-form ¢2EF * V, where ¢2 depends only on the 2r -1 
first integrals of the Cartan system of 8T o7JTw2, and hence 
satisfies 

d¢; = 0 for all pE V 
and 

d¢ ; - I 1\ ¢2 = 0 for all pE V. 

This implies that in some neighborhood about Po, which we 
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can take to be Vagain, ¢2 may be expressed as 

¢2 = dg l + Ifdgi I<r<n -I, 
i=2 

(3.5) 

where all the functionsg l, ... ,gr./2""'f,. are functionally in
dependent, and we may assumegi(po) = 0 (i = l, ... ,r). 

Since we are interested only in integral manifolds of 8T 
°7JTW2' we will work with ¢2 rather than 8To7JTw2' 

For each C = (cp ... ,cr ) in some neighborhood C of zero 
inR r 

Lc = (pEMI:gi(P) = c" i = 1, ... ,rj 

is an integral manifold of 8T o7JTw2 of dimension 
2n -1 - r>n. Thus there is a foliation F = (Lc j CEC of Vby 
integral manifolds of 8To7JTw2' each of dimension 
2n -1 - r>n. L o is the leaf through Po' 

Recall that a: J I(R n,R )---+R n takesj~(f) toxER n. Let 
aO(1T2°z)°(7J1081)ILc denote the restriction of 
aO(1T°z)°(7J1 081) to L c' CEC. Let qo = aO(1T20z)0(7J1081)(po)' 
Then if 

(aO(1T20z)0(7J1081)ILo)'p" :Tp,Lo---+Tq"R n 

has maximal rank the image of (1T2oi)0(7J1081)ILo in 
J '(R n,R ) must be locally transverse to the fiber of a: 
J I(R n,R )---+R n. Moreover, since maximal rank is an open 
condition, there exist a neighborhood about Po which we will 
again call Vand a neighborhood about zero in R r which we 
will again call C, such that 

(1T20i)0(7J1 08 1)ILcnV: LcnV---+J I(R n,R ) 

has image transverse to the fiber of a for every CEC; and in 
fact, 

will be a submersion or, if r = n -1, a diffeomorphism onto 

its image Uc C R n, cEC. 
This implies that 

(1T201)0(7J1081)ILcnV:LcnV---+J I(R n,R ) has rank at least n. 
But, since LcnV is an integral manifold of 8To7JTw2 
= 8To7JT(1T20z)*w, we see that if k is the maximum of the 

rank of «1T201)0(7J1081)ILcnV), on LcnV then there exists 
some neighborhood Win LcnV for which (1T201) 
0(7J 108 1)1 W: W---+J I(R n,R ) has an image that is a k-dimen
sional integral manifold of w in J I(R n,R ). But dwn 1\ w =1= 0 
and dwn + I 1\ w = 0 everywhere in J I (R n ,R ) and hence, 
since J I(R n,R) has dimension 2n +1, Corollary (1.11) im
plies that the maximum dimension of an integral manifold of 
w is 2n +1 - (n +1) = n. Hence k must be <n while at the 
same time k must be >n. Then k = n and we have that 

(1T201)0(7J,081)ILcnV: LcnV---+J I(R n,R ) 

has an image which is an n-dimensional integral manifold of 
w transverse to the fiber of a for each cEC. Thus the image of 
(1T20z)0(7J1081)ILcnVis the image ofa I-graph of some func
tionfc: Uc C R n ---+R for each CEC, where Uc is the open set of 
R n equal to the image of aO(7J2°z)0(7J1081)ILcnV. 

Observe that the family of integral manifolds Lc 
= I pEM1:gi(P) = Ci' i = 1, ... ,rj is by no means unique and 

hence that the family offunctionsfc is also not unique for a 
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given solutionJofthe original equation (3.3). For from (3.5) 
we see that ¢2 can be expressed as 

r 

¢2 = dg l + I/;dg; 1 <;;;r<;;;n -1, 
i= 2 

and so ¢2 can also be expressed as 
r-I 

¢2 = d (gl + Jrgr) + I/;dg; - grdf,., 
i= 2 

etc., so that another family of integral manifolds might be 

t pEMI: (gl + Jrgr)(P) = CI,!,. = Cr, g; = C;, 

i = 2, .. . ,r - I J ' 

etc. (See Examples 1 and 3 in Sec. 4.) 
To show thatJ:.: Uc-R is a local solution of the sec

ond-order partial differential equation 
a2(Z (V2»CJ2(R ",R) we must show that the image of 
f(fc): Uc-J2(R ",R) lies in a 2(Z (v2». To do this we use 
Lemma (3.2). 

First observe that, since Lc CMI and MI is a (2n - 1)
dimensional integral manifold of fJTOJ I' fJ I 081: Lc -S is an at 
least n-dimensional integral manifold of OJ I as well as of OJ2. 
Next observe that if 82 is the canonical injection of az-

I 

[im (f(fc»] into E2 then, by the nature of the bundle 
E2-S, the map fJ2082: a2-

1 [im(f(fc» ]-S contains the set 
fJl 08 1(L c ) in its range. That is, the range offJ2082 contains an 
at least n-dimensional integral manifold of OJ I • Hence 
through each point of a z-

I [im(f(fc»] passes an at least n
dimensional integral manifold of fJ!OJ I which, by Lemma 
(3.2), implies that V 2 = 0 along az-

I [im(f(fc»]. So the im
age off(fc): Uc-J2(R ",R ) does, in fact, lie in a 2(Z (v2)} as 
desired, and eachfc: Uc-R , CEC is a local solution of 
a 2(Z (V2»' 

We summarize this section with the following theorem: 
Theorem: LetJbe a local solution about xoER" of the 

second-order partial differential equation 
a l(Z(v l»CJ2(R ",R), let MI = ai-I [im(f(f»], and let 

(a) 

Z=Z, 

P; = Pi> 

X; =X;, or 

Z = lnpl + P2 + P3 , 

PI =P2• 

P2 =P2• 

P3 = P3 • 

(b) 

Z=Z, 

PI = exp(Z - P2 - P3), 

P2=PI, 

P3 =P3' 
X;=X" 

Z=Z, 

respectively. (4.1a)demonstrates that 1I'loi: S-J I(R 3.R )isa 
submersion,and(4.1b)demonstratesthat1l'20i:S_J I(R 3.R ) 
is a submersion. 

When the contact form OJ = dz - }:'i= IP;dx; on 
J I(R 3.R ) is pulled back to S via 1I'loi we obtain 

or 

3 

OJ I = (1I' Iol)*0J = dz - Ip;dx, 
i= 1 

OJ I = (1I' Iol)*0J = dz - exp(Z - P2 - P3)dXI 

(4.2a) 

- PldX2 - P3dX3' (4.2b) 
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81: MI-EI be the canonical injection. 
(a) Assume that 8fofJT0J2 is regular at some point Po of 

the fiber (aI08Itl(j~" (f» in MI so that on some neighbor
hood U of Po one can write 

(3.7) 

where the functions gl .... 'gr,j2' ... ,jr are functionally inde
pendent on U andp is a nonzero function in C( U). Then if the 
integral manifold Lo = (pEMI: g;(p) = g;(po). i = 1 ..... rJ 
is transverse to the fiber of a01l'2oio1J1081: MI-R n, there is 
an r-parameter family of local solutions to the differential 
equation a 2(Z (v2». Note that since the expression (3.7) for 
8TofJf0J2 is not unique it may happen that Lo is not trans
verse to the fiber of a01l'2oiofJl 081, but that for a different 
expression of 8fofJf0J2 the corresponding integral manifold 
would be. See examples 1 and 3 in Sec. 4. 

(b) If 8T ofJT0J2 is not regular at some pointpo of the fiber 
(a l 0(1)-1(j~, (f» it is still possible that there may exist an 
integral manifold through Po yielding a solution to a 2 (Z (v2» 
(see Example 2. Sec. 4) but very little else else is known. 

I 

4. EXAMPLES 

Example 1: A Backlund transformation for second-or
der partial differential equations on R 3 will be a nine-dimen
sional submanifold of the 14-dimensional product manifold 
J I(R 3.R )XJ I(R 3,R). Let i: S-J I(R 3.R )XJ I(R 3,R) be 
such a submanifold defined implicitly by the five equations 
XI = XI' X 2 = x2• X3 = X3.PI = exp(z - P2 - P3)' P2 = PI' 
where the lower case letters are the coordinates on the first 
factorofJ I(R 3,R )XJ I(R 3.R ) and the uppercase letters the 
coordinates on the second factor. Then S may be coordina
tized by X I'X2,X3.Z.pI,P2,P3.P2,P3 or by 
X I,x2,x3,Z.PI,P2.P3,z,P3' as in 

(4.1) 

depending on the coordinate system used for S. When the 
contact form OJ is pulled back to S via 1I'20i we obtain 

3 

OJ2 = (1I'2°I)*OJ = dZ - 2: F;dX; (4.3a) 
;= 1 

or 

OJ2 = (1I'2°I)*OJ = d (lnpl + P2 + P3) 

- P2dX I - P2dx2 - P3dx3, (4.3b) 

depending again on the coordinate system used for S. 
The bundles Eland E2 can be coordinatized, respective-
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ly, by x"z,PO P2,P3,Pij andX"Z,P"z,P3,Pij(I<J<}<3). With 
respect to these coordinate systems one can show with a little 
calculation that 

v I = 7lf(d(i)~ 1\ (i)2) 1\ aiJ1 
= (P2 - PII/PI - Pn - P23) 

XdXldx2dx3dzdpldp2dp3dP2dP3 

and 

v 2 = 7lT(d(i)i 1\ (i))) 1\ aTJ1 
= (exp(Z - P2 - P3)(P2 - Pzz - P23) - PI I) 

X dXldX2dX3dZdP)dP2dP3dp3dz. 

[The calculations are made easy if one observes that the fac
tor of a'!'p in v, means that one is essentially doing algebra 
modulo the ideal generated by a, * n 2(R, 3 R ).] Thus this 
Backlund transformation relates the two differential 
equations 

P2 - Pll/P) - Pn - P33 = 0 (4.4a) 

and 

exp(Z - P2 - P3)(P2 - Pzz - P23) - Pll = 0, (4.4b) 

where, if we hope to transform a solution of (4.4a) into a 
solution of (4.4b), we must asssume that the solution of 
(4.4a) satisfies p) > O. 

Clearly /(X I,X2,X3) = ae'" + bx l, b > 0, a arbitrary, sat
isfies (4.4a) withpI > 0, and we will use it to arrive at a family 
of solutions to (4.4b). Recall thatM\ = a\-\[im(/(f»] and 
8): MI-E\ is the canonical injection. M\ has coordinates 
x\,X2,X3,P2,P3 and (4.3b) implies that 

8fo71f(i)2 = dP2 + dP3 - aex'dx 1 - P2dx2 - P3dx3· 

This may be written in the form (3.7) as 

8fo71f(i)2 = eX, [d (P2 + P3)e - x, - ax I) 

- P3e - x'd (X3 - x 2)]. 

So we can obtain integral manifolds of 8fo71f(i)2 by setting 
X3 - X2 = C I and (P2 + P3)e- X, - aX I = C2, C\ and C2 con
stants. However, since X3 - X2 = X3 - X2, this integral 
manifold is not transverse to the fiber of a 01T 2i071) 08 1 and so 
does not yield a solution to (4.4b). We therefore rewrite 
8fo71f(i)2 as 

8fo71f(i)2 
= eX'l d [(P2 + P3)e -x, - ax\ - P3e - X'(X3 - x 2)] 

+ (x, - x 2)d (P3e - X,) I 
and obtain integral manifolds by setting P3e - x, = C1 and 
(P2 + P3)e - x, - ax I - P3e - X'(X3 - x 2) = C2, CI and C2 

constants. This implies that P3 = Clex
" 

Pz = C\(x3 - X2 - l)eX
' + ax\ex

, + C2e"'· 

This is an integral manifold transverse to the fibers of 
a01T20io71\08\ and (4.1a) implies that 
Z = Inp\ + P2 + P3 = Inb + [CI(X3 - x 2) + aX I + C2]ex

,. 

We therefore have obtained a two-parameter family of 
solutions, 

f.,.c. (X),x2,x3) = Inb + [C\(X3 - X2) + aX\ + C2]~" 
(4.5) 

ofEq. (4.4b). 
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To demonstrate the lack of uniqueness in the family of 
solutions to (4.4b), observe that one may also express 
8fo71f(i)2 as 

8fo71f(i)2 = (P2 - ax\eX')d (ln1P2 - ax\ex'i - x 2) 

+P3d(lnIP31-x3), 

so that we can obtain integral manifolds by setting 
InlP3 1 - x) = C 1 and IniP2 - ax)ex'i - Xz = C2. This im-
plies that 

P3 = k)ex
" 

P2 = k2e
x, + ax\ex" 

where k\,k2 are arbitrary constants (k\ may = 0 if we let 
P3 = 0 and k2 may = 0 if we let P2 - ax)ex

, = 0 in the ex
pression for {jf071T(i)2)' Again (4.1a) implies that 
Z = lnb + (k2 + ax l) eX, + k\ex',yielding the family of 
solutions 

fk,.k,(X),x2,x3) = Inb + (k2 + aX\)eX
, + k\ex , (4.6) 

to (4.4b). Clearly (4.5) and (4.6) are distinct families of 
solutions. 

In an exactly similar manner one can begin with a solu
tion of (4.4b), say /(XI,x2,x3) = lnb (k2 + aXl)~' + kl~" 
and obtain a family of solutions to (4.4a). For this/we find 
from (4.2b) that 

8T °71T(i) 1 = dz - bdX1 - aex'dX2 - P3dX3 

= d (z - bX\ - a~') - P3dX3' 

Since X3 = X3 we cannot have X3 = constant and expect a 
solution. Hence we rewrite 

8To71T(i)1 = d (z - bX1 - a~' - P3X3) + X3dp3' 

which yields the family of solutions 

/c"c, (x\,X2,X3) = bX I + aex, + C1X3 + C2· 
It is easy to see that if we started with the solution 

/(x),X2,X3) = bX1 + aeX, + cX3 + dto (4.4a) we would obtain 
the same families of solutions, (4.5) and (4.6), to (4.4b). Ifwe 
then used either of these as the original solution to (4.4b) and 
worked back to a family of solutions to (4.4a) we would ar
riveatthesamesolution/(x\,x2,x3) = bx\ + aeX

, + cX3 + d. 
It is therefore not always possible to generate a new solution 
to one of the related equations by transforming to a solution 
of the related equation and then transforming that back to a 
solution of the original equation. One may well arrive at 
nothing new. In the case of the sine-Gordon equation on R 2, 

however, this procedure does work and the hope for such 
cases is one of the motivations for Backlund 
transformations. 

Example 2: A Backlund transformation for second-or
der differential equations on R 2 will be a six-dimensional 
submanifold of the ten-dimensional product manifold 
J \(R 2,R )XJ \(R 2,R). For such an example consider 
Ex. 1, p. 441, in Ref. 6. i:S-J I(R 2,R )XJ I(R 2,R ) is defined 
implicitly by the four equations 

X1=X I , 

X 2 =X2, 

p\ = exp(z/(Xl + X2) - (X\ + X 2)P\) 

+Z/(X\ +X2)-(X) +X2)p\ +1, 
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P2 = exp(Z + Z/(XI + X 2» + Z + Z/(XI + X2) + 1, 

where we assume throughout this example that 
XI +X2 =XI +X2#0. 

Let a = exp[z(XI + X2) - (XI + X2)PI], 
f3 = exp[Z + Z/(XI + X 2)], and let P = a +1, Q = f3 +l. 
Then 

e'" -p = P-I, 

e",-Q=Q-l, 

(4.8a) 

(4.8b) 

which defines P as an everywhere increasing function of PI 
and Q as an everywhere increasing function of P2' both func
tions > 1. This allows us to solve (4.7) for XI' X2, Z, PI as 

XI=X I , 

X 2 =X2 , 

I 

Z = In(Q(p2) -1) - Z/(XI + x2), 

PI = Z/(XI + X2)2 -In(P(PI) -1)/(XI + x2)· 

(4.9) 

(4.7) enables one tocoordinatizeSby X I,x2'Z,PI,P2,z, which 
shows that Tr20j is a submersion, while (4.9) enables one to 
coordinatizeSby XI,X2,z,PI,P2'P2, which shows that Trlods a 
submersion. 

We have then that 
2 

WI = (TrloO*w = dz - Ipjdxo 
i= 1 

or 

WI = (TrloO*w 

= dz - [exp(z/(XI + Xl) - (XI + X2)PI) 

+ Z/(XI + X2) - (XI + X2)PI +1 ]dXI 
- [exp(Z + Z/(XI + X 2» + Z 

+Z/(XI +X2) +1 ]dX2 

and 
2 

w2 = (Tr200*W = dZ - I PjdXj, 
i= 1 

or 

W2 = (Tr200*W 

(4. lOa) 

(4. lOb) 

(4. 11 a) 

= d [In(Q (P2) - 1) - z/(x I + x2)] - [z/(x I + xlf 

-In(P(PI) -1 )/(XI + x2)]dxI - P2dx2, (4. 11 b) 

depending on the coordinate system used for S. 
The bundles Eland Ez can be coordinatized respective

ly by xj,z,PoPZ'Pij andXj,Z,POz'Pij (l<j~<2). From (4.8a) 
and (4.8b) one has that 

PI -In[P(PI) -I] =P(PI) (4.12) 

and 

Q '(p) = Q(P2) -1 
2 Q(P2) , 

(4.13) 

where Q '(P2) denotes the derivative ofQ with respect to PZ' 
Using these results and the above coordinate systems on EI 
and E2 it is not hard to show that VI = 1JT(dw21\. wl ) I\. o1f-l 
vanishes ifand only ifpI2 = P(PI)Q (Pl)l(XI + x2) and that 
V 2 = rif(dwll\. WI) I\. aTf-l vanishes if and only if 
P 12 + PI/(XI + Xl) = Z /(XI + X2)2. Hence this Backlund 
transformation relates the differential equations 
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(4. 14a) 

and 

PI2 + PJ(XI + X 2) = Z /(XI + X2)Z. (4. 14b) 

Let/=/(xI,x2) be a local solution of (4. 14a), let 
MI = 0"1-1 [im(/U»], and let 0 1: MJ---+EI be the canonical 
injection as usual. Then from (4.11b) we have 

Q'(pz) 
oTo1JTw2 = (Pzldx J + P12dxZ) 

Q(P2) -1 

_PJdX I+P2dxZ+ z d(xl+xz) 
x I + X2 (x J + x2f 

_ [ z _ In(P(PI) -1) ]dX
I 

(x I + xz)Z x I + Xz 
- Pzdxz· 

Using (4.12) and (4.13) this simplifies to 

[ 
PZI P(PI) ]dX 

Q(P2) - XI +x2 I 

+ [ ~ - pz + Z 2 - Pz ]dX z. 
Q(P2) XI + X2 (XI + xz) 

Since/is a solution of(4.14a) the first term is zero and we are 
left with 

oTo1JTwz 

= [ QP(lp22) - pz + Z 2 - Pz ]dXZ• 
X I + X2 (X I + xz) 

Because we are dealing with differential equations on R 2 (so 
that dw~ - I I\. W2 = dW21\. (2) we know that 

oTo1JT(dw21\. (2) = 0 

and hence that regularity of oTo1JTw2 as defined in (1.8) is 
equivalent to nonsingularity of oTo1JTw2. But if oTo7JTw2 is 
nonsingular at Po then its only integral manifold through Po 
is obtained by setting Xl constant, which means that it can
not be transverse to the fiber of aOTrZOio7JloOI and hence 
yields no solution of (4. 14b). However, oT o1JTwz does have 
an integral manifold transverse to the fiber of a0TrzOjo7JIOOp 
obtained by letting 

P2 = ~ - pz + Z 2' 

Q(pz) XI +X2 (XI +X2) 

In this case there are no parameters in the solution-it is 
unique and determined by (4.9) to be 
Z = In(Q(pz) -I) - Z/(XI + xz). 

Observe, however, that if one begins with a solution to 
(4.14b) he may obtain a one-parameter family of solutions to 
(4. 14a). In particular, one can show that the zero solution of 
(4. 14b) leads to the one-parameter family of solutions to 
(4. 14a) defined implicitly by 

exp(z/(x + y»/(x + y)[exp(z/(x + y» +1] = C, 

where C is a positive constant if X + Y > 0, and a negative 
constant if X + Y < O. 

Example 3: Until now our examples have identified the 
base coordinates Xj and Xj' j = l,oo.,n. In this example they 
are not identified and moreover the differential equations 
related by the transformation are identical. 
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Leti:S---+J '(R 3,R )XJ '(R 3,R ) be defined implicitly by 
the five equations X, = Xl + P3,X2 = X, - P3,X3 = X, + P2' 

I 

(a) Xi == Xi' (b) X, =Xz + P3, 

Z=Z, XZ=X,-P3' 

Pi =Pi' X3 =X, +Pz, 

X, =X2 +P3' Z=Z, 

X2 =X, -P3, p,= -PI' 
or 

X3 =x, +P2' pz = X3 - X2 - P3, 

Z=Z, P3 =P3' 
P,= -PI' Xi=Xi , 

P2 = X3 - x 2 - P3' Z=Z, 
P3 = p), Pi=Pi , 

respectively. From the symmetry of(4.1Sa) and (4.1Sb) it is 
clear that the differential equations related by the transfor
mation S must be identical. Calculating as in the previous 
examples one finds that the differential equation related to 
itself by S is 

0= p" - P13 - P22 - P23 + 2p" P23 - 2p'2 P13 

- P;3 + P22P33 + P12P33 - P13P23 + Pll P~3 
-2p12P13PZ3 -PllP22PZ3 +PnPi3 +P33P~2' (4.16) 

The function 

f(X"X2>X3)=!(X~ +x~ +xD (4.17) 

satisfies (4.16) and, with the same notation as before, we find 
that 

8fo1JfCtJ2 = dZ + x,d (X2 + x 3) - (X3 - X2 - x 3)d (x, - P3) 

- P3d (x, + XZ) 

= d (Z + XtX2 - XZP3 + XIX3) - (X3 + P3)dx l • 

So x, = X 2 + P3 = C, and Z + x,x2 - X2P3 + X,X3 = C2, 

C1 and C2 constants, determine an integral manifold of 
8fo1JfCtJ2 which we can write, after appropriate substitutions 
from (4.1S), as 

P3 = C, -X2 , 

Z = C'P2 - (C, - X 2)PZ - C,(X, + P2) + C2. 

This is paramaterized by X" X 2, Pz which, since P2 is one of 
the coordinates of the fiber of a 0 1r2

0 1J, 08" might lead one to 
believe that this integral manifold is not transverse to the 
fiber of a01r20jo1J,081 and hence that it yields no solution of 
(4.16). However, for the solution (4.17) one has Pi 
= x, (i = 1,2,3) and hence from (4.15a) 

P2 = X, - Xz - P3 = - X2 = - pz andX3 = x, + P2' To
gether these imply that Pz = x, - X 3 • Then, since x, = C, 
on our integral manifold, we havePz = C, - X3 which, after 
appropriate substitution, yields 

P2 = C, -X)' 

Z = C,(X3 + X 2 - X,) - XzX3 + (C2 - CD. 
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P, = - P',P2 = X3 - X2 - P3' ThusSmay be coordinatized 
by Xi,Z,Pi,Z,P3 or by XoZ,POZ,P3 (i = 1,2,3) as 

(i = 1,2,3), (4.1 S) 

Thus we have the two-parameter family of solutions 

fc"c> (X,,x2'X3) = C,(X3 + X 2 - X,) - X 2X 3 + (C2 - cD 
(4.18) 

to (4.16). 
The nonuniqueness of the transformed family of solu

tions can again be demonstrated if we write 8fo1JfCtJ2 in the 
form 

8io1JiCtJ2 = d (Z + X,X 2 - X2P3 + XIX, 

- (X3 - P3)x,) + x,d (X3 + P3) 

and obtain an integral manifold of 8io1JiCtJ2 by setting 

Z + X,X2 - X2P3 + x,x3 - (x 3 + P3)x, = C2 , 

P3 +x3 = Ct· 

Again, since Pi = Xi (i = 1,2,3) for the solution (4.17), 
(4.1Sa) implies that X, = X2 + X 3, X 2 = x, - P3, 

X3 = x, + X 2, from which one can deduce that 
X3 = X, - X3 + X 2 + P3. Hence P3 + X3 = C, implies that 

P3 = ~(X3 - X, - X 2 + C,) 

and, upon appropriate substitution, that 

Z = - !C,(X, - X 2 - X3) - ~(X,Xz + XIX) + X 2X3) 

+l(Xi +X~ +XD+Cz' 

The latter determines a two-parameter family of solutions to 
(4.16) distinct from that of (4.18). 
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We demonstrate that it is possible to construct elementary solutions (eigenfunctions) of the linear 
transport equation for certain types of continuously varying spatial media. In general, both 
discrete and continuum modes result, which appear to be complete on the half-range. A detailed 
analysis is given for an "exponential" medium, including numerical results and a half-range 
completeness proof. A "linear" medium is also considered. A general method is presented for 
constructing, jointly, the spatial variation ofa medium and the corresponding functional forms of 
the eigenfunctions. Our results represent a partial generalization of the singular eigenfunction 
technique to media with continuous spatial variation. 

I. INTRODUCTION 

One of the outstanding achievements in linear transport 
theory in the last twenty years has been the development of 
the singular eigenfunction method of solution. The use of 
these eigenfunctions was first suggested by Davidson, I and 
independently proposed by Wigner,2 and Van Kampen, 
both in the plasma3 and neutron transport4 context. The 
classic paper in this area is due to Case.5 It was Case's paper, 
which appeared in 1960, that led to the full development of 
the method for neutron transport problems. Many exten
sions of Case's early work have been made, including exten
sions to multigroup problems, anisotropic scattering, multi
ple regions, finite problems, criticality (eigenvalue) 
problems, etc. Excellent reviews of the progress in this area 
since 1960 are given by Case and Zweifel,6 McCormick and 
Kuscer/ and Greenberg and Zweifel. 8 Although developed 
in the neutron transport arena, the singular eigenfunction 
method has found application is plasma physics,9 radiative 
transfer, 10 and kinetic theory. II The papers sired by the 
original Case paper are too numerous to reference here, but 
number in the hundreds. 

However, except for one recent article, 12 the explicit 
construction of elementary solutions (eigenfunctions) of the 
transport equation for media whose cross sections vary con
tinuously in space (nonhomogeneous media) is a generaliza
tion of the singular eigenfunction method which has eluded 
researchers. In the above-mentioned article, 12 Mullikin and 
Siewert explicitly construct, for a special nonhomogenous
medium transport equation (containing one free param
eter,s), a continuum of elementary solutions which reduce to 
the standard continuum solutions as the spatial variations 
tend to zero (s-+ 00). (Mullikin and Siewert do not use these 
elementary solutions to generate solutions of the full trans
port equation but, instead, to develop a singular integral 
equation which the angular flux exiting from a halfspace 
must satisfy. This equation was derived earlier, and in a dif
ferent way, by Martin. 13 Also, in Ref. 12, Mullikin and 
Siewert generalize Martin's method to derive a singular inte-

gral equation which the flux exiting from a very general non
homogeneous one-dimensional medium must satisfy. How
ever, this method does not explicitly involve elementary 
solutions of the appropriate transport equation, and we shall 
not discuss it further here.) 

In part of what follows we shall extend some ofthe ideas 
originated by Mullikin and Siewert. 12 However, the broader 
goal of this article is to demonstrate that the construction of 
elementary solutions of the transport equation for continu
ously variable spatial media is explicitly possible for a rich 
variety of such media. For the spatial variations considered, 
we analytically and explicitly construct both "continuum" 
and "discrete" eigensolutions. That is, these solutions con
verge to the standard homogeneous-medium continuum and 
discrete eigensolutions in the limit as the spatial variations in 
the media tend to zero. 

Our results are obtained for the time-independent, one
speed, slab geometry transport equation with isotropic scat
tering, which can be written6 

p J¢(z,p) + t/J(z,p) = ~c(z) II dp' ¢(z,p'). (1.1) 
Jz -I 

For the case c(z) = const, separation of variables in Eq. (1.1) 
leads to a "continuum plus two discrete" eigensolutions.5 

These solutions have been shown to be complete for both 
full-range ( -1 <:p <: 1) and half-range (0 <p <: 1) problems. 
Moreover, full- and half-range formulas for the expansion 
coefficients in an eigenfunction expansion can be written 
explicitly. 

For c(z) ¥ const, our results as reported here are not as 
complete as we would like in two respects. First, for the 
spatial variations considered, we generally obtain only one 
discrete mode and what seems to be only a portion of the 
continuum. Nevertheless, in all cases there appears, to be 
enough solutions to solve the problem of a source-free half
space with an incident flux on the boundary (the albedo 
problem). That is, the eigenfunctions we obtain appear to be 
complete on the half-range. The second difficulty is that the 
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singular integral equations which arise in determining the 
appropriate half-range expansion coefficients do not seem to 
be explicitly solvable. In addition, the methods needed to 
prove existence of a solution, and thus guarantee half-range 
completeness, are dependent upon the particular e(z) under 
consideration. However, for the one functional form of e(z) 
which we have investigated in the most detail, we have been 
able to prove half-range completeness for sufficiently weak 
spatial variations. Also, for this e(z) we have constructed 
numerical solutions of the singular integral equations for the 
half-range coefficients which converge nicely as the numeri
cal approximation is refined. Thus, for this particular e(z) we 
have strong evidence that the corresponding eigenfunctions 
always satisfy a standard half-range completeness criterion. 

The outline of this paper is as follows. In the next sec
tion we consider media whose spatial variations are charac
terized by 

e + kbe - zis 
e(z) = , s > 0, (1.2) 

1 + be - zls 

where h, e, k and s are constants. Our analysis of Eq. (1.1), 
with e(z) given by Eq. (1.2), leads to a "continuum plus one 
discrete" solution in general. However, for sufficiently small 
s, a "continuum plus two discrete" solution is extant. In Sec. 
III a half-range completeness proofis given for Ib I sufficient
ly small. Section IV presents numerical results which show 
that the singular integral equation for the expansion coeffi
cients, arising from attempting to solve Eq. (1.1) with e(z) 
given by Eq. (1.2) and boundary conditions 

lim 1/;(z,/J.,) = 0, 

(1.3) 

(1.4) 

has a well-behaved solution for various (not necessarily 
small) values of h. Taken together, Secs. III and IV consti
tute strong evidence that the eigenfunctions constructed in 
Sec. II are complete on the half-range for any value of b. 

The remainder of the paper is more preliminary in na
ture, suggesting other functional forms for e(z) which might 
lead to eigenfunctions complete on the half-range. In Sec. V 
we describe a method for obtaining a self-consistent func
tional form for e(z) and one ( or more) corresponding discrete 
eigensolutions ofEq. (1.1). The form of this discrete eigenso
lution suggests the proper form of the continuum modes for 
this e(z). One of the possibilities considered is the bilinear 
form 

( a +z) e(z)= -- e, 
b+z 

(1.5) 

and in Sec. VI we explicitly construct for this case a "contin
uum plus one discrete" solution. The continuum eigenfunc
tions is this case involve higher order distributions (e.g., 
lIx2

) than encountered in the e(z) = const or e(z) given by 
Eq. (1.2) cases. We conclude the paper with a discussion in 
Sec. VII. 

II. AN "EXPONENTIAL" MEDIUM 

In this section we treat Eq. (1.1) with e(z) defined by Eq. 
(1.2). The transport equation can then be written as 
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(1 + be - Zl')(fl. J1/; + 1/;) = (e + kbe - zl') ! II 1/; dfl.'. 
Jz _I 

We seek solutions of this equation having the form 

1/;,.(z,fl.) =/'.(fl.)e- ZIV + bg,,,(fl.)e- Zl,,,, 

where w is defined in terms of v by 

1 1 1 -=-+-. 
w v s 

(2.1) 

(2.2) 

(2.3) 

(In the work of Mullikin and Siewert on elementary solu
tions, 12 e(z) = Co exp( - zls). This can be obtained here by 
taking the limits b---+O, e-o, and bk-co in Eq. (2.1). Also, 
our assumed solution form given by Eqs. (2.2) and (2.3) is 
identical to that in Ref. 12. Therefore, the results in this 
section are an extension of those of Mullikin and Siewert.) 

Introducing Eq. (2.2) into Eq. (2.1) and equating the 
coefficients of exp[ - (1/v + (nls»z] for n = 0,1, and 2 
yields the following three equations: 

(1 - ~ )fv( fl.) = ~ 5~ /~,( fl./) dfl.' , (2.4) 

(1 - ~ )fv(fl.) + (1 - : )gOJ(fl.) 

= ~ I~ /v(fl./) dfl.' + ~ I~ I gw(fl.') dfl.' , (2.5) 

(l-:)g,,,(fl.)= ~ 5~lgw(fl./)dfl." (2.6) 

Equation (2.4) has the usual solutions corresponding to 
e(z) = const, namely 

ev 1 
/,.{f1) = A. (e,v)o(v - fl.) + -P--=¢ (e,v,fl.), (2.7) 

2 v-fl. 

ev 51 dfl.' A.(c,fl.)=l--P --, 
2 -I V-fl.' 

which satisfy 

f /v(fl.)dfl. = 1, 

(1 - (fl.lv»/',(fl.) = e/2. 

(2.8) 

(2.9) 

(2.10) 

Here the eigenvalue V can be any of the usual continuum 
( -1 < v < 1) or discrete (v = ± vo) modes defined by the 
dispersion law A. (e,vo) = 0. 

We now introduce Eqs. (2.9) and (2.10) into Eqs. (2.5) 
and (2.6) and simplify, to obtain the following two remark
ably simple equations: 

(1- (J..tlw»gw(fl.) = k 12, (2.11) 

(2.12) 

If w were a completely free parameter, these equations would 
have the solution 

(2.13) 

with -1 <,w<, 1 and w = ± wo, where Wo and k are related 
by the usual dispersion formula 

51 dfl.' ° = A. (k,wo) = 1 - !kwo , 
-I Wo-fl. 

(2.14) 
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However, W is defined in terms of v by Eq. (2.3); thus the 
above conditions on the values of v and w leads to a restricted 
set of values of v for which solutions of the form given by 
(2.3) are possible. 

In particular, the set of continuum ( -1 "';V< I) values 
of v which are consistent with the condition -1 <w< 1 are 

_ (_S_)<v< 1. 
s+1 

(2.15) 

These values of v correspond to values of w in the interval 
s -1<w<--. 

s+l 
(2.16) 

Thus, continuum solutions of the form derived above exist 
for v satisfying the inequalities Eq. (2.15). 

Next, if ± Vo are the two discrete roots appropriate to 
Eq. (2.7), then the corresponding discrete values of Wo are 
defined by 

1/wo ± = ± (tlvo +1/s). (2.17) 

Since wo- i= - wo+ , Eq. (2.14) cannot be satisfied by both 

wo- and wo+ . However Eq. (2.14) can be satisfied provided 
only one of the discrete solutions is desired, by selecting k 
appropriately. It is convenient here to choose the solution 
which decays at z = + 00; and thus we take v = + yo; then 
w = Wo = wo+ is defined by Eq. (2.3) and k is defined by Eq. 
(2.14). (Thus, "k is the value of c(z) = const which corre
sponds to the positive discrete eigenvalue wo.") The resulting 
solution is real and bounded provided (i) c < 1 (then Vo. Wo' 

and k are all real), and (ii)s> vol(vo -1) (thenwo > 1, and so 
g"" (fJ,) is bounded). Alternately, if k is given and 0 < k < c, 
then Eq. (2.14) with w = wo+ defined by Eq. (2.17) provides 
an equation for s. 

To summarize, we have constructed solutions of Eq. 
(2.1) of the form 

1/\,(z,fJ,) = ¢ (c,v,/l)e - zit' + b¢ (k,w,/l)e - ZI"" (2.18) 

where ¢ (c,v,fJ,) are the usual eigenfunctions [defined by Eq. 
(2.7)J, (J) is defined in terms of v by Eq. (2.3), and c, s, and b 
are any constants satisfying; 

(i)O<c<l, 

(ii) s> vol(vo - 1), 

(2.19) 

(2.20) 

(iii) - 00 < b < + 00. (2.21) 

Equation (2.18) holds for - s/(s + I) < v < 1 and for v = Yo' 
The discrete root v = Vo defines a discrete value (J) = (J}o by 
Eq. (2.3), and then k and s are related by Eq. (2.14). 

We conclude this section with two remarks. First, by 
setting b = 0 in Eqs. (2.1) and (2.18), it is clear that 
c(z) = c = const and the ¢v(z,/1) reduce to the usual eigenso
lutions for - s/(s + 1) < V< 1 and v = Yo' Since half-range 
completeness for 0 <fJ,< 1 has been proved for this (b = 0) 
case, the possibility exists that half-range completeness for 
o <fJ,< I can be proved for Ib I sufficiently small. We show in 
the next section that such a proof is indeed possible. (In addi
tion, we can obtain the usual homogeneous media eigenfunc
tions by letting s--+ + 00.) 

Second, we have imposed the condition Eq. (2.20) to 
guarantee that the solution Eq. (2. 18) corresponding to 
v = Vo is bounded. If we consider 
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(2.22) 

then 0 < (J}o+ < 1 and one can show that ¢,,' defined by (2.18) 
is still a solution for any k. However, the term ¢ (k,(J}o+ ,fJ,) is 
now a distribution and is not bounded. For this situation, 
one can construct a second discrete eigensolution which cor
responds to - YO' This solution has the form ofEq. (2.18), 
with v = - Vo and (J) = (J}o- . Now there are two cases. If 
-1 <,wo- <,1, then ¢ (k,(J}o- ,/1) will be unbounded and k will 

be arbitrary; otherwise, ¢ (k,(J}o ,/1) will be bounded and k 
will be defined by the dispersion law 

(2.23) 

Thus, for s satisfying Eq. (2.22), one can always con
struct two "discrete" modes; at least one, and possibly both, 
of these modes contain a distributional part which decays 
spatially like a continuum mode. Presumably, in the solution 
of a half-space problem, the expansion coefficients for the 
continuum modes would have to be unbounded to cancel the 
unboundedness in the discrete mode. In fact, it appears that 
both continuum and discrete modes can be found for arbi
trary parameters in Eq. (1.2) if the ansatz given by Eq. (2.2) 
is extended from two to N terms according to 

(2.24) 

where 

lIvn = (lIv) + (nls), (2.25) 

and the value of N depends upon the parameters. The result
ing discrete mode(s) mayor may not be unbounded per the 
discussion above, depending upon the precise values of the 
parameters b, c, k, and s. A detailed analysis of this more 
general problem will not be presented here, but will be con
sidered in a future article. 

III. HALF-RANGE COMPLETENESS AND FULL-RANGE 
ORTHOGONALITY FOR THE "EXPONENTIAL" MEDIUM 
SOLUTIONS 

We consider here the boundary value problem 

/1 a¢ +¢=l(c+kbe-ZIS)f' .I'd,!', O<z< + 00, 
az 2 1 + be - zis _, 'f' r-

¢(0,fJ,) = /(/1), 0 <Jt<' 1, 

¢( + 00,/1) = 0, 

(3.1) 

(3.2) 

(3.3) 

wherec, b, and s satisfy Eqs. (2. 19)-(2.21) and k is defined by 
Eq. (2.14). The general solution, which decays as Z--+ 00 , and 
which is constructible from the elementary solutions found 
in Sec. II, is 

¢(z,f1) = a(vo)¢v, (Z,f1) + L a(v)¢v(z,fJ,) dv, (3.4) 

where ¢v is defined by Eq. (2.18) and a(v) is the expansion 
coefficient. This is a solution of the problem given by Eqs. 
(3.1)-(3.3) if and only if the boundary condition Eq. (3.2) is 
satisfied 

/(p) = a(vo)¢J (c,vo,p) + f a(v)¢ (c,v,fJ,) dv 
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+ b [a(Vo)¢ (k,wo'f.1) + f a(v)¢ (k,w,f.1) dV], 

o <f.1<1. (3.5) 

To prove that this equation has a unique solution a(v) 
for Ib I sufficiently small, we need to define two Banach 
spaces. For any p > 1, let Xp be the space of functions S (P) 
defined for 0 </-l< 1 which satisfy 

( t )IIP 
Ilsllx,.= Jo If.1S(/-lWd/-l <00. (3.6) 

Next, for any 0 < C < 1, let Yp•c be the space of functions 1J( v) 
defined for 0 < v< 1 and v = Yo, which satisfy 

111J11 Y"., = (11J(voW + f 11J(v) In(1 - vW dV) liP. (3.7) 

For any 0 <c < 1 and any function 1JEYp,c' Larsen, Sancak
tar, and Zweifel 14 have shown that the function S defined by 

S(/-l) = (Lc1J)(f.1) 

= 1J(vo)¢ (c,vo,Jl) + f 1J(V)¢ (C,V,/-l) dv (3.8) 

is a function in Xp. Moreover, the operator Lc: Yp,c ~Xp 
is bounded, and its inverse exists and is also bounded. 

Now we use Eq. (2.3) to obtain, by a change of variables, 

il 15/(5+ I) ( ws ) ( S )2 
a(v)¢ (k,w,f.1) dv = a -- --

o 0 s-w s-w 

x¢ (k,(JJ,/-l) dw. 

Let us define the operator T: Yp,c ~ Yp,k by 

(Ta)(w) = 
0, 

s 
--<w<l, 
s+1 

a( Yo), w = wo. 

(3.9) 

(3.10) 

lt is a trivial calculation to show that Tis a bounded operator 
satisfying 

IITII<max[ l,e ~ sr -UP)] . (3.11) 

Equations (3.9) and (3.10) imply 

a(vo)¢ (k,wo,/-l) + f a(v)¢ (k,w,/-l) dv 

= (Ta)(wo)¢ (k,wo,f.1) + f (Ta)(w)¢ (k,w,f.1) dw 

= (Lk Ta)(f.1). (3.12) 

Now Eq. (3.5) can be written as 

(3.13) 

or 

[/ + b (L c-ILk T) ]a(v) = (L ;-1f)(V). (3.14) 

If b satisfies 

Ib I < (IlL ,~IIIIILk IIII T 11)-1, (3.15) 
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then 

IlbL c-ILk TII<b IlL c-IIIIILk IIIITII < 1, 

and thus the integral equation (3.14) has a unique solution, 
which can be expressed as a Neumann Series. This solution is 
exactly the half-range coefficients necessary to solve the 
problem given by Eqs. (3.1)-(3.3). This completes the proof 
that the "v > 0" solutions if; JO,f.1) satisfy the usual half-range 
completeness criterion for the interval 0 <f.1 < 1. 

Next we shall derive a full-range orthogonality relation
ship which will allow a solution to the half-space albedo 
problem via Siewert's integral equation method. 15 Let ¢(z,f.1) 
and e (z,f.1) be any solutions of Eq. (1.1) which vanish as 
Z-+ + 00. Then ¢(z' ,Jl) and e (z', - /-l) satisfy 

/-l ~, ¢(z',f.1) + if;(z',/-l) = C~') r I if;(z',/-l')d/-l', (3.16) 

- f.1 ~, e (z', - /-l) + e (z', - /-l) 

=C(Z')f
l 

e(z',-f.1')d/-l'. (3.17) 
2 _ I 

Multiplying Eq. (3.16) by e (z', - f.1), Eq. (3.17) by ¢(z',f.1), 
subtracting the resulting equations, and integrating over 
-1</-l<1 andz<z' < 00 gives r I Jl¢(z,f.1)e (z, -/-l) dJl = O. (3.18) 

Now, if we specialize this result to the function c(z) 
considered in Sec. II and take ¢(z,f.1) = ¢v(z,/-l) and 
e (z,f.1) = ¢v'(z,f.1) for v> 0 and v' > 0, we obtain 

f 1/-l¢v(Z,/-l)¢'i(z, -/-l) df.1 = 0, (3.19) 

or 

=0, (3.20) 

where K is any constant. Equation (3.20) [or Eq. (3.19)] is 
the desired orthogonality condition. 

IV. NUMERICAL RESULTS 

The half-range completeness proof given in the last sec
tion is valid for Ib I sufficiently small. To strengthen our be
lief that these eigenfunctions are complete for any value of b, 
we solve the singular integral equation (3.5) for the expan
sion coefficient a(v), using a straightforward numerical 
method. The purpose here is not to suggest an efficient nu
merical scheme, but rather to demonstrate that a solution 
can be obtained, thus giving experimental evidence of half
range completeness. 

We proceed as follows. We form the first N + 1 angular 
moments ofEq. (3.5) by multiplying this equation by /-In and 
integrating over 0 <f.1< 1. This gives 

In = a(vo)[¢n(c,vo) + b¢n(k,wo)] 

+ f dv a(v)[¢n(c,v) + b¢n(k,w)], O<n<N, (4.1) 
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TABLE I. The half-space Albedo. 

JUt) b\N 

o. 
0.1 
1.0 

10.0 

o. 
0.1 
1.0 

10.0 

J12 o. 
0.1 
1.0 

10.0 

where we have defined 

In - L d/-l/-l"/(/-l), 

¢n(e,v)= L d/-l /-In¢ (e,v,/-l). 

2 

0.630684 
0.579865 
0.399516 
0.271905 

0.613733 
0.562881 
0.382885 
0.256150 

0.604532 
0.553782 
0.374310 
0.248169 

(4.2) 

(4.3) 

We perform the integration in Eq. (4.1) by using N-point 
Gauss quadrature on the interval 0< v< I. This yields the 
matrix equation 

N 

In = I Anmam , 
m=O 

where we have defined the matrix elements 

Anm = Wm [¢n(e,vm ) + b¢n(k,wm )], m;i:O, 

Ana = ¢n(e,vo) + b¢n(k,wo)' 

Here we have also defined 

(4.4) 

(4.5) 

(4.6) 

am=a(vm ), aa=a(va), (4.7) 

where the v m' m < I <N, are the Gauss quadrature points 
with corresponding weights W m . The points Wm are given by 

(4.8) 

The ¢n (e, v) are conveniently computed from a recurrence 
relationship. In both the continuum and discrete cases, we 
have 

(v - /-l)¢ (e,v,/-l) = evl2. (4.9) 

Multiplying Eq. (4.9) by /-In and integrating gives 

¢n+1 (e,v)=v[¢n(e,v)-eI2(n +1)], n;;'O. (4.10) 

The results for n = 0 needed to initialize Eq. (4.10) are com
puted by direct integration. We obtain 

¢a(e,va) = eVa In(~), 
2 va-I 

(4.11) 

ev (I + v) ¢(e,v) = I-Tin -v- , (4.12) 

Once the expansion coefficient a(v), or the discrete 
form am' is known, we can compute the half-space albedo 
R (reflection probability) as follows. The albedo is defined as 

R = Jou
, = _1 , d/-l l/-ll rf(O"u), (4.13) 

J in Jin)-I 
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4 8 16 

0.630583 0.630581 0.630581 
0.579721 0.579718 0.579718 
0.399083 0.399078 0.399078 
0.271099 0.271058 0.271058 

0.614110 0.614117 0.614117 
0.563300 0.563308 0.563308 
0.383297 0.383308 0.383308 
0.256363 0.256351 0.256351 

0.604750 0.604754 0.604754 
0.554047 0.554052 0.554052 
0.374655 0.374660 0.374660 
0.248449 0.248446 0.248446 

where 

Jin = L d/-l/-ll(/-l) =/1' (4.14) 

Equation (4.13) can alternatively be written as 

I 51 R = I - - d/-l/-lrPC0,/-l). 
11 -I 

(4.15) 

From Eq. (3.4) we have 

J~ I d/-l/-lrf(O,/-l) 

= f~ I d/-l /-la( va)[ ¢ (e, va,/-l) + b¢ (k,wa,/-l)] 

+ J~ I d/-l/-l L dv a( v)[ ¢ (e, V,/-l) + b¢ (k,w"u)]. (4.16) 

Integration ofEq. (4.9) over -1</-l<I, using the fact that 
the integral of ¢ over /-l is unity [see Eqs. (2.12) and (2.13)], 
gives 

J~ I d/-l /-l¢ (e,v,/-l) = v(1 - c). (4.17) 

Hence Eq. (4.16) becomes 

L d/-l/-lrPC°"u) = a(va)[vo(l- c) + bWo(1 - k)] 

+ L dva(v)[(v(l- c) + bw(1 - k)]. 

(4.18) 

Ifwe use N-point Gauss quadrature to perform the integra
tion in Eq. (4.18), we obtain 

I N 
R = I - - I B a (4.19) 11 m=O m m' 

where 

B m ==wm [vm(1-e)+bwm (l-k)], m#O, (4.20) 

Ba=vo(l- c) + bwa(1 - k). (4.21) 

As an application of the foregoing numerical method, 
we obtained explicit results for e = 0.96 and s = 2, which 
yield k = 0.686954 from Eq. (2.17). We employed three dif
ferent incoming angular distributions, namely /-li, i = 0, I ,2, 
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and four different values of b, namely b = 0,0.1, 1.0, and 10. 
The matrix equation (4.4) was solved numerically for the am 
on a computer, using a standard linear equation solution 
package. The case b = 0 corresponds to c(z) = const, in 
which instance the eigenfunctions are known to be complete 
and hence Eq. (3.5) is guaranteed to have a solution. This 
case serves as a check on the numerical method. In particu
lar, for b = 0 andf(u) = 1, the albedo is known to be 
R = 0.631,16 which agrees with the converged value shown 
in Table I. For b 1=0 this table shows similar convergence of 
the computed albedo as N, the order of the numerical ap
proximation, is increased. The expansion coefficient a(v) 
converges in a similar manner. We note from these results 
that the computed albedo follows the expected trends with i 
and b. That is, as the parameter i increases, the incoming 
angular distribution is more peaked, which implies more ab
sorption in the half-space and hence a smaller albedo. Also, 
as b increases, the value of c(z), particularly for small z, de
creases, which implies a more highly absorbing half-space 
and thus a smaller albedo. An extreme example which we 
computed used b = 106

• In this case, c(z) is essentially a con
stant, equal to c(O) = k, for those values of z which exper
ience a significant neutron flux. Accordingly, we should find 
an albedo corresponding to c(z) = const = k. This value is 
R = 0.248, and this is the result we obtained. Thus we have 
generated numerically additional evidence that the eigen
functions are complete on the half-range 0 <11'1. That is, 
we have actually computed, albeit numerically, a solution to 
the integral equation (3.5) for the expansion coefficient a(v). 

In closing this section, we mention that the numerical 
scheme used is very sensitive to numerical roundoff errors. 
In particular, oscillations in the continuum coefficients am 
became evident for large values of N (N::::: 16) for all values of 
b, including b = O. The onset of these oscillations occurs for 
lower values of N as either b and/or the power i on the inci
dent flux 11' increases. This is the expected trend with band i, 
since increasing these parameters increases the anisotropy of 
the angular flux, thus making the continuum contribution 
more important. This numerical roundoff problem was miti
gated by using double precision arithmetic (16 significant 
digits). We also found it necessary to use direct numerical 
integration to compute ¢>n (c,vo) and ¢>n (k,wo) rather than the 
recurrence formula Eq. (4.10). Since v o, Wo > 1, Eq. (4.10) is 
an unstable recurrence relationship for the discrete terms. 
The fact that using more accurate arithmetic delayed the 
onset of the oscillations is a clear indication that numerical 
roundoff is the cause of the instability. 

Several other simple numerical schemes were also tried 
and they, too, were sensitive to roundoff errors. This numeri
cal work indicates that a computer solution of a singular 
integral equation of the type given by Eq. (3.5), even for 
b = 0, is extremely difficult. A much more clever scheme 
than outlined here is required for an efficient numerical solu
tion. However as we stated earlier, our purpose was not to 
develop such a scheme, but merely to demonstrate numeri
cally that a solution for a(v) exists. 

V. USE OF THE INTEGRAL TRANSPORT EQUATION 

Given a c(z), one would like to be able to obtain in a 
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systematic way the corresponding functional form (ansatz) 
for t/J(z,ll) which will lead to discrete and/or continuum ei
gensolutions. We do not know how to do this for a general 
function c(z). However, we present in this section a method 
for constructing a consistent pair consisting of (i) c(z), and 
(ii) a functional form for t/J(z,ll) which is guaranteed to pro
duce at least one eigenfunction. In the cases we have investi
gated, this same functional form also leads to other eigen
functions (continuum and/or discrete). 

A formal integration of Eq. (1.1) leads to 

t/J(z,ll) = _1_ JZ dz' Q(z')e- (z- z')/I', 11 > 0, (5.1) 
41T1l - oc 

t/J(z,ll) = _1_ (OC dz' Q (z')e - (z' z)/II'i, 11 < 0, (5.2) 
41T11l1 L 

where we have defined the scalar flux as 

¢> (z) 21T r 1 dll t/J(z,Il), 

and introduced the product 

(5.3) 

Q (z)_c(z)¢> (z). (5.4) 

Integration of Eqs. (5.1) and (5.2) over 11 gives 

Q (z) = C;) roc oc dz' E1(lz - z'I)Q (z'), (5.5) 

where EJ(z) is the first-order exponential integral. Equation 
(5.5) is the well-known integral (Peierls) transport equation 
in planar geometry, written here in terms ofQ (z) rather than 
the more usual ¢> (z). 

Our procedure to generate a c(z) and a corresponding 
form for t/J(Z,f-l) is as follows. We arbitrarily choose a func
tion Q (z) with certain free parameters, say N in number. 
Equation (5.5) is used to compute c(z), and Eqs. (5.1) and 
(5.2) are used to compute the corresponding t/J(z,Il). This 
solution for t/J(z,ll) is generalized to a functional form with 
the same spatial dependence, but with angular coefficients to 
be determined. Use of this functional form as the assumed 
solution for Eq. (1.1) with the corresponding c(z) just deter
mined (which contains N free parameters) is then guaran
teed to produce equations for the angular coefficients which 
will yield at least one (in general, discrete) solution, and 
hopefully additional solutions (discrete and/or continuum). 
The reason that a discrete mode (as opposed to a continuum 
mode) is guaranteed is that for the integral in Eg. (5.5) to 
converge, Q (z) cannot grow faster than exp(lzl). Since the 
constructed c(z) in general will not vanish at z = ± 00, this 
means ¢> (z) cannot grow faster than exp(lzl), implying a dis
crete mode. In the special case that the constructed c(z) does 
vanish at z = ± 00, it may be possible for the corresponding 
solution to represent a continuum mode. 

As an example of this procedure, we consider 

Q(z) = e -ZI"(1 + Ee- ZI ,), s>O, (5.6) 

where E, v, and s are free parameters. Use ofEq. (5.6) in Egs. 
(5.1), (5.2), and (5.5) yields 

1 [ve- z
/>, we-z/(U] 

t/J(z,ll) = - --+ E ,-1'11,1, 
41T v - 11 w - v 

(5.7) 
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and 

c + ECe -zls 
C(Z) = ------

1 + (Eclk)e - zls 
(5.8) 

Here we have defined 

1/w=(1lv) + (1/5), (5.9) 

and the pairs (c,v) and (k,w) are related by the usual disper
sion relationship [see Eq. (2.8)] 

cv (v + 1) A (c,v) = 1--ln -- =0, 
2 v-I 

(5.10) 

A (k,w) = 1 _ k(u In(w + 1) = O. 
2 w-I 

(5.11 ) 

Equation (5.7) suggests looking for solutions ofEq. 
(1.1) of the form 

t/Jv(z,/J.,) = ¢ov(J1.)e- Zlv + ¢lv(J1.)e- zlw. (S.12) 

Such a form will reproduce Eq. (5.7) and, hopefully, lead to 
additional eigenfunctions. Equation (5.12) is, in fact, the so
lution form used in Sec. II, where it was shown that this form 
also generates a continuum of solutions, as well as a second 
discrete mode for 5 sufficiently small. If we replace the free 
parameter E with the free parameter b =EcI k, then it is clear 
that the c(z) given by Eq. (5.8) is identical to thec(z) analyzed 
in Sec. II. The Q (z) given by Eq. (5.6) is easily generalized to 
the sum of N, rather than two, exponential terms. One finds a 
correspondingly more complex (but with more free param
eters) form for c(z), and the appropriate functional form for 
t/Jv(z,J1.) is the sum of N exponential terms. 

As a second example, we set 

Q (z) = (a + z)e - ZIV, (5.13) 

where the constants a and v are free parameters. The results 
in this case are 

t/J(z,J1.) = ve - zlv [(a + z) _~] , 
41T(V - J1.) V - j.i 

and 

c(z)= -- c. (
a +z) 
b+z 

-1<J1.<1, 

(5.14) 

(5.15) 

Here the constant c is related to v through the usual disper
sion relationship given by Eq. (5.10), and the constant b is 
given by 

b - [l-Vo(1-C)] - a - Vo . 
v6 -1 

(5.16) 

For a c(z) given by Eqs. (5.15) and (5.16), Eq. (5.14) suggests 
looking for eigensolutions ofEq. (Ll) of the form 

t/J,,(z,J1.) = ¢o,,(J1.)e -zlv + ¢lv(J1.)ze- zlv. (5.17) 

We take up this case in detail in the next section and find, of 
course, that the discrete mode given by Eq. (5.14) is repro
duced. In addition, however, we find continuum modes in
volving higher order distributions than those previously en
countered in transport theory problems. 

Just as with our last example, the Q(z) given by Eq. 
(5.13) can be generalized to an Nth order polynomial with 
N + 1 free parameters. One is led to a c{z) which is a const c, 
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determined from Eq. (5.10), multiplying a ratio of two Nth 
order polynomials. This ratio contains N free parameters. 
The corresponding functional form which suggests itself is 
just the extension ofEq. (5.17) to an N th order polynomial in 
z. We have not worked out the details for a general N, but are 
confident that continuum modes involving even higher or
der distributions will result. 

As a final example, we consider a damped periodic 
function given by 

Q (z) = e - zlv(a + COSlUZ). (5.18) 

This leads to a c(z) which is periodic in z and given by 

() { a + COSlUZ } 
cz = a+g(v)cOSlU[Z-Zo(v)] c, (5.19) 

where v and c are again related by the usual dispersion rela
tionship Eq. (5.1O), and g(v) and zo(v) are simple explicit 
functions of the discrete root v. The corresponding function
al form suggested is 

t/Jv(z,J1.) = e -ZIV[¢O,,(J1.) + ¢h'(J1.) COSlUZ 

+ ¢2v (J1.) sinwz]. (5.20) 

No further details of this case have been worked out. 
There appears to be virtually no limit to the functions 

Q (z) which can be considered to construct a consistent c(z) 
and a functional form for the corresponding eigenfunctions. 
Clearly, the more complex Q (z) is, the more complex will be 
the resulting c(z), the functional form for t/J(z,J1.), and the 
ensuing analysis to look for continuum modes and other dis
crete modes. On the other hand, certain functions Q (z) could 
very well lead to unexpected and interesting solutions of the 
transport equation. 

VI. A "LINEAR" MEDIUM 

In this section, we treat Eq. (1.1) with c(z) defined by 
Eq. (1.5). The transport equation can be written as 

(b + Z)(J1. Jt/J + t/J) = (a + z) ~ II t/J dJ1.'. (6.1) 
Jz 2 _I 

The results derived in Sec. V suggest that we seek solutions 
having the form 

(6.2) 

Introducing Eq. (6.2) into Eq. (6.1) and equating the 
coefficients of 1, z, and Z2 gives the following three equations: 

b [( 1 - ~ ).t:(J1.) + j.igv(J1.)] = c; r /:,(J1.') dJ1.', (6.3) 

[(1- ~)J:'(J1.)+J1.gv(j.i)] +b(l- ~)gv(J1.) 

= ~ f 1.t:(J1.')dJ1.' + c; fl g,,{J1.')dJ1.', (6.4) 

(1- ~)g,,(J1.)= ~ f~lg"(J1.')dJ1.'. (6.5) 

Straightforward algebraic manipUlation of these equations 
yields 

(1 - ~ )gv(J1.) = ~ , (6.6) 
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(6.7) 

(6.8) 

In deriving the normalization condition Eq. (6.8), we have 
assumed a#- b so that e(z) #- constant. 

Equation (6.6) with the normalization (6.8) has the usu
al solutions 

(6.9) 

where we use the definitions given by Eqs. (2.7) and (2.8). At 
this point, the parameter v can be any of the continuum 
( -1 < v < 1) or discrete (v = ± vo) modes. 

To solve Eq. (6.7) with the normalization given by Eq. 
(6.8), it is appropriate to treat the discrete and continuum 

values of v separately. Thus, we first set v = + Vo in Eq. 
(6.7) and solve for jv" to get 

(
evo 1 ) eVa fl 

/',.,(fl) = a -2 -- - -2 ( )2 . 
Vo - fl Vo - fl 

Imposing the normalization Eq. (6.8) and using 

1 - 1 ' ( ) - evo fl dfl - -/I, e,vo -- ---, 
2 -I Vo - fl 

we obtain 

b =a - r, 
where 

(6.10) 

(6.11) 

_ ev~ fl fl _ [ 1 - Va(1 - e) ] 
r - - 2 dfl - Vo . 

2 ~I (vu-fl) Va-I 
(6.12) 

(In the integral definition of r, the integrand for positive 
values of fl dominate those for negative values, and therefore 
r> 0.) We note that Eq. (6.11) is consistent with our pre
vious result, Eq. (5.16). Equation (6.11) is a constraint on the 
values of a and b. Ifwe now set v = - Vo in Eqs. (6.7) and 
(6.8), we obtain the form (6.10) for j _ v" (fl ) (with Vo re
placed by - vo), and the condition 

b=a+r. (6.13) 

Since r> 0, Eqs. (6.11) and (6.13) cannot simultaneously be 
satisfied, and therefore only one discrete mode of the form 
(6.2) can exist. The description of this mode is given above, 
and will be summarized below. 

Now we shall consider the continuum modes 
-1 <; v<; 1. Equation (6.7) becomes 

eav ev 
(v - fl)/',(fl) = T - flVA (e,v)lj(v - fl) - flT 

XP_1_. 
V-fl 

To solve this equation, we shall use the identities 

x[ - lj'(x)] = lj(x) 

and 

X p(l/x2) = P(1/x), 
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(6.14) 

(6.15) 

(6.16) 

where lj '(x) and P(l/x2) are the distributions defined by 
Ref. 17 

f+'l'" u(x)lj'(x)dx = - u'(O), (6.17) 

f 
c ,'" u(x) p(~) dx = pf f oc u(x) ~ u(O) dx. (6.18) 

x x -00 x 
[Equations (6.15) and (6.16) follow from 

f' XX u(x)x[ -lj'(x)]dx 

f
-+ oc f+oc 

= - _ oc xu(x)lj'(x)dx = u(O) = oc u(x)lj(x)dx 

and 

t+ XX u(x)x P (:2) dx 

=pf+oc u(x)x
2
-0 dx=f+oc U(x)P(~)dx, 

-00 x -00 x 

where u(x) is any test function.] 
Now we can write the solution of Eq. (6.14) as 

eav 1 
/.,(fl) =p(v)lj(v - fl) + -P--

2 V-fl 

ev 1 
+ flVA (e,v)lj'(v - fl) - fl- P 2 

2 (v - fl) 
(6.19) 

wherep(v) is determined by the normalization condition giv
en by Eq. (6.8): 

b=p(v)+a[I-A(c,v)] + vA (e,v) 

fl V fl 1 
X flD'(V - fl) dfl - ~ fl P 2 dfl· 

-I 2 ,I (v-fl) 
(6.20) 

Here we have made use of the definition given by Eq. (2.8). 
Also, the change of variables TJ = v - fl gives 

flfltJ'(V-fl)dfl= f"+11 (v-TJ)tJ'(TJ)dTJ= 1 (6.21) 

and 

ev fl P 1 d - fl fl 
2 _I (v - fl)2 

= ev P fl - v dfl f
l 

2,1 (V-fl)2 

ev fl 1 = - - P dfl = A (e, v) - 1. 
2 -I (V-fl) 

(6.22) 

Combining Eqs. (6.20)-(6.22), we obtain 

p(v) = b - a[1 - A (e,v)] - v. (6.23) 

We now summarize our results. For any values of a,b, 
and e, continuum ( -1<;v<; 1) solutions of Eq. (6.1) exist of 
the form (6.2), wheregv(fl) is the usual homogeneous medi
um eigenfunction defined by Eg. (6.9), andJ,,(,u) is defined 
by Eqs. (6.19) and (6.23). If a and b are related by Egs. (6.11) 
and (6.12), then a discrete solution exists ofthe form given by 
Eg. (6.2) with v = vo,gv, (fl) defined by Eg. (6.9), and/." (fl) 
defined by Eq. (6.10). If instead, a and b are related by Eqs. 
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(6.12) and (6.13), then a discrete solution exists of the form 
Eq. (6.2) with v = - vo, g _ v, (ft) defined by Eq. (6.9), and 
1- v,(ft) defined by Eq. (6.10) where Vo is replaced by - Vo' 

The discrete and continuum solutions given by Eq. (6.2) 
satisfy the full-range orthogonality conditions Eq. (3.19) for 
v, v' > O. Therefore, if one can establish half-range complete
ness (we discuss this below), Siewert's integral equation 
method 15 (the F N method) can presumably be used to solve 
the half-space albedo problem. 

The continuum modes constructed above contain high
er-order distributions than have occurred previously in 
transport theory problems. Nevertheless, the theoretical 
foundations of these distributions have been developed in the 
literature. 17 Before applying these modes to actual transport 
problems, a number of technical details will have to be exam
ined. For example, to multiply the continuum modes by an 
expansion coefficient a( v) and integrate over v, it is probably 
necessary that a(v) have a derivative which is Holder-con
tinuous (or Lp integrable). We shall not examine this detail 
here. 

Also, a question can be asked concerning the "consis
tency" of the continuum modes. These modes were con
structed, in effect, by separating the distribution I/!" into a 
"constant" (Iv) and a "linear" (gv) part with respect toz. 
Yet, the "constant" part contains the distribution {j '(v - ft) 
which acts on the function e - z/v and creates a new "linear" 
term with respect to z. To determine whether this is an actu
al, or just an apparent, inconsistency, let us consider the 
general solution of the transport equation which is construc
tible from the continuum modes 

I/!(z,ft) = J~ I a(v) [Jv(ft) + zgv(ft)]r z
/
v dv, (6.24) 

or 

Here a( v) is taken to be sufficiently smooth that all of the 
integrals converge pointwise, and in this form there are no 
expressions more singular than a principal value integral. 
We have introduced this form into the transport equation 
(6.1) and have verified, by direct but tedious calculations, 
that it, indeed, is a solution. Therefore the continuum 
modes, derived formally above, actually produce solutions 
of the transport equation when multiplied by a(v) and inte
grated over v. 

Another item which we mention is that although a and 
b are constrained by Eq. (6.11) or (6.13), one can take the 
limit a~oo, and then c(z)--+e = con st. We have verified that 
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in this limit the discrete and continuum solutions developed 
above reduce to the standard homogeneous medium 
eigenfunctions. 

Finally, the equation of half-range completeness is one 
which we have only briefly considered. If one wishes to con
sider the half-space z > zo, then one must impose Eq. (6.11), 
adjoin to Eq. (6.25) the discrete mode for v = vo, and set 
a( v) = 0 for v < O. Then one obtains the "general" solution 
of the transport equation (6.1) which decays as z~ + 00. 

Then, from Eq. (6.25), it is clear that applying the boundary 
condition (i.e., prescribing the incident flux) will lead to a 
singular integro-differential equation for the half-range coef
ficients a(v). This equation is more complex than the usual 
singular integral equations which occur for homogeneous 
media, or the equation encountered in Secs. II and III, and 
we have not yet examined it in detail. 

VII. CONCLUDING REMARKS 

We have shown in this paper that eigensolutions of the 
linear transport equation, both discrete and continuum, can 
be constructed for spatially varying media, characterized by 
a non constant c(z). The number of functions c(z) for which 
such eigenfunctions can be found appears to be very large. 
For the most part, our results indicate that it is relatively 
easy to construct one discrete mode and continuum modes, 
and that these modes appear to be complete on the half
range. For the "exponential" medium, a second discrete 
mode exists for certain restricted values of the parameters in 
c(z). Whether this second discrete eigenfunction extends the 
range of completeness of the eigenfunctions has not been 
investigated. 

To our knowledge, no other work has been reported in 
the literature concerning the explicit construction of elemen
tary solutions of the transport equation for a continuously 
varying c(z), with the exception of the work of Mullikin and 
Siewert. 12 These authors found continuum solutions for 
c(z) = Co exp( - z/s), but did not find discrete solutions. By 
using the F N integral equation method of Siewert 15 and the 
continuum solutions, they numerically computed the albedo 
for the half-space problem, for Co = 1 and various values of s. 
Their results were in excellent agreement with independent 
numerical calculations utilizing the standard S" method for 
(directly) solving the transport equation. However, Mullikin 
and Siewert also attempted to compute the albedo transmis
sion for finite slab problems, but reported difficulties in ob
taining agreement between the FN and S N methods. There 
seems to be two likely causes for this: Either the continuum 
modes are incomplete, or the F N method is numerically un· 
stable (for this problem). However, with regard to the half
space albedo problem for which there was numerical agree
ment, the integral equation for the outgoing flux which was 
solved by Mullikin and Siewert was shown by Martin 13 to 
possess a unique solution for Co and s satisfying a certain 
inequality. Thus, it seems likely that, at least for such Co and 
s, the continuum modes are half-range complete. We intend 
to investigate this completeness question in a future article. 

Much work is required to put the analysis for 
c(z):;6const on the same firm foundation as the c(z) = const 
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case. For any given c(z) and the associated eigenfunctions, 
half-range and/or full-range completeness must be investi
gated. It would also be convenient, for the actual solution of 
problems, to have available half-range and full-range ortho
gonality relationships to determine the expansion coeffi
cients. A completely open question is: For what class offunc
tions c(z) can one construct a set of eigenfunctions which are 
complete on either the half-range or the full-range? General
izations to anisotropic scattering, multigroup problems, 
multiple-region problems, etc., also seem possible. We feel 
the ideas described in this paper should open up many fruit
ful avenues for theoretical research in both linear transport 
theory and in the theory and numerical solution of singular 
integral equations. 
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Exact solutions are derived for the three-dimensional and four-dimensional sine-Gordon 
equation [V2 - a 2/(c2at 2)}x = sinX. The principal tools in the derivation are a new Backlund 
transformation and the appropriate generating formulas which allow us to generate an infinite 
number of real classical solutions. Three-dimensional computer plots depicting the time evolution 
are presented (a) for the two-soliton and four-soliton solutions of the sine-Gordon equation, and 
(b) for the three-wave interaction of the associated sinh-Gordon equation. 

I. INTRODUCTION 

During the past few years there has been remarkable 
interest among physicists in the analysis of nonlinear disper
sive wave equations. Among the partial differential equa
tions I that have gained prominence is the famous sine-Gor
don equation in 1 + 1 dimensions (one space and one time 
dimension). This amazing equation plays a central role in 
such diverse fields as differential geometry,2 nonlinear op
tics,3 plasma physics,4 superconductivity,S and particle 
physics. 6 The present popularity of the sine-Gordon equa
tion (SGE) among particle physicists is primarily due to its 
intimate connection with soliton theory I and to the equiv
alence of the quantized SGE with the charge-zero sector of 
the massive Thirring model. 7 

Despite this emphasis on the traditional SGE, 1.8 there 
has been considerable research not only on related equations 
such as the double SGE,9 but also on other procedures of 
solution such as the base equation technique 10 and the meth
od of prolongation structures. II 

The purpose of this note is to discuss for the classical 
SGE 

(V2 - a;)X = sinX, c = 1, (1) 

the new Backlund transformations in three and four dimen
sions, 12 and to exploit these transformations to generate an 
infinite class of exact solutions in both (2 + 1), (3 +0) and 
(3 +1) dimensions. We recall that a Backlund transforma
tion2 may be viewed geometrically as a transformation of a 
solution surface S into a new solution surface S I, where S is a 
solution of a given partial differential equation, but where S I 

may either be a solution of the original equation or of some 
other differential equation. 

The two principal procedures for solving nonlinear par
tial differential equations in 1 + 1 dimensions are the meth
od of Backlund transformations and the inverse scattering 
technique. 13 Since the latter has, as yet, only been developed 

a) Present address: RCA-Laboratories, Badenerstrasse, Zurich. 

in one space dimension, this technique is inapplicable to 
equations such as (1). One is accordingly restricted, in higher 
dimensions, to the method of Backlund transformations 
which yields not only the crucial generating formulas for 
multiple solutions, but also provides the key to a systematic 
analysis of the conserved currents. 

2. REVIEW OF SGE IN 2 +0 DIMENSIONS 

The Backlund transformation for the SGE in two space 
dimensions and no time dimension (2 +0 dimensions), 

(a~ + a~)X = sinX, ax=alax, ay=alay, (2) 

was shown to be a scalar, albeit complex, equation of the 
form 14 

(ax + iay)(a - i(3)/2 = sin«a + i(3)/2)expi8, (3) 

where a and i{3 are solutions of (2), 8 is a real Backlund 
transformation parameter and X a massless scalar field. 
Equation (3) represents a transformation from the "old" so
lution a to the "new" solution i{3, i{3 = B (8 )a, with B (8) 
known as the Backlund transformation operator (see the 
Bianchi diagram in Fig. 1). The simplest nontrivial solutions 
of (2) read 14 

a l (x,y;8) = 4tan- l (c 1expJ), J = xcos8 + ysin8, (4a) 

(3 {
4tanh-I(C2expJ), J<O, (4b) 

l(x,y;8) = I 
4coth-(c2expJ), J>O, (4c) 

where c l , C2 are constants of integration. 

8~------I® 
e ifj a 

FIG. I. Bianchi diagram for the Biicklund transformation in 2 +0 dimen
sions as given by Eq. (3). The transformation is characterized by the single 
real parameter e. 
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3. SGE IN 3 + 1 DIMENSIONS 

Rather than discuss next, as would seem logical, the 
three-dimensional case, we shall immediately tackle the 
four-dimensional SGE, because its associated Backlund 
transformation and generating formulas reduce quite natu
rally to the corresponding expressions in three (i.e., 3 +0 or 
2 + I) dimensions. 

The Backlund transformation connected with the SGE 

(VZ 
- a;)X = sinX, VZ = a; + a; + a;, c = 1, (5) 

reads 

(lax + iO"lay + iCT3az + 0"2ar>(a - i{J)!2 

= sin«a + i{J)/2)exp (iOCTlexp [( - iifJ0"2)exp( - 70"1)] j, 
(6) 

whereCTI, CTz, 0"3 are the usual Pauli matrices andIis the2X2 
identity matrix. Observe that the right-hand side of (6) is 
characterized by three nested exponential functions. The 
Backlund parameters (O,ifJ,-r) are restricted to the domains 
0<O<21T,0<ifJ<21T, - 00 < -r < + 00, while the real func
tions a,fJ satisfy 

(V2 _ a;) {a(x,y,z,t) = si.na(x,y,z,t), 
fJ (x,y,z,t ) = smh{J (x,y,z,t ), 

(7) 

(8) 

respectively. The matrix equation (6)) describes, in analogy 
with (3), a transformation from a to i{J, 

$=B~~~~ 00 
which may be depicted by the Bianchi diagram drawn in Fig. 
2. 

To solve (5) we rewrite (6) succinctly as 

(lax + iP)(a - i{J)/2 = sin«a + i{J)!2)exp(iOS), (lOa) 

where P = CTlay + CT3Bz - iCT2B, and exp(iOS) = AI + iA z. 
Abbreviating 

exp[ - iifJCT2(exp( - TCTI»] = exp( - iifJW), 

where W = lT2(IcoshT - CT1sinh-r) with W 2 = I, we finally 
obtain 

( 
sin8sinifJcosh-r 

A -
2 - (cosifJ + sinifJsinhr)sin8 

(cosifJ - sinifJsinh-r)Sin8) 

- sin8sinifJcosh-r ' 
(lOb) 

and A I = leosO. Separation of (lOa) into real and imaginary 
components yields 

lax (a/2) + P(fJ /2) 

= A Isin(a/2)cosh( fJ /2) - A2cos(a/2)sinh( fJ 12), 
(II) 

8---0 ( B, cp, T: ) 

a. if3 

FIG. 2. Bianchi diagram for the Backlund transformation in 3 +1 dimen
sions as given by Eq. (6). The transformation is characterized by the real 
parameters (fJ,,p,r). 
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• 

• Q (2) 
1""'1 

i~l 
(1) 

FIG. 3. Bianchi diagram used in the derivation of the generating formula 
Eq. (14). 

P (aI2) - laA (J 12) 

= A Icos(aI2)sinh( (J 12) + Azsin(aI2)cosh( (J 12). 
(12) 

The lowest, nontrivial solutions for a,/3 emerge easily from 
Eqs. (11) and (12) by setting first (J fJo = 0, then 
a==ao = O. Thus 

a l(x,y,z,t;8,ifJ,-r) = 4tan- l(aoexpR), (13a) 

(13b) 

(l3c) 

R = xcosO + ysin8cosifJ + sin8sinifJ (zcosh-r + tsinh-r), 
(l3d) 

where ao,a l are integration constants. Since (13a) reduces, 
for suitable choices of (8,ifJ,T), to the one-soliton solution in 
1 + 1 dimensions, we shall also call a 1 a soliton solution of 
Eq. (5); the same terminology will be applied to multiple 
soliton solutions [cf. Eq. (21)]. The{Jsolutions, by contrast, 
lack soliton character. 

The existence of the Backlund transformation (6) en
ables us to derive the generating formula 12 (see Fig. 3 and 
Ref. 15) 

tan«a2 - a o)!4) = Dlztanh«{J\I) - (J\2»/4), 

DI2 = ± V (1 + LI2)/(l - L 12), IL121 < 1, 

LI2 = cos81cos8z + sinO Isin02 

X [COSifJICOscPZ + sinifJ1sinifJzcosh(-r1 - -rz)]' 

(14) 

(15a) 

(ISb) 

where ao and a z both satisfy (7). Expression (14) was specifi
cally derived from a o = 0 and its Backlund-generated solu
tions (J\J)~{3I(ej,ifJj,-r),j = 1,2. Formula (14) permits us to 
generate explicitly, and without additional quadratures, an 
infinite class of exact a 2n solutions, provided the appropriate 
constraint equations involving L 2n _ 1,2n are fulfilled when
ever n;;;' 2. We shall discuss these constraint equations in Sec. 
4(B) in connection with the four-soliton solution a 4 , i.e., 
when n = 2. 
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4. SGE IN THREE DIMENSIONS 

A. 3 +0 dimensions 

For the SGE 

(a; + a; + o;)x = sinx, 

the choice 7 = 0 in Eq. (6) yields the Backlund 
transformation 

(lax + iO',oy + iO'30J(a - i(J)/2 

= sin {(a + i(J)/2)exp[iBO',exp( - itPO'z)], 

(16a) 

(16b) 

with 0<B<21T, 0<tP<21T. Thea, solution reads [cf. Eq. (13a)] 

a,(x,y,z;B,tP ) 

= 4tan -, ( ab exp [xcosB + sinB (ycostP + zsintP )] I, 
(16c) 

while all higher a solutions can be derived from generating 
formulas similar to Eqs. (14) and (15). For a z we have 

tan«az - ao)l4) 

= ± Y(l +L ;2)/(l-L ;2)tanh«(J~')-(J~2»/4), (17) 

provided IL ;21 < 1, 
L ;2 = cosB,cosBz + sinB,sinB2cos(tP, - tP2)' 

B. 2 + 1 dimensions 

Setting 7 = 0 again in Eq. (6) and replacing tP-+iA, 
0'2-+0'3' we get the Backlund transformation 

(ldx + iO',dy + O'2d,)(a - i(J)/2 

= sin«a + i(J)/2)exp[iBO',exp(Aa3)] 

for the (2 + 1 )-dimensional SG E 

(a; + d~ - o~)x = sinX, c = 1. 

1. The one-soliton solution adx,y,t) 

Equation (ISb) admits solutions of the form 

a ,(x,y,(;B,A ) 

(1 Sa) 

(1Sb) 

= 4tan-' (a~exp[xcosB + sinB (ycoshA + (sinhA )] ), 
(19) 

where a(; is an integration constant, 0<B<21T, and 

- 00 < A < + 00. The generating formulas for higher solu
tions a 2n , n = 1,2,3,. .. , are similar to Eq. (17) and its general
izations, but with L ;2 replaced by 
1'2 = cosB,cosB2 + sinB,sinBzcosh(A, - Az)· 

2. The two-soliton solution a2(x,y,tj 

The functional form of a z follows from Eqs. (14) and 
(15), with 

and 

L 11-+/12 = cosB,cosBz + sinB,sinB2cosh(A, - Az), 

D12 = [(1 + 112)/(1 - l,zW/2, 

tanh( (J \J) / 4) 

= ajexp[xcosBj + sinBj(ycoshAj + (sinhAj )], 

j = 1,2. (20) 
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There are no constraints on D'2' other than lId < 1, which 
implies that nonlinear superposition imposes no further re
strictions on the manner in which the two soliton waves may 
be combined. 

We have verified numerically on the computer and by 
explicit calculation that az is indeed a solution ofthe three
dimensional sine-Gordon equation (ISb) and that this solu
tion ranges in value from -21T to +21T, as expected. 

3. The fOUf-soliton solution a4 (x,y,tj 

From theory '2 and Eqs. (14) and (15) the solution a 4 

reads 

tan«a4 - a~Z»/4) = D'4tanh« (J~l) - (J ~Z»/4), (21) 

where 

tanh« (J ~S) _ (J ~s+ '»)14) 

=Ds.s+2tan«a~'+') -a~V4), s= 1,2, (22) 

and 

tan«a~) - ao)l4) 

= Dp.p +, tanh«(JY') - (JY' + '»/4), p = 1,2,3, (23) 

tanh«(J)})/4) 

= ajexp [xcosBj + sinBj(ycoshAj + (sinhA)], 

j = 1,2,3,4; 

the coefficients Dread 

Drq = Y (1 + Irq)/(1 - Irq)' 

I Irq I < 1, r=/=q, r,q = 1,2,3,4, 

Irq = cosB,cosBq + sinBrsinBqcosh(A, - Aq). 

In what follows we shall set a o = 0 and aj = + 1, 

(24) 

(25) 

j = 1,2,3,4. Let us next discuss the constraint equations asso
ciated with the solutions (21) and (22) (cf. Gibbon and Zam
botti, Ref. S). 

For (J ~') and (J ~2), the constraint equations read, 
respecti vel y , 

1 +2/,2/2313, = (ld2 + (/23)2 + (/3,)2, 

1 +2/2i34/42 = (123)2 + (l34i + (/42)2. 

The constraints (26) are obtained by substituting (J ~'), 

(26a) 

(26b) 

s = 1,2, in Eq. (22) back into Eq. (S). [A similar procedure 
yields the four constraint equations listed below in (27).] In 
the case of a 4 , Eq. (21), there are/our coupled constraint 
equations: 

1 +2/,2/23/3, = (/'2f + (/23)2 + (/3,)2, 

1 +2/,z/24/4' = (ld2 + (124)2 + (/4,)2, 

1 +2/zi34/42 = (l23f + (/34f + (/42f, 

I +2/uIJi4' = (lU)2 + (/34)2 + (/4'?' 

(27a) 

(27b) 

(27c) 

(27d) 

System (27) contains six distinct I's as functions of the eight 
Backlund parameters Bi , Ai> i = 1,2,3, and 4. It is possible to 
solve (27) consistently for the I 's by choosing, for example, 
I,z = O.S, and then solving for 14 , from (27b). Then 1!3' Iz3 , 134 
are obtained from the other three equations by iteration. 
The six equations relating the I 's to the B 's and A 's may then 
be solved by choosing, for example, B, = 35° and A, = 0.25; 
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the remaining (J 's andA 's are obtained from the six equations 
by iteration. Thus we find for the initial choices I\z = 0.6 and 
IZ4 = 0.8, the following set of I 's: 

112 = 0.6, 124 = 0.8, 114 = 0, 143 = 0.9, (28) 

113 = 0.4358898943540674, IZ3 = 0.9815339366124404, 

which yield, upon choosing (JI = 35.0°, AI = 0.25 initially, 
the following self-consistent set of Backlund parameters: 

(JI = 35.0°, AI = 0.25, 

()2 = 88.94992304743539°, Az = 0.45, 
(29) 

(J3 = 100.093234432231774°, A3 = 0.478043195386125, 

()4 = 126.260412122729., A4 = 0.5572076405471. 

When verifying a 4 as a solution on the computer, it is impor
tant that the (J 's and A'S, emerging from system (28), be ar
ranged in ascending order as in (29), otherwise a 4 does not 
satisfy Eq. (7). The coefficients D possess the values: 

DI2 = 2.000 000 000 000 0000, 

DI3 = 1.5954332159489636, 

D23 = 10.358898943 5406677, 

D24 = 3.000000000 000 053, 

D34 = 4.358 898 943 540780, 

DI4 = 1.000 000 000 000 OIl. 

(30) 

The constraint equations (27) playa dual role. On the 
one hand, they ensure that /33 and a 4 turn out to be exact 
solutions of their respective differential equations. On the 
other hand, they are sufficiently powerful to force the func
tions /33 and a 4 to become coplanar, as seen from the accom
panying diagrams. (See, in this connection, also the discus
sion in Gibbon-Zambotti and Kobayashi-Izutzu in Ref. 8, 
as well as in Christiansen's recent preprint. 16) It is amusing 
to realize that in the absence of constraints, /33 and a 4 would 
turn out to be nonplanar, i.e., they would be genuinely three
dimensional functions of x,y,t. 

Our equations were solved in quadruple precision on an 
AMDAHL 470/V5 and the following accuracies were ob
tained. The contraint equations were solved for the lv's to 
about 25 places accuracy. The (J 's and A 's were accurate to 15 
places after the decimal. We have also verified numerically 
that for x = -5, t = 1 and YE[ -30, +30], the two /3 's, 
which are calculated from the () 's and A'S, satisfy Eq. (8) to 
better than 1 part in 1024

. The corresponding a4 satisfies Eq. 
(7) to better than 1 part in 1015. 

5. THREE-DIMENSIONAL PLOTS OF az. a4. AND /33 IN 
2 + 1 DIMENSIONS 

Figures 4,6 and 7 display the structure of the two-soli
ton and four-soliton solutions of Eq. (18b), while Fig. 5 de
picts the behavior of /33 which solves (V2 - a;)/33 = sinh{33' 
Since these solutions depend on the three variablesx,y and t, 
we thought it best to plot them against the space variables x, 
y for different values of the time t. The three-dimensional 
plots were traced on a CALCOMP 770 plotter using 51 
evenly spaced points. We found it convenient, for plotting 
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purposes, to plot the functions Isin(aI2) I and Itanh,831 rath
er than sin(aI2) and tanh,83' respectively. The relation be
tween (x,y) in the text [e.g., Eq. (20)], and (X2,x 1) in the 
various graphs isx = X2 - a,y = X 1 - a, a > O. For exam
ple,inFig.4(b),a = 12.5,sothatX2E[0,25],X lE[0,25).Here 
is a brief description of the various plots. (Observe that 
XMAX=2a.) 

Fig. 4: Figure 4(b) depicts, for 3 different values of the 
timet =T, the evolution of the function Isin(0.5a z(3'(x,y,T») I 
for T = -15,1, +15 over X2E[0,25], X lE[0,25]. In order to 
facilitate comparison between a~3), /3 ~I) and a 4 , we have cho
sen the same (), A values as in (29), namely 
()3 = 100.0932344···°, (J4 = 126.26041212 ... °, 
A3 = 0.47804319 ... , A4 = 0.55720764 .. ·. 

Fig. 5: Fig. 5(a) shows the structure of Itanh{3il)l at 
T = -20 for X2E[O,20] andX lE[0,20]. For/3~I)therelevant 
Backlund parameters are (),,(JZ,(J3 and A \,;1,z,;1,3' as given in 
system (29). Notice that the surface Itanh,8 ~I)I is almost flat, 
i.e., close to unity, near the center [X2,x 1] = [10,10). Fig. 
5(b) shows the structure of I tanh,8 ~I) I for 
T = -20, + 1, +20 over the domain [O,30]u[0,30]. 

Fig. 6: This diagram gives a "close-up" of Isin(0.5a4)1 
for T = + 1 and X 2E[0,5], X lE[0,5]. The eight Backlund 
parameters are listed in (29). We also obtained the following 
asymptotic values for a 4 : 

a
4 

(min) = 0.1975, 

a
4

(max) = 25.155, 

confirming so to speak that a 4 does indeed carry topological 
charge Q = +4. 

Fig. 7: This figure shows the time evolution of 
I sin(0.5a4) I as a function of X 1, X 2 for 
T= -15, -5,0, +5, and +15. 

6. APPLICATION TO SUPERCONDUCTIVITY 

The above information suffices to construct time-de
pendent solutions of Josephson's equation 

[a~ + a~ - a2/(c~at2)]t/'(x,y,t) = (AJ t 2sint/'(x,y,t), (31) 

which plays an important role in superconductivity,5.17.lx 
where it describes the propagation of magnetic flux through 
a Josephson tunneling junction. A Josephson junction con
sists basically of two superconducting metals A, B which are 
separated by a thin nonsuperconducting barrier. In Eq. (31), 
t/' denotes the phase difference between metals A, B which 
causes a supercurrent to flow across the barrier, AJ is the 
Josephson penetration depth and Co the speed of electromag
netic waves along the surface of the barrier (in the absence of 
a Josephson current). Since Eq. (31) has the same structure 
as (18b), its solutions will possess the same functional form 
as in (19) and (14). The first solution, for example, is 

t{!1 (x,y,t;();A) = 4tan- IQ, (32) 

with Q -aoexp! (xIA J )cos() + sin(J [(yl AJ )cosM 
+ (cel I AJ )sinM ] I, which is analogous to the single-fluxon 
solution in 1 +1 dimensions, 18 it is characterized by the pa
rameters «(J,A ) and the constant ofintegration ao. The second 
solution, analogous to the two-fluxon solution in 1 + 1 di-
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mens ions, reads [cf. Eq. (14)] 

¢,z(x,y,t;Ot,02,A.t,A.2) = 4tan,t [D ;'2 (Qt - Q2)/(l - QtQ2)]' 
(33a) 

Qj = ajexp! (X/AJ)COSOj + sinOj 
X [( y/ AJ )cosb.fl'j + (Cot / AJ )sinlMj ] J, j = 1,2, 

(33b) 
with D ;'2 given by 

D ;'2 = ± y' (1 + L ;'2)1(1 - L ;'2)' IL ;'21 < 1. 

A more interesting solution of Josephson's equation in 2 + 1 
dimensions is the four-fluxon solution ¢'ix,y,t) which can be 
determined from a system of equations analogous to Eqs. 
(21)-(27), with ¢'0=0. We shall not discuss these equations 
any further. 

7. DISCUSSION 

We have examined the classical sine-Gordon equation 
in three and four dimensions. Employing Backlund transfor
mations and the appropriate generating formulas, we have 
indicated how to derive an infinite class of exact solutions 
a 2n , n = 1,2,3,.··, in both 2 + 1, 3 + 1 and 3 +0 dimensions. 
For n = 1, no constraint equations are needed to make a2 
exact. For n = 2, on the other hand, the four-soliton func
tion a 4 will become an exact solution of (V2 - a;)a4 = sina4 

only if we impose four coupled constraint equations [Eqs. 
(27)]. The effect of these equations is to make a 4 coplanar. 
Several three-dimensional computer plots are presented 
which depict the time evolution of a 2(x,y,t ), f3lx,y,t ) and 
aix,y,t). t9 

Working specifically in 2 +1 dimensions, we find that 
the Backlund transformation (l8a), together with the appro
priate constraint equations, yields exact multiple soliton so
lutions such as a 4 • The latter function is coplanar and may be 
interpreted as a (2 +O)-dimensional object in a moving 
frame. Our analysis seems to suggest, therefore, that the 
Backlund transformation (18a) is not powerful enough to 
generate multiple soliton solutions a 2n (n = 2,3,4,.··) which 
are truly three-dimensional. We wish to emphasize that this 
result differs from the conclusion drawn on p. 438 of Ref. 12. 
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For any value of the parameter e, e=l= 1, for which a solution to the Chandrasekhar H-equation 
exists, Newton's method may be used to compute the solution by iteration. 

I. INTRODUCTION 

The Chandrasekhar H·equation arises naturally in 
many branches of the theory of radiative transfer. 1-3 The 
equation is 

H{f.l,e) = 1 +eH(f.le) t ~ H(v,e)t/J(v)dv. (1) 
Jo f.l + v 

In Eq. (1), e is a complex parameter, t/JEL 1 (0,1) is given and 
real valued, and H is the function to be found. In this paper 
we normalize t/J by requiring that 

f t/J( f.l )df.l = !. (2) 

Equation (2) will be assumed to hold throughout this paper. 
The solution ofEq. (1) by iteration has been the subject 

of much recent work.4
-
s These papers consider the case 

lei.;;; 1. The difficulty encountered is that Eq. (1) has more 
than one solution forO < lei < 1, only one of which is ofphys
ical interest. Various methods are employed to show that the 
solution to Eq. (1) obtained by iteration is the one of physical 
importance. 

In Refs. 4 and 5, convergence of the iteration scheme 
requires one of the following assumptions: 

t/J>O, f t/J( f.l )df.l = !, (3) 

f 1t/J(f.l)ldf.l';;;!. (4) 

Reference 8 deals with a somewhat more general situa
tion; in the case considered here, the result of that paper is 
that Eq. (1) may be solved by iteration for lei.;;; 1 ifEq. (2) 
holds and 

Sa
l dv 
e - x/vt/J(v) ->0 for all x > O. 

o V 
(5) 

In this paper we assume only that Eq. (2) holds. 
It can often be shown3

,9 that Eq. (1) has solutions for 
values of e with lei> 1. The purpose of this paper is to give 
iterative methods of solution to Eq. (1) that converge for any 
e=l= 1 for which a solution to Eq. (1) exists, and do not require 
positivity assumptions like (3) or (5). 

We work in the Banach space C [0, 1] of complex-valued 
continuous functions on [0,1] endowed with the supremum 
norm. We define a bounded linear map L and a bounded 
bilinear form B on C [0,1] by 

")This work was sponsored by the National Science Foundation under 
Grant No, MCS-7902659, 

(Lf)(f.l) = t ~t/J(v)f(v)dv, 
Jo f.l + v 

B (f,g) Vt) = f( f.l)(Lg)( f.l) + g( f.l)(Lf(f.l»)· 

(6) 

(7) 

We let C denote the complex numbers and define, for 
each eEC, a map F on C [0,1] by 

F(f,e)=f-l- !eB(f,f). (8) 

We may then write Eq. (1) as 

F(H(e),e) = O. (9) 

For fixed e, the Frechet derivative 10 ofF (f,e) with respect to 
fis a bounded linear map on C [0, 1]. We denote this map by 
F'(f,e). Forfand u in C [0,1] we have 

F'(f,e)u = u - eB (f,u). (10) 

Crucial to all our results is the following lemma. 
Lemma A. Assume that t/JEL I [0,1] is real valued and 

satisfies Eq. (2). Let H (co) be any solution to Eq. (1) with 
e = co. ThenF'(H (eo),eo) is an invertible map on C[O, 1] with 
bounded inverse if Co =1= 1. If Co = 1, F'(H (1),1) has a one
dimensional null space spanned by the function 
f( f.l) = f.lH (f.l, 1). The range of F'(H (1(,1)) is 

{FEC [0,1]1 f F(V)t/J(V)dv=O}. (11) 

Before describing our iteration schemes we remark on 
two interesting immediate consequences of the lemma, In 
Ref. 11, Mullikin showed that if t/J>O and satisfies Eq. (2) 
then bifurcation ofEq. (1) takes place ate = 1. More precise
ly, if H (f.l,e) is the physical solution to Eq. (1) for lei.;;; 1, then 
there is E>O so thatH(f.l,e) is an analytic C [O,l]-valued 
function of (1 - e)1/2 in the set 

tel 11-el';;;E, arg(l-e)=I=1TJ. (12) 

Hence the physical solution becomes double-valued 
near e = 1. Mullikin's proof required only that F'(H (1),1) 
have one-dimensional null space, that the range be given by 
Eq. (11), and thatf( f.l) = f.lH (f.l, I) not be in range of 
F' (H (1),1). This last requirement may be written as 

f f.lH (f.l, I)t/J( f.l)df.l =1=0. (13) 

Equation (13) is not a consequence ofEq. (2), but will followS 
from Eq. (5). We have the following. 

Theorem 1.1 Let H (f.l,e) be the physical solution to Eq. 
(1) for lei < 1. Assume that t/JEL 1 [0, I] is real valued and that 
Eq. (2) holds. Then, ifEq. (13) holds, H (f.l,e) is analytical in 
(I - e)1/2 for e in the set given by Eq. (12) for some E> 0, 

The next result is an immediate consequence of the 
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lemma and the implicit function theorem. 12 

Theorem 1.2 Let Ho{fL) be any solution to Eq. (1) for 
c = Co =1= 1. Then there is e> 0 and a function H (fL,C) that is 
analytic and C [O,I]-valued for CE[co - cl <eJ so that 

F'(H (c),c) = 0 

and 

H (fL,Co) = Ho{ fL). 

Hence the set! cl Eq. (I) has a solution, c=l= 1 J is open. 
We now describe our iteration schemes. Convergence of 

both is a consequence of the lemma and the general theory 
developed in Ref. 10. However, we give proofs of conver
gence in Sec. II because in our case the proofs in Ref. 10 may 
be simplified as we assume existence of a solution and seek 
only to show that the solution may be computed by iteration. 

The first scheme is Newton's method. to Let c=l= 1 be 
given. LetHo by an initial guess to the solution ofEq. (I). For 
n> 1, the iterates are given by 

Hn = Hn _I - (F'{Hn _I ,c» -IF{Hn _I ,c). (14) 

Note that in Eq. (14) one must prove that all ofthe inverses 
(F'(Hn _I ,c» -I exist. As we will see this requires that Ho be 
sufficiently close to the actual solution. The advantage of 
Newton's method is rapid convergence. The disadvantage is 
that F'(Hn _I ,c) must be inverted in order to compute Hn. 

Our second scheme is the Chord method. This is called 
"Modified Newton's method" in Ref. 10. Here, for n> 1, 

Hn =Hn_ 1 -(F'{Ho,c»-IF(Hn_l,c). (15) 

Note that for this method only one inverse, (F'(Ho,c»-t, 
must be computed. However, convergence of this scheme is 
slower that for the Newton's method. 

For Newton's method, the result is the following. 
Theorem 1.3 Let c=l= 1 be such that a solutionH (fL,C) to 

Eq. (1) exists. Then there iS€o > Osothat ifilHo - H (c) II < eo 
the iteration scheme given by Eq. (14) converges and 

IlBn + 1 - H (c) II <31c1 IIF'(H (c),c) -I II IlBn - H (C)II2. 
(16) 

For the Chord method we have the following. 
Theorem 1.4 Let c=l= 1 be such that a solutionH (fL,c) to 

Eq. (1) exists. Then there is eo > Osothat ifilHo - H (c) II < eo 
the iteration scheme given by Eq. (15) converges and 

IIHn+1 -H(c)II<21cI eollF '(H(c),C)-lli IIHn -H(c)II· 

We may rewrite Eq. (1) as 

G(H,c)=H-(l-cLH)-1 =0. 

If H is a solution to Eq. (18) and UEC [0,1], we have 

G'(H,c)u = u - CH2Lu. 

(17) 

(18) 

(19) 

A corollary of the proof of Lemma A will be that if 
Co =1= 1 and H is a solution to Eq. (18) for c = co, then 
(G '(H,c» -I exists as a bounded operator on C [0,1]. The 
proofs for Theorems 1.3 and 1.4 extend directly to this set
ting and we have the following. 

Theorem 1.5 The results of Theorems 1.3 and 1.4 re
main valid if F is replaced by G. 

The reader should note that these results do not draw a 
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distinction between the solution to Eq. (1) that is of physical 
significance and the other solutions. Any solution may be 
computed if the initial guess is sufficiently close to the de

sired solution. For c> 1, ifEq. (13) holds, there are two 
equally good candidates for the solution of physical interest, 

and they are complex conjugates of each other. 
However, if one is interested in a particular solution, 

H (fL,C), to Eq. (1), and one knows H (fL,Co) and wishes to 
compute H (fL,C I), then, if Co =1= 1 and C1 is sufficiently close to 
co, one may let H (fL,c I) be the initial guess and Theorem 1.2 
will imply that the solution H (fL,C I) obtained by either of the 
schemes described above will be the solution of interest. 

II. 

In this section we assume Lemma A and prove Theo
rems (1.3) and (1.4). Let c=l= 1 be such that a solution H (fL,C) 
to Eq. (1) exists. Then (F'(H(c),c» -I exists by Lemma A. 
AsF'(J,c) is continuous in both/andc, thereise> Osothatif 
IIH (c) - III < e then (F'(J,c» -I exists. 

Let H oEC [0,1] be such that 

IIH(c) -Holl <eo<e. (20) 

We show that both of the iteration schemes (14) and 
(15) converge, for eo sufficiently small, if Ho is the initial 
guess. We consider Newton's method first. 

By Eq. (20), (F'{Ho,c» -I exists. We show that if 
IIH (c) - Hn II < eo, and eo is sufficiently small, then 
IIHn + 1 - H (c) II < eo and Eq. (16) holds. This will prove 
Theorem 1.3. 

LetHn = H{c) + qn forn>O. We have, by Eq. (14), for 
eo sufficiently small, 

qn + I = qn - [F'(H (c) + qn (c),c)] -I [H (c) 

+qn -I-c H(c) LH(c) 

- cB (H (c),qn) - cqnLqn] 

= qn - [F'(H (c),c) - cB (qn ,.)] -I 

X [qn - cB (H,qn) - cqnLqn] 

= qn - {I - c[F'(H(c),C)]-IB (qn,)}-l 

X {qn - c[F'(H (c),c)] -lqnLqn} 

= c[F'(H(c),c)]-1 qnLqn -

I [cF'(H(c),c)-IB(qn,·)]m 
m= I 

X {qn - c[F'(H (c),c)] -lqnLqn}. 

Hence, as IIfLIli <II 111 2
, we have 

IIqn+III<lcl II[F'(H(c),c)]-lli IIqnll 2 

+ Icl IIF'(H (c),c) -I II liB (qn ")11 IIqn II 

+ o (IIqn 11 3
). 

Hence, if IIqn II < eo is sufficiently small, we have 

IIqn+lll<3 1c 1 II[F'(H(c),c)]-lli IIqn 112 <eO' 

and this is Eq. (16). 
The proof of Theorem 1.4 is similar. Ifwe let Ho satisfy 

Eq. (20) and let Hn = H (c) + Pn be given by Eq. (15), we 
have 
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Pn + I = Pn - [F'(Ho,e)] - I [Pn - eB (H (e),Pn) - epnLpn ] 

=Pn - [F'(Ho,e)]-' [F'(H(e),e)Pn -epnLpn] 

= Pn - [F'(H (e),e) - eB ( Po,.)] - I 

X [F'(H(e),e)Pn - epnLpn] 

= Pn - {I - c[F'(H (e),e)] -1 B ( PO,·)}-I 

X{ Pn -e[F'(H(e),e)] -lpnLPn}. 

Hence, as liB (Po,.) 11< 11P01I, 
IlPn + 1 II < lei 11P01l IlPn II II [F'(H (e),e)] -111 + 0 (11Pn liZ). 
Therefore, if Co is sufficiently small, we have 

IlPn + 1 II <2IelcollF'(H (e),e) -III IlPn II· 
This is Eq. (17), and the proof is complete. 

III. PROOF OF THE LEMMA 

We consider first the case e=l= l. We let Hbe any solu
tion to Eq. (1) or, equivalently, Eq. (18). By Eq. (18) we have 
that H is analytic in fl for Re,u > 0 and 

= [1 - e i' H (fl,e)¢(fl)dfl r I = (1 - ea) -I, (21) 

where 

a = (1/e)[ 1 ± (1 - e)IIZ]. (22) 

For our purposes it will not matter which of the + or -
signs occurs in Eq. (22). 

Let UEC [0,1] be such that F'(H (e),e)u = O. We have 
0= u - eB(H(e),u) = u - euLH - eHLu =H-1u-
- eLu. Hence, 

u = eHzLu = G'(H(e),e)u, (23) 

where G is given by Eq. (18). Let u be any solution to 
F'(H(c),e)u = O. We have 

i' u( fl )¢( fl )dfl 

= e i' ¢(fl)B(H (e),u) (fl)dfl 

= e [ i' ¢( fl )H ( fl )dfl] i' u(jl )¢( fl )dfl· (24) 

Hence either f6U(fl)¢(fl)dfl = Oor f6¢(fl)H(fl)dfl = lie. 
Equation (22) implies that 56 ¢( fl)H (fl)dw=l= lie, as e=l= 1, 
hence 

i'U(fl)¢(fl)dfl = O. 

Ifwe let g(fl) = H-1(fl,e)u(fl) we have 

g=eHL(Hg) 

and 

fg( fl)H (fl )¢( fl )dfl = O. 

Equations (26) and (27) imply that g also satisfies 

g = - eHM (Hg), 

where the operator M is defined for fEC [0,1] by 
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(25) 

(26) 

(27) 

(28) 

(29) 

We define a subspace X of C [0,1] by 

X= {gEC[O,I] I i'g(fl)H(fl,e)¢( fl)dfl =oJ. (30) 

We will be done if we show that Eq. (26) or, equivalently, Eq. 
(28) has only the trivial solution in X. ForJEC 10,1 J defineJ· 
by 

(31) 

Define f3 (j) by 

f3(/)= -e(l-ea)-' i'H (fl)r(fl)tP< fl)dfl· (32) 

Note that f3 (j) is well defined as 1 - ea =1= 0 since e =1= 1. 
For fEC [0,1] define TJby 

TJ= (J* -f3( J»". (33) 

We have, as (Mf)* = Lf* for allfEC [0,1], 

eHL (HTg) = eHL (H (g* - f3 (g»*) 

= eHL (Hg* -Hf3(g»* 

= (eHM (H (g* - f3 (g)})*. (34) 

Therefore, by Eq. 28, 

g* = - e(HM (Hg» * = - eH (M (Hg» * 

= - eHL (Hg*) = (1- ea)f3(g)H + eHM(Hg*). 
(35) 

Hence, as eHMH = eaH - eHLH = eaH + 1 - H 
= 1 - (1 - ea)H, we have, by Eq. (35), 

eHM (H (g* - f3 (g» = g* - (1 - ea)f3 (g)H - f3 (g)eHMH 

= g* - f3 (g). (36) 

Therefore, 
eHL (HTg) = [eHM (Hg* - f3 (g»*] = (g* - f3 (g» * = Tg. 

(37) 

Hence if e=l= 1 andg is a solution to Eq. (26), thengEX, Tg is 
also a solution to Eq. (26), and TgEX. Now as L is compact, 
Eq. (26) has a finite-dimensional solution space. Hence, 
there are an integer k> 1 and numbers {a j }kj = 1 with ak =1=0 
so that 

k I ajTjg=O. (38) 
i= I 

Equation (38) and the definition of T imply that there are 
polynomials P and q so that 

g(fl) =flP(fl2)/q(flZ). (39) 

As T is linear, Eq. (38) also implies that 
k I ajTj+1(g)=0. (40) 

i=l 

Hence Tg = g. This implies that 

(41) 

and hence g = 0 as gEC [0,1]. 
I t remains to consider the case e = 1. In this case we 

have 
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HMH=1 (42) 

and 

(0
1 

Jo H ( f-l, 1 )if;( f-l )df-l = 1. 

As before, we let g be any solution to Eq. (26). We will be 
done if we show that g is of form 

(43) 

for some constant a. As in Ref. 11, this will imply that the 
range of F'(H (1), 1) is given by Eq. (11). 

For fEC [0,1] we define f. by 

I.(f-l) = (l/f-l}f(f-l). (44) 

If g is a solution to Eq. (26), then g. EL 2[0,1], and we have 

g. = (HL (Hg»" = HM(Hg.). (45) 

Hence g. EC [0,1]. We define a(g) by 

a(g) = fif;(V)H(v,l)g.(V)dV. (46) 

We define S (g) by 

S (g) = (g. - a(g» •. (47) 

To see that S (g)EL 2 [0,1] note that g. - a(g)EX and hence 

- HL (g. - a(g» = HM (H (g. - a(g» 

= HM (Hg). - a(g) = (HLHg). - a(g) = g. - a(g). 

(48) 

Hence HM (HS (g» is defined, we have 

HM (HS (g» = (HL (H (g. - a(g»))). = - S (g). 
(49) 

We have, therefore, 
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S (g) = - HM (HS (g» = HL (H (S (g))) 

- Ha(g. - a(g». (50) 

We multiply both sides ofEq. (50) by if; and integrate to 
obtain 

a(g. -a(g» = f S(g)(f-l)(1-HMH)(f-l)df-l=O. 

(51) 

Hence S (g)EX and S (g) is a solution to Eq. (26). The remain
der of the proof follows that for the case c =1= 1. We find 
S (g) = g or S (g) = 0 and 

g(f-l) = ~ ( g:) - a(g») or S(g) = O. (52) 

As gEC [0,1] we must have S (g) = 0 and hence 

g(f-l) = f-la(g). (53) 

This completes the proof. 

IS. Chandrasekhar, Radiative Transfer (Oxford V.P., London, 1950). 
'I. W. Busbridge, The Mathematics of Readiative Transfer, Cambridge 
tracts No. 50 (Cambridge V.P., Cambridge, 1960). 

'K. M. Case and P. F. Zwiefel, Linear Transport Theory (Addison-Wesley, 
Reading, Masachusetts, 1967). 

4R. L. Bowden and P. F. Zwiefel, Astrophys. J. 210,178-83 (1976). 
'G. A. Hively, SIAM J. Math. Anal. 9, 787-92 (1978). 
"L. B. Rail, Rend. Cire. Math. Palermo 10, 314 (1961); also, Computational 
Solution of Nonlinear Operator Equations (Wiley, New York, 1969). 

7R. L. Bowden, J. Math. Phys. 4, 608 (1979). 
Xc. T. Kelley, SIAM J. Math. Anal. 10, 844-9 (1979). 
"N. I. Muskhelishvili, Singular Integral Equations (Noordhoff, Griiningen, 
The Netherlands, 1953). 

IOL. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed 
Spaces (Pergamon, New York, 1964). 

liT. W. Mullikin, J. Appl. Prob. 5, 357-74 (1968). 
12M. G. Crandall and P. H. Rabinowitz, J. Funct. Anal. 8, 321--40 (1971). 

C. T. Kelley 1628 



                                                                                                                                    

Generalized method of a resolvent operator expansion. III 
M.Znojil 
Nuclear Physics Institute, Czechoslovak Academy o/Sciences, 25068 Rez near Prague, Czechoslovakia 

(Received 17 May 1979; accepted for publication 10 August 1979) 

We show that our Born-like parametrized expansion of R (E) = (E - H) - 1 is, after minor 
modifications, well defined even at the pole of R (E) and provides a new method of solving linear 
homogeneous equations. Three different possibilities of application are discussed here: 
(1) An analytic method of solving the differential eauations. It is based on the partitioning of 
generalized power series and illustrated by the new solution of the s -wave Schrodinger equation. 
(2) A consequent model space reduction of Schrodinger equation. In terms of the matrix 
moments of H, the effective interaction is defined as an operator continued fraction. 
(3) A new form of the perturbation theory which dispenses with the solution of the unperturbed 
problem. 

1. INTRODUCTION 

There exists a particularly compact unification of var
ious perturbation theories based on the search for the poles 
E = Ao of the resolvent operator (Green function) 
R (E) = (E - H) - I. It is described, e.g., by Kumar l and 
consists of the formal factorization of R (E) into the singular 
and regular parts W (E) and JI (E ), respectively, in the vicin
ity of the pole. Putting 

W(E) = const/det(E - H), (1.1) 

we may also include some numerical diagonalization meth
ods2 in this scheme since the projector which defines an ei
genstate offull ("perturbed") Hamiltonian H coincides with 
the regular part JI (E) of R (E) in the limit E--+Ao. In the 
present paper, we also include in the same scheme our meth
od of expansion of R (E) (Refs. 3 and 4 quoted here as I and 
II, respectively). In this way we obtain a new, very flexible 
method of solving linear homogeneous equations 

(E - H)Iif!) = O. (l.2) 

The corresponding modified form of expansion is de
scribed in Sec. 2. In the spirit of the method I, we interpret 
Eq. (l.I) simply as an additional restriction for the choice of 
the free parameters. The necessity of such a restriction fol
lows from the fact that after an arbitrary (parametrized) 
rearrangement of the Born series (I), we cannot arrive at the 
convergent representation of R (E) near the pole. As a conse
quence of the restriction, the natural factorization [defini
tion of W (E)] immediately follows and uniquely defines JI. 

An example showing how the method works in its gen
erality is given in Sec. 3. The new analytic solution obtained 
for the s-wave Schrodinger equation with p exponentials, 
p> 1, has a form of a generalized Bessel function. 

When the results of II are taken into account, the pro
jector operator formalism leads to the more restrictive speci
fication of parameters. In this spirit, we complete the stan
dard model space reduction of the SchrOdinger equation by 
the operator continued fraction definition of the effective 
interaction. The formalism assumes the knowledge of the 
modeispacemoments (m) = PHmPofHand is described in 
Sec. 4. 

There is an interesting application of the moment meth-

od of Sec. 4 based on the Taylor series expansion of the mo
ments (m). This generalizes the standard perturbation tech
niques and is developed in Sec. 5. 

Finally, in Sec. 6 we discuss the numerical aspects and 
possible applications of the methods as algorithms for the 
diagonalization of some special matrices. 

2. BORN-LIKE EXPANSION FOR BOUND STATES 

Let us write the Hamiltonian H in the representation 

H= I IA>A<A I +Hc' (2.1) 
A 

where the IA ) 's correspond to bound states (A < 0) and H is 
the continuous spectrum part of H. In the vicinity of A = Ao , 
the pole term in the resolvent operator R (E) = (E - H) - 1 

dominates so that the regularized operator 

i= 1, 

approximates the projector on bound states IAoi ) corre
sponding to the energy Ao. We intend to apply in Eq. (2.2) 
the rearranged Born expansion I. 

We must extend its validity to the singular point Ao' 
Introducing the functions (vectors) I Y~(E,A.o» by the 
equation 

(E - H)I Y~(E,A.o» = (E - Ao)IXD, ie I,MI , (2.3) 

we may write formally (for E#o, cf. I) 

I Y~(E,A.o» = (E - Ao)R (E)IX; ) 
00 M, 

=(E-Ao)I ID~(E)IX~), (2.4) 
l~ 1 s~ 1 

D~(E)= ! Mf1 F~I(E)B~li2F~S2(E) ... B?~\i'F:,r(E). 
Sj= lij + I = 1 
j~ 1.2 ... '/-1 

Here, the (Mk XMk)-dimensional matrix continued frac
tions (MCF)Fk(E) are defined by the recurrence 

Fk(E) = [EI-Ak -BkFk+ 1 (E)Ck + tl-t, k= 1,2, .. ·, 
(2.5) 

with (Mk XMk)-,(Mk XMk + 1 )-, and (Mk + 1 XMk)- dimen-
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sional matrices of free parameters A k , B k' and C k + I , respec
tively, Mk ..;; 00. The relation 

M k _ 1 Mk 

HIXk) = I crIX~_I) + I Arlxn 
r-I r-I 

M k + I 

+ I BrIX~+ I), k = 1,2,.·., (2.6) 
r= 1 

specifies (possibly nonuniquely) the expansion set IIX ~) 1 in 
terms of H and free parameters. 

Now, we consider the limiting transition E-+Ao. Be
cause the vector 

..!o-AOj 

becomes equal to the solution of the homogeneous equation 

(2.8) 

for E = Ao, our aim is to give the precise meaning to the 
E-+Ao limit on the right-hand side of Eq. (2.4). It is clear 
that the difficulties are similar to those in the Born series5

: 

The existence of the auxiliary sequence Fk , k = 1,2, ... ,N, for 
any cutoff N..;; 00 implies that the expansion (2.4) ceases to 
converge because (E - Ao)DI/(EH and I Y~(E.Ao» 
- (E - Ao)l:/.sD r/IXj)-+1 Y~(Ao.Ao» for E-+Ao. 

We shall show first that it is sufficient to demand the 
existence of Fk's for k>2 only. Really, putting 

M, . 

I Y~(E.Ao» = I ~' I"'~'(E», 
s, = I 

N M, 

Ifa(E» = I Id;S(E)IXj), 
I-Is-I 

?a' = (E -Ao)F;S(E), 

d/(E) = BIF2(E) ... BI_IFI(E), 

1=2, ... ,N=00, E=j:.Ao, dl(E)=I, iE1,MI , 

and assuming 

(2.9) 

0= det[AoI -AI - B IF2(Ao)C2] = det{[FI (Ao)] -I}, 
(2.10) 

we see that the limit (E - Ao)F1 (E) = Ox 00 is indetermi
nate and hence I Y~(Ao.Ao» may become nozero. 

The simpler regularization of the series I Y ~ (Ao .Ao) ) 
may be achieved in analogy with the Lanczos numerical 
method6

: We replace ffo in Eq. (2.9) [and Eq. (2.4)] by the 
energy-independent normalization matrix ff that satisfies 
the condition 

(2.11) 

It follows from Eq. (2.10) that JV =1=0 exists. In fact, the 
substitutionJVo-+JV corresponds just to another (energy
dependent) normalization chosen on the right-hand side of 
Eq. (2.3) from the very beginning. 

Of course, the new form 
M, 

(E-H)lyi(E.Ao» = I ~r[FI-I(E)]rslxn (2.12) 
r,s= 1 

ofEq. (2.3) represents the same homogeneous Eq. (2.8) or 
(1.2) in the limit E-+Ao. 
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The multiplicity m'(Ao) of the root Ao in Eq. (2.10) 
determines the possible number of independent rows in the 
matrix JV. We may therefore conclude the following: 

Proposition: Provided that 
(D1) the auxiliary sequence of inverted matrices 

[Fk (E) ] - I is uniquely defined for all k> 1 by the free pa
rameters according to Eq. (2.5), 

(D2) the relation (2.6) between H and IX)'s holds, 
(D3) the series I tP~ (Ao» defined in Eq. (2.9) converges, 

and 
(D4) the multiplicity m'(Ao)..;;MI of the root in Eq. 

(2.10) is less than or equal to the multiplicity m(Ao) of the 
same eigenvalueAo of H, then, with m'(Ao) independent 

rows of the "normalization" matrixA/'is, iE1,m'(Ao), 

SE 1,MI , subjected to the finite number oflinear algebraic 
Eqs. (2.11), the vectors 

M, 

I r(Ao,Ao» = I JVijl tP6(Ao», iE1,m'(Ao) (2.13) 
)-1 

represent the m'(Ao) independent solutions of the homogen
eous Eq. (1.2) corresponding to the eigenvalue Ao. 

Remarks: 
Ad (D1): When the convergence ofMCF (2.5) cannot 

be proved for our choice of free parameters, we may still 
employ an alternative (polynomial) auxiliary sequence r 
(with possibly different convergence domain) introduced in 
Appendix II of Ref. 7. 

Ad (D2): The main assumption defining our method is 
just the "clever" fulfillment of the relation (2.6) which repre
sents the generalization of the Lanczos recurrent construc
tion of the basis (cf. Refs. 2, I, II and Secs. 3 and 6). 

Ad (D3): Again, the typical proof of convergence is giv
en in Sec, 3. Another (iterative) approach was described in 
detail in Ref. 7. 

Ad (D4): This is the only assumption pertinent to the 
E = Ao case of our expansion method. It restricts further the 
freedom in the choice offree parameters (e.g., fixing S in Sec. 
3). In this respect, it is not independent of (D3) (cf. how the 
knowledge of some eigenstates of H is used for the accelera
tion of convergence of the Born series5

) and influences also 
(D2) and (D 1 )(both Fk and IX) depend on the parameters). 

3. APPLICATION TO DIFFERENTIAL EQUATIONS: NEW 
ANALYTIC SOLUTION OF THE SCHRODINGER 
EQUATION 

Certain classes of differential equations may be solved 
by the Taylor series ansatz leading to the solvable two-term 
recurrence relations for coefficients.8 The matrix generaliza
tion of these relations enables us to cover the more compli
cated differential equations by the analogous ansatz which 
may contain more free parameters corresponding to the con
stants in the differential equation. We present an illustrating 
example in what follows. 

In the Schrodinger equation (1.2) we consider the Ha
miltonian acting in the S wave by the superposition of the 
exponential potentials, 

d 2 

H=H(p)= (3.1) 
d? 
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where 0 < YI < Y2 < ... < Yp' O<r, gieC. This form of the po
tential [discrete Laplace transform of an arbitrary function 
g(y)] may be used in many realistic situations. The solution 
with p = 1 is known. It is represented by the Bessel func
tion.5 For p > 1, the solution was known only in an implicit 
form. 5,9 

We apply the method of Sec. 2. The relation (2.6) may 
be fulfilled when we use IX';;) in the form of exponentials 

(riX ';;) = e - 'P (k,m,s ).r. (3.2) 

For simplicity we shall number them by the p nonnegative 
integers il , i2 , ••• , ip and define 

qJ (k,m,s) = S + ~>nYn' 
n=l 

k=l+ 'Iin<N=oo, 
n=l 

(3.3) 

(
il) (il+i2+1) m=l+ + + ... 
1 2 

+ (k - 1 - ip + P - 2) 
P -1 

(
k+P-2) 

<Mk = Mk(P) = p -1 ' 

where S is a free (complex) parameter. The one-to-one map
ping I in l~ = l_(k,m) may be inverted by the prescription 

. . (k+ P -3 -j) lp = max], p _ 1 <m - 1, 

with the (P -2) times repeated formal substitution 

_ _ (k + P - 3 - ip) 1 
mnew - m 1:> , 

p-
knew =k-ip:>l, Pnew =p-l:>l. 

Equation (2.6) determines the form of the parametric 
matrices 

Ck+ 1 = 0, Ak =A ,;;I(P) = - 8m1qJ2(k,m,5), 

Fk(E) = F,;;I(E,p) = 8ml [E + qJ 2(k,m,5)], 

m,le l,Mk(P)' (3.4) 

Bk = Bk(P) cg
,[" 

B1(p - 1) 0, '" 

~) 0, -gpI2, B2(p - 1), 0, .. · 

0, .. ·0, -gplk, Bk(p - 1) 

p> 1, 

k= 1,2, ... , 

so that the conditions (01) and (02) of the Proposition are 
satisfied. Since Ml (P) = 1, it is easy to satisfy (04) when we 
specify E = 52. To verify the Proposition and obtain a for
mal solution of the Schrodinger equation, it remains to prove 
the convergence (03) of the series ItPo) for N = 00. 

Lemma: The series 
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N M, 

(rIY) =JVI I d1(5,p)e-'P(lJ,s)r, 
1= Ij= 1 

N = 00, JV = d: (5,p) = 1, (3.5) 
M , _

1 

d1(5,p) = I d; _ 1 (5,p)B Y _ 1 (P)Ff( - 5 2,P), 
;=1 

je 1,M1' ie2,N, 

i.e., Eq. (2.9) written in terms offunctions (3.2) and param
eters (3.4) is defined and convergent for arbitrary complex 
5 = ( - E)1I2# (k,m) = - ~f= 1 iIYI/2, k > 1, and bound
ed for Ree:>O. 

Proof We prove the absolute convergence of (rl Y) by 
majorizing the series (3.5) and avoiding the points 5 (k,m) 
where detF k- 1 = 0, k> 1, and the matrix Fk ceases to exist. 
For re(r, (0), we have I (rIX';;) I <exp( - rReS) so that we 
may put r = 0 without loss of generality. For large k, we 
replace the elements of matrix Fk by the expression (kYI) - 2 

+ O(k - 3). Thus the action of Bk_ IFk on (OIX';;) may be 
represented by identity matrix multiplied by the overall nu-
merical factor hk - 2 + 0 (k - 3), h = ~~ = 1 ( - gn)lri 
since the number of nonzero elements in each row of B k is 
equal top. The majorizing series may therefore be construct
ed when we substitute Igi I for - gi in Bk and h. This is the 
power series in h with an infinite radius of convergence. 
QED 

Consequence: Provided that the choice of the free pa
rameter 5> 0 is given by the transcendental equation 

N M, 

0= 1 + I Idj(5,p), N = 00, (3.6) 
1=2j= 1 

and the normalization coefficient (number) JV is defined by 
the expression 

N M, M,. 

JV- 2 = I I I d'k(5,p)d'k',(5,p) 
k,k'=ln=ln'=1 
X [qJ(k,n,5) + qJ(k',n',5)] -3, (3.7) 

the series (rl Y) represents a bound state corresponding to 
the s-wave Hamiltonian (3.1) and energy E = - 52 < O. 

Proof Equation (3.6) represents the standard boundary 
condition (rl Y) = 0 for r = 0 and 5 > 0 guarantees the inte
grability for r = 00. From the definition ( Y I Y) = 1 with the 
insertion of formula 10 (X';; IX ';;:) = [qJ + qJ '] - 3 we get Eq. 
(3.7). QED 

In the known special casep = 1, the solution (rl Y) with 
the normalization Eq. (3.7) coincides with the Taylor series 
for the Bessel function5

,10 J2s /y(2gIl2exp( - yr/2)/y). For 
p> 1, the analogous compact form of solution (rl Y) seems 
to be new (cf. Refs. 5, 9). 

Equation (3.6) defines the binding energies as zeros of 
transcendental functions. We have verified numerically the 
consistency and stability of such a procedure. Putting Yi = Y 

andgi =g/p,ie 1,p forp= l,p=2,andp=4,wehave 
reproduced, within the range of the rounding errors, the 
known eigenValues of the classical exponential potential, 
The convergence of partial sums (N < 00 approximations) 
was also good for different samples of potentials. 

WithJV= 1,5= -iEII2,E>0, the function (rIY) 
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represents the irregular solution ofEq. (1.2) and (01 Y) is the 
Jost function. s Thus, the use of the pure imaginary values of 
5 provides the scattering solutions and may be useful in the 
realistic fit of any s-wave phase shifts by the exponential 

potentials (couplings gi and ranges Yo iE l,p ). 

4. MCF DEFINITION OF THE EFFECTIVE INTERACTION 
IN THE SCHRODINGER EQUATION 

We assume that the exact Schrodinger equation (1.2) 
may in principle be investigated by means of the limiting 
transition N-oo in its separable approximation 

(4.1) 

where N denotes the cutoff in the approximate identity 
projector 

N M .. . 

IN = I. Pk> Pk = I. IXD(D k-IY'(XJk I, 
k= I ij= I 

(4.2) 
(X{ IX{,) = /)kk,D %, 

and I = 1. Further, we assume that this transition N-oo 
is technically impossible (e.g., due to the computer limita
tions) and that only theM-dimensional (M<:;;O) model space 
:Jr' p specified by the projector P = PI is tractable in practice. 
It is known ll that the exact solution oflinear Eq. (4.1) is still 
possible within the model space :Jr' p because the nonlinear 
equation 

[EN -PHP- VN(EN)]PlifiN) =0, 

1 
VN(E) = PHQN QNHP, 

E-QNHQN 

QN =IN -P=P2 +P3 + ... +PN, 

accompanied by the definition 

QNlifiN) = (EN -QNHQN)-IQNHP.PlifiN)' 

(4.3) 

is fully equivalent to Eq. (4.1). Only the definition of the so
called effective Hamiltonian Heff = PHP + VN(E) necessi
tates leaving the model space. 

In the spirit of Sec. 2, Eq. (4.1) may be solved by the 
MCF method. Using the (generalized) Lanczos idea of gen
erating IXk ) 's by H, and their elimination for k = N, N - 1, 
... , 2 according to II, we are able to specify the resulting 
equation [Eq. (2.11)] in terms of the model space quantities 
only. It is exciting that the change of notation "translates" 
Eq. (2.11) just into Eq. (4.3) where the effective interaction 
correction VN(E) is redefined and given as the model space 
[(M XM)-dimensional, M<:;; 00), recursively defined opera
tor. In this way the manageable explicit MCF formulas for 
the effective interaction are obtained not necessitating to 
leave the model space. 

This idea is not entirely new because it coincides with 
the classical moment methodl2 for M = 1. The great advan
tage of using M> 1 lies in the sufficiency oflow N 's to deter
minethecorrectionstoEq. (4.1). Even thelowestN = 2 case 
ofEq. (4.1) with the effective interaction correction 

I 
V2 (E) = /32 /32' 

E/32 -a2 
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/32 =PH 2p-PHP.PHP=PHQHP, Q= I-P=Q"" 
(4.4) 

a 2 = PH 3p - PH 2PPHP - PHPPH 2p + PHPPHPPHP 

=PHQHQHP 

provides a useful alternative to the standard doubling of di
mension of arbitrary basis in Eq. (4.1). Provided that the 
correction E21 = E2 - EI is small, it is also easy to show that 
the first-order Taylor expansion of the secular determinant 
leads to the compact approximate prescription 

E2 =EI -1Itr[G(EI)] +O(~I)' 

G(E) = [I + V2 (E)(1IPHQHP)V2(E)] (4.5) 

X [E - PHP - V2 (E)] - I 

for an improved energy. 
An entirely analogous procedure is to be applied for any 

higher N> 2. The algorithm reads: 
(a) Calculate the model space moments (m) = PHmp, 

mE 1 ,2N - I of the Hamiltonian operator H. 
(b) Evaluate the auxiliary matrices a k ,/3k from the for-

. . h '1' I/.rl e lI.rl mulas m II usmg t e auxllary sequences 11k , k • 

(c) Find the solution ofEq. (4.3) where the explicit 
MCF formula for the effective interaction correction (cf. II) 
reads 
VN(E) =/32 W 2(E)/32' 

W k (E) = [E/3k - a k - /3k + I Wk+ 1 (E)/3k + I ] - I, (4.6) 

kE2,N. 

Besides the trivial initialization we may also use an improved 
one,13 W N + I *0, based on our physical interpretation of 
PN + 1.

1
' 

It is useful to use some symbolic manipulation language 
and the computer-produced codes since the explicit formu
las become quite involved even at the next N = 3 cutoff for 
D = I where, g2 = 11/32' (m) = (XI IHmIXI ), and 

/33 = (4) - (2)(2) - «3) - (2) (1»g2«3) - (1)(2», 

a] = (5) - (2)(1)(2) - «3) - (2) (1»g2 

X«4) - (1) (1) (2» - «4) - (2) (1) (1)g2 

X«3) - (1) (2» + «3) - (2) (1)g2 

X«3) - (1) (1) (1»g2«3) - (1) (2». 

By this complexity (and by the computer time consumption) 
we pay for lowered dimension of P with repect to IN (saving 
computer storage). The comparable complexity offormulas 
survives even at M = 1, where the diagrammatic methods 
are used for ak' /3k and their evaluation, IS and it increases 
with N. We may say that without the significant lowering of 
the cutoff N (and hence the number of moments) by increas
ing M (dimension M X N of IN is fixed), the method would 
suffer also from cancellations (loss of precision in the com
puter), and in the classical M = 1 case it seems to be quite 
impracticable [cf. paragraph (g) in Sec. 6]. 

While the energy EN is a good approximation to the 
exact E = E for sufficiently high M, N, only the M-dimen
sional projection P lifiN) of the full solution lifiN) is obtained 
from Eq. (4.3) for any N. IfQ lifiN) cannot be neglected, we 
should not eliminate the rest of the basis. More in the spirit of 
the moment approach is the repartitioning of the basis such 
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that IX; ) new' iE I,M new' will include furtherinteresting com
ponents from IX ~ ) old' k> 1. Because an increase of dimen
sion M would make the evaluation of the matrix continued 
fraction W2 (E) too time-consuming, the dimension reduc
tion is to be used. It is based on the investigation of 13k'S and 
resembles (generalizes) one of the practical advantages of the 
standard Lanczos technique, namely the natural truncation 
of the basis.2

•
16 Really, once13k = (Sk ISk) (cf. II) is singular 

(detPk = 0), it is obvious that the set of M = MOld Lanczos 
vectors ISk) ( = IXk ) without normalization) is linearly de
pendent. The unitary M XM transformation U of Is k) is to 
be found (e.g., by diagonalization of 13k) which annihilates 
the last vector, Is 't) new O. The same U transformation ap
plied to all vectors simultaneously, enables us either to cross 
out IX~) new and start, from the very beginning, with 
Mnew = M - 1 initial vectors IX; ) new = ~f= I IX () old U ji, 

iE1,Mnew, or rather lower just the dimension of higher parti
tions, Mk + i = M - 1, i>O, simplifying the structure of 
MCF. 

In principle, the elimination of the (hidden) dependence 
of the initial vectors IX; ) may occur repeatedly. In full anal
ogy with the Lanczos M = 1 case, we may arrive at the finiti
zation of the basis (i.e., 13N 0 at some N) provided that all 

the initial vectors IX; ), iE l,MI , MI .;;; 00, span only a finite 
invariant space of H. In practice, even the smallness of detP k 

should fully be employed in lowering the dimension M thus 
providing the most natural truncation procedure at all. 

5. GENERALIZED PERTURBATION THEORY 

Knowledge of the moments (m)ij = (Xi1IHmIX f), 

iJE I,M is sufficient for the method of the preceding para
graph to work. Since the calculation of moments (m) may 
represent the serious difficulty in practice, we shall now re
quire that just the perturbation expansion (r < 1) 

(m) = (m)[OI + r(m)[1 1 + y2(m)[2 1 +... (5.1) 

of moments is given. Let us investigate the consequences. 
We apply the method of Sec. 4 to exact H denoting the 

perturbation order in all the formal expansions like Eq. (5.1) 
by adding the SUbscript in brackets. According to the general 
methodology described in II, we have first to construct the 
auxiliary sequence 

[/.rl ~.,n [/.rl 11k 1 k 1 2 TJk = ~ r TJk [n I' ,rE, -, =, , .... 
n=O 

We put TJr·rl = (I + r)[n I' n = 0,1, .. ·, and define 

13 
[k-Ik-II k [n 1 = TJk [n 1 • , 

gk [0 1 = l/13k [0 I' 

n = 0,1, ... , 

gk [n 1 = - gk [0 1 [13k [I Igk [n - I 1 + .. , + 13k [n Igk [0 I]' 

(5.2) 

n = 1,2, ... , 

n = 0,1, ... , k = 1,2, ... , 

in a recurrent way, so that the parameters 13k 
= ~h = or"13k [n 1 are generated from Eq. (5.1). In an entirely 
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similar way we define also () W~ 1 and ak = ~: = 0 r"ak [n J (cf. 
II). Then, the perturbation expansion ofMCF in Eq. (4.6) 
leads to the general formula 

wk(E)[OI = [E13k[OI -ak[OI -13k+I[ol 

Xwk+ I (E)[OPk+ l[od -I, 
wk(E)[n 1 = - wk(E)[o 1 [Pk [I IWk(E)[n - I 1 

+ ... +Pk[nlwk(E)[od, 

Pk In J = E13k In J - a k In 1 

(5.3) 

L 13k + I [n1 ]Wk + I (E)[n, 13k + I [n,]' 

n = 1,2, .. ·, k = N,N - 1, ... ,2, 

which defines simultaneously all the perturbation contribu
tionsinwk(E) = ~:=or"wk(E)[nl by the polynomial recur
rence. At the finite cutoff N, the trivial initialization 
WN + I (E)[n 1 = 0, n = 0,1, ... , defines, in a recurrent way 
again, the sequence wN(E), WN _ I (E),,,,,w2 (E). Finally, the 
perturbation expansion of the effective interaction 
correction 

VN(E) = ! r"VN(E)[nl' 
n=O 

(5.4) 

is to be inserted into the model space Schr6dinger equation 
(4.3). This provides the desired solution so that the perturba
tion theory based on the moment expansion (5.1) is 
completed. 

The connection of our scheme based on Eq. (5.1) with 
the standard perturbation decomposition is the following: 
First, the straightforward insertion of H = Ho + rV, r< 1, 
into (m) gives 

(m)[OI = (XIIH:;,IXI ), 

(m)[IJ = (XIIH:;,-IVIXI ) + (XI IH:;,-2VHo IXI ) 

+ ... + (XI I VH:;' - llXI ), 

(m)lmJ = (XIWmIXI)' 

(m)lm+rJ=O, r=1,2, .... 

Second, the diagonality of Ho (and DI = 1) implies, 

(XI IH ~ = (Xl IH ~ IXI ) (Xl I 

(5.5) 

(5.6) 

so that the knowledge of moments of the interaction (pertur
bation) V is a sufficient input for obtaining the (nonlinear) 
equation 

(5.7) 

[i.e., Eq. (2.10)] for energies and Eq. (4.3) for the eigenvector 
projections. It is also possible (third) to work with the formal 
expansion E = ~: = 0 r"E[n I' but this will not be done here. 
We may conclude that our formulas represent just the modi
fication of the standard Brillouin-Wigner (BW) perturba
tion theory. 1 

It is seen that the second assumption (diagonality of 
Ho, i.e., specification of the basis IX ~) as eigenvectors of 
Ho) may be omitted in our approach for such H's and Ho 's 
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that directly permit us to evaluate the matrix elements in Eq. 
(5.5), e.g., by analytical means when Ho = kinetic energy 
= differential operator and V = local potential. In this 

way, we skip one step in the standard algorithm, namely the 
diagonalization of Ho . 

The MCF character of VN(E) resembles strongly the 
Pade approximation techniquesl7 (resummationI8) and oc
curs here in the most natural way from the very beginning: 
We may place all the large matrix elements of H (e.g., kinetic 
operator T and any polynomial approximation to V in the 
oscillator basis) into Ho and guarantee the smallness of the 
perturbation yV = H - H o' permittingHto be block-tridia
gonal. Then, in the lowest order, the weakened form ofEq. 
(5.6), namely 

PH~ = PH~Ik+ It (5.8) 

completes the analogy with the modified BW theory because 
the formal extension of the model space proiector P---+I 

~ 2N-1 
= Pnew and the knowledge of the first moments I VI m n' 

m + n = 2N, of perturbation reduces the evaluation of 
(m)[O I and (m) [I I in Eq. (5.5) to the finite matrix multipli
cation again. In higher orders the exact matrix form of 
(m)[k I' k>2, contains the infinite summations, but this is 
present in the BW case as well. 

In the important first order case, the simplified form of 
Eq. (5.4) (the effective interaction correction) reads 

VN(E) = f32[0]W2(E)[0/32[0] + yf32[1 IW2(E)[0/32[01 

+ yf32[0IW2(E)[0/32[1 1+ yf32[0]w2(E)[1 /32[01' 

(5.9) 

wk(E)[II= -Wk(E)[OI[Ef3k[ll- a k[11 

I 13k + I[n, ]Wk + I (E)[n,l 
n 1 +n.:-+n 1 =1 

Xf3k+1 [n,]]wk(E)[OI' k = 2,3, ... ,N. 

It should be complemented by the MCF [the first row ofEq. 
(5.3)] and by the definition of parameters [Eq. (5.2) for 
n = 0, I plus similar equation for a's]. 

In practice, the cutoff N is to be fixed by the properties 
of Ho but the classical dependence among Ho, Eo (be eigen
value of Ho) and IXk) (be eigenstates of Ho) is removed in 
the spirit of the realistic situation: 

(a) The reliable (variational) initial approximation Eo 
to E usually exists, shortening the root search in Eq. (5.7). 

(b) The good physical models of ItPN) simplify the con
struction of model space and may lower significantly the 
cutoff N (cf. the truncation procedure mentioned at the end 
of Sec. 4). 

(c) The rest of the unperturbed basis IX2 ), IX3 ), ... is 
almost arbitrary and the flexibility of partitioning enables us 
to keep the magnitude of perturbation H - Ho within any 
predetermined limits. Thus, we may avoid the convergence 
problems and the necessity of using the higher perturbation 
orders for the standard two-particle interaction Veven if it is 
not small as a whole. This is very useful since the higher 
moments V\ k;;.2, represent the more-particle forces. 
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6. A FEW REMARKS FROM THE NUMERICAL POINT OF 
VIEW 

When we interpret H as the block-tridiagonal or finite 
matrix, then Sec. 2 or 4, respectively, defines the methods of 
its numerical diagonalization. Nevertheless, they are not de
signed to replace the standard computer codes for diagonali
zation of the matrix form of H. The reason is simple: From 
the computer time point of view they are less effective than 
their special case with M = 1 suggested by Lanczos.6 The 
exceptions are as follows. 

(a) We want to reduce the loss of precision E. In the 
generalized Lanczos algorithm generating the basis IX ~ ) 
from IX~ ) by H according to Eq. (2.6) (cf. also II), the value 
of E is proportional to the number of subtractions2

; it de
creases as 11M (at fixed dimension n = M X N). In some 
cases, the necessity of reorthogonalizing2 the basis may thus 
be avoided. 

(b) His a band matrix [e.g., from (a)]. Then, the param
etersA k , Bk , and Ck + I' k = 1,2, ... , are not free and are fully 
determined by the matrix elements of H+ (cf. I, especially 
Sec. 2). Here, Eq. (2.10) [the condition (D4)] has a standard 
meaning of the secular equation det(E - H) = O. It deter
mines not only the eigenvalues ,.1,0 (cf. Ref. 19) but also MCF 
Fk (,.1,0) and hence the eigenvectors I Y) at the same time. 
Physically, the advantage lies in nonmixing of the different 
configurations in the basis which remains fixed. 

(c) H is a sparse matrix and has the block-tridiagonal 
form after the basis is appropriately renumbered. This gener
alizes the band method (b). Some important technical details 
(regularization of random singularities, etc.) were discussed 
elsewhere. 7 

(d) H may be approximated by the block-tridiagonal 
matrix Ho. E.g., the many-body Hamiltonian H = T + Vin 
the oscillator basis may be truncated in the nonstandard way 
preserving only the T matrix elements outside the finite (M
dimensional, M < 00) model space. Then Ho = T + PVP is 
the block-tridiagonal matrix (the fanlike one, with Mk + I 

>Mk ). MCF formulas represent a direct generalization of 
the (M = 1) continued fraction method of Bassichis and 
Strayer. 20

•
13 The perturbation theory of Sec. 5 contains an 

explicit prescription for including the corrections V - PVP 
in a systematic way. 

(e) The matrix H may be truncated to the block-tridia
gonal form Ho. The smallness of the error should be tested 
iteratively, increasing partition dimensions Mk (i.e., "open
ing the fan"). 

(f) The n X n matrix H is entirely general and it is too 
large to be stored in the computer. In this case, the choice of 
the model space may iteratively be improved in the spirit of 
the Lanczos method and in a way suggested for M = 1 by 
Berger et al. 21 They use the lowest cutoff N = 2. The M> 1 
generalization of this is quite straightforward: From the old 

basis IX n, kE 1,M1 , IXn, kE 1,M2 , we define the new vec
tors IXn new = I Y) = %ltPo) according to Eq. (2.9), and 
arbitrary IX;') new orthogonal to IX 7) new' All the necessary 
nonzero parameters A y, BY, C ~, and A ~ are defined by the 
lowest moment formulas (II) adapted for convenience as 
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PHP=A,(=a,), 

PHQHP=B,C2(=132)' Q= I-P, 

PHQHQHP=B,A2C2( =a2)· 

(6.1) 

As well as for M = 1, this definition ofA"B" C2 , andA 2 is 
not unique and admits some convenient conventions (cf. C2 

= B ,+ and the choice of positive sign in Ref. 21). 
(g) In paragraph (t), entering of QHQ {[(n - M) 

X (n - M)]-dimensional matrix J into the storage of the 
computer and the matrix multiplication on the left-hand side 
of Eq. (6.1) are to be done "row-wise" since we assume n2> 
storage capacity> n>N X M. Hence, the restriction to 
N = 2 is not substantial. Using the general moment formulas 
(II) in the form of the algorithm initialized by the three 
M XM matrices g, = 0, 13, = 1, a, = PHP, two 
(n - M) XM matrices To = 0, W, = QHP, and two 
(n - M)X(n - M) matrices Yo = 1, U = QHQ (to be ma
nipulated row-wise), we define the auxiliary sequences a k 

and 13k by the recurrent prescription 

gk-' =(f3k-')-" 

Yk-, = Yk - 2 - Tk - 2gk-, T k+_ 2, 

Tk _, = Yk-, Wk_" 13k = W t-, Tk _" (6.2) 

Wk = UTk _" ak = T k+_, Wk, k=2,3, ... ,N. 

The first three items may be skipped for k = 2 when we 
change the initialization tog, = 1, T, = W,' Y, = 1. It may 
be shown that the algorithm (6.2) is an equivalent reformula
tion ofthe method of Sec. 4 when the moments of H are not 
known and are to be approximately evaluated by the (trun
cated) matrix multiplication. 

7. CONCLUSIONS 

The main feature of our method is its structure of the 
Born series reordered by means of the introduction of free 
parameters (idea of Haydock22). In the present third part of 
the series (I, II), we may conclude that it treats both the 
homogeneous and nonhomogeneous equations in the same 
way. 

The flexibility of the method is connected with the a 
priori freedom in the choice of parameters. In this sense, Wt 

may interpret and relate the special cases (Taylor series 
+ orthogonali7..ation = Lanczos method6

) as well as the 
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generalizations (M = 1 Lanczos method -+M> 1 Graffi. and 
Grecchj19 band matrix MCF method). It seems to us that the 
practical value of such a general formalism is in filling the 
gaps between the known methods (e.g., between the classical 
theory ofmomentsl2 and the matrix ofPade approximants23 

to the Born series or the generalized Brillouin-Wigner per
turbation theory24), but the main merit will be its heuristic 
power. We believe that it is well illustrated by our generaliza
tions of the Bessel functions (M = 1 power series -+M> 1 
Dirichlet series25), by the model space formulas for the effec
tive interaction corrections, and by a new formulation of the 
perturbation theory. Because of the methodical character of 
the paper, we have deferred further applications as well as 
any detailed calculations to later publications. 
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For Markov processes and Hamiltonians given by energy forms, singular drift coefficients and 
potentials more general than distributions are allowed. We show that the forms can be 
regularized in such a way tha the approximating processes and semigroups converge as the 
regularization is removed. 

I. INTRODUCTION 

The theory of Dirichlet forms on L 2 spaces, which has 
been developed in connection with potential theory and the 
theory of symmetric Markov processes (see, e.g., Refs. 1-6) 
has been applied to quantum mechanics in our previous pa
per.7 We have shown in particular that by means of this the
ory it is possible to define the quantum dynamics for cases 
where the Hamiltonian cannot be written as the perturba
tion (in the sense of operator - or form - sums) of the 
kinetic energy by a potential term, supposed to be a function 
or a distribution. In fact Dirichlet forms permit to handle 
cases, like zero range potentials in R d, which have no mean
ing as distributions (for d> 1) (1; see also Ref. 8 for another 
treatment). By the method of Dirichlet or energy forms the 
Hamiltonian is defined as the self-adjoint positive operator 
HI' associated with the positive form I ~ f(V Ifd", in 
L 2(d",) , where d", is a measure on R d, satisfying some mild 
regularity condition e; "admissibility" in the sense of Ref. 
7). The measure", is associated with the infimum of the spec
trum of HI" which need not be an eigenvalue. The associated 
eigenfunction ("ground state function") determines HI' . The 
idea of determining Hamiltonians by "ground state func
tions" had occurred in connection with the canonical for
malism (see e.g., Refs. 9, 10) and has received renewed atten
tion in recent years in connection also with questions of 
quantum field theoryll-20 and stochastic mechanics. 21-23 

Some of the methods developed found applications in the 
theory of stochastic processes and equations. The method of 
Dirichlet forms, being a way of introducing Hamiltonians 
directly by energy forms f(V /)2 d", rather than sums of op
erators or forms, should be well suited for the handling of 
applications like, e.g., approximation and stability ques
tions. Some of these questions have been discussed by 
Ezawa, Klauder, Shepp and Namhofer. 24-26 In particular 
these authors discussed in several examples the possibility of 
approximating the processes given by ground state measures 
corresponding to smooth potentials. 

In the present paper we obtain some general results 
about approximation of the processes given by Dirichlet 
forms. We show that energy forms and Hamiltonians given 
by a measure of the type d",(x) = p(x) dx on R d can be ap
proximated, in the strong resolvent, i.e., operator semigroup 
sense, by energy forms given by d"'n (x) = Pn (x) dx, where 

Pn converges suitably to P, in such a way that p can, e.g., 
correspond to "singular potentials" whereas the Pn corre
spond to smooth potentials. We then obtain weak conver
gence of the corresponding Markov processes. It is to be 
noticed that our stress is on results, which do not require 
(resp. require a minimum of) smoothness or restrictions 
about growth at infinity for the densitiesp and p n , and hence 
for the associated drift coefficients or potentials. This is in 
contrast to the types of approximation results, which are 
obtained by other methods, like, e.g., in the theory of sto
chastic equations, 27 .28 or in methods based on the existence of 
a potential as a measurable function,2'H3 or like a distribu
tion. 34 Note that most of our results are valid for processes on 
R d, for arbitrary d. Some more detailed results for d = 1 are 
also discussed and they should point, once the L 2-potential 
theory for arbitrary regions R d is further developed, to 
stronger results in the d-dimensional case, too. 

II. REGULARIZATION OF INTERACTIONS 

Let f/J be a real-valued measurable function on R d such 
that f/JEL ~oc (R d) and the measure d",(x) = f/J(X)2 dx is an 
admissible measure in the sense of Ref. 7, i.e., such that the 
positive quadratic form on C 6 (R d),f R d(V /)2 d", (V the gra
dient), is closable in L 2(R d,d", )=L 2(d",). We shall also say 
for simplicity that such a f/J is admissible. In Refs. 2 and 7 
several sufficient conditions for a function f/J to be admissible 
were given. In particular we recall that f/J, V f/J E L ~oc (R d) is a 
sufficient condition; for other such conditions see Theorems 
2.1-2.4 in Ref. 7. Now let f/J be admissible; then the closure of 
the form f R d(V /)2 d", is a closed positive quadratic form on 

L 2(R d,d",) called the energy lorm associated with "" Such a 
form is a diffusion Dirichlet form in the sense of Ref. 15. Let 
H = V·V be the positive self-adjoint operator in L 2(d",) 
uniquely associated with the energy form given by"" where 
V is now the closed gradient operator and V· its adjoint in 
L 2(d",). In the case where f/J > 0, almost everywhere with 
respect to Lebesgue measure, the map I ~ f/J - 1 I gives a 
unitary equivalence between L 2(R d,dx) L 2(dx) and 
L 2(R d,d",) L 2(d",) and by this equivalence to HI' there 
corresponds a self-adjoint positive operator H in L 2(R d,dx) 
such that 

(2.1) 
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for any f E rp D(H 1-') . We recall that, as shown in Ref. 7, if rp 
is in addition sufficiently smooth (e.g., Vrp and rp -I Vrp E 

L ~oc (R d» then the quadratic form associated with His 
given for fEe b (R d) C L 2(dx) by f R d 1 V f 12 dx 
+ f Wi V f 2dx, with V =1 V f3 + !f32, f3 = 2rp -I Vrp in the 

sense of distributions. In this case, H is a Schrodinger opera
tor, corresponding to a potential V, which is a generalized 
function. In case rp is smoother, e.g., such that in addition 
rp -I .1 rp E L ~oc (R d), where.J is the Laplacian, then V is a 
Schrodinger potential in the usual sense of a measurable 
functiononRdandHisequalto -.1 + VonC~(Rd). We 
shall call the operator H given by (2.1) with HI-' = V*V a 
(singular) Schrodinger operator. In general, for rp only sup
posed to be admissible, it is not possible to write H as the 
perturbation of the Laplacian.J by a potential V, which 
should be a measurable or generalized function. It is, howev
er, natural to ask whether even in this singular case it is 
possible to find approximations dJ-ln (x) = rp~ (x) dx the mea
sure dJ-l(x) so that the associated operators Hn - defined as 
in (2.1), 

rp n- Wn f = HI-'n rp n- If, (2.2) 

with HI-' .. = V*V in L 2(R d,dJ-ln) = L 2(dJ-ln) , where V is the 
gradient operator in L 2(dJ-ln) and V* is its adjoint - are 
"smoother" than H and converge in the resolvent sense to H 
as n _ 00. In particular we are interested in the situation 
where Hn can be written in the form 

Hn = -.1 + Vn , (2.3) 
where the Vn are measurable functions, so that the Hn are 
Schrodinger operators in the usual sense. We shall now ex
amine in general the question of approximants Hn given by 
(2.2) for H. 

Let rp> 0 Lebesgue-almost everywhere on Rd. Let rpn 
be an increasing sequence of positive admissible functions on 
R d, bounded pointwise Lebesgue-almost everywhere by rp, 
i.e., 

o < rpl <rp2 < ... < rp (a.e.). (2.4) 

Suppose rp E L ~oc (R d). The operator V is closed in L 2(dJ-ln) , 
by the assumption that rpn is admissible; thus we have that 
the operator rpn V rpn- I is the operatorin L 2 (R d,dx) unitari
ly equivalent to V by the unitary transformationf - rp n- I f 
from L 2(dx) onto L 2(dJ-ln). Hence rpn V rpn- I is closable 
when restricted to functions ofthe form rpn C ~ (R d) and 
rpn V rpn- I is closed. Since, by (2.1), rpn /rp is a bounded oper
ator defined everywhere in L 2(dx) we then have that 
(rpn V rpn- I ) rpn /rp is closed in L 2(dx), with domain contain
ing rp C b(R d). Let now h (n) be the positive quadratic form 
on L 2(dx) with domain D (h (n» 

= {I E L 2(dx)lf(V[f /rp ]?rp ~ dx < oo}, defined for 
1 E D (h (n» by 

h (n)(/)_ J (V [// rp ) )2rp ~ dx . (2.5) 

Since 

h(n)(I) = J (rpnVrpn-l(rpn/rp)ffdx (2.6) 

by the above considerations we have that h (n) is a closed 
form. Moreover we have by (2.4), 

o <h (n) <h (n + I) < ... < h , (2.7) 
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where h is the energy form in L 2(dx) given by dJ-l = rp2dx, 
i.e., 

h(l)= f (V[f/rp])2rp 2dx. 

In particular we then have 
D(h(n»~ D(h)~ rpC~(Rd), 

(2.8) 

(2.9) 

which shows in particular that the forms h (n) are all densely 
defined quadratic forms on L 2(R d,dx) . Suppose now 
rpn - rp Lebesgue-almost everywhere and let h (00) be the 
positive quadratic form defined by 

h (00)(1) = lim h (n)(I) (2.10) 

for all 1 in the domain 

D (h (00» = {f E ~ D (h (n» 1 }~moo h (n)(I) < 00 } • 

By a Theorem of Kat035 and Simon36 (Theorem 3.1) on 
monotone sequences of positive closed densely defined qua
dratic forms we have that h (00) is a densely defined, closed, 
positive quadratic form and that H (n) _ H (00) in the strong 
resolvent sense, where H(n) and H(oo) are the positive self
adjoint operators in L 2(dx) uniquely associated with the 
closed positive forms h (n) resp. h (00). 

By the equality of the domains of the form h (00) and the 
form (H f~~ f ,H f~~ I) , with H(rp) (rp V rp - 1)* rp V rp - I, 
the latter having domain D (H f~D = D(rp V rp - I) in 
L 2(dx), we have that H(oo) = H(rp). But H(rp) is the positive 
self-adjoint operator in L 2(dx) associated with the energy 
form f (V [// rp ] )2rp 2 dx given by dJ-l = rp2dx; hence H(rp) 
= H. Thus H(oo) = H(ip) = H, h = h (00) and 

H(n)_H (2.11) 

in the strong resolvent sense. 
We have thus proven the following: 
Theorem 1: Let rp n , rp be admissible functions on R d 

such that 0 < rp I <rp2 < .,. <rp, rp n t rp, Lebesgue-almost ev
erywhere. Leth (n)(I) - f (V[f /rp ])2rp~ dxandletH(n)be 
the associated self-adjoint operator on L 2(R d,dx). Then 
h (n)(I) t h (/) as n _ 00 and H (n) _ H in the strong resol

vent sense. 
Remark: The assumption that rp be admissible can be 

replaced by the assumption that rp<t/J almost everywhere, 
with t/J admissible. The a.e. convergence of rpn to rp yields 
automatically that rp is admissible, by Theorem 3.1 of 
Ref. 36. We shall now consider the positive self-adjoint 
operator 

Hn (rpn Vrp n- I)*(rpn Vrp n- I) (2.12) 

in L 2(dx), which is the operator in L 2(dx) associated with 
the closed positive form 

(H!/2 f,H!/2 /) = f (V[I/rpn])2rp~ dx, (2.13) 

i.e., in case rpn > 0 a.e., with the energy form in L 2(dJ-ln) 
given by dJ-ln = rp ~ dx. One has, for any fE D(H(n)1I2) 
= D (h (n» 

h (n)(I) = (H(n)1I2 f ,H(n)l12 /) 

= J [rpn Vrp n- 1)(rpn/rp)f]2 dx 

= (H !/2(rpn/rp)1 ,H !/2(rpn/rp )f> , (2.14) 
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hence, by the uniqueness of the self-adjoint operator associ
ated with a given closed positive quadratic form, 

H(n) = [H!12(CPn/cp)]*H!12(CPn/(P). (2.15) 

We shall now see that from (2.15) follows 

H(n) = (CPn/CP )Hn (CPn/CP). (2.16) 

In fact this is a consequence of the following. 
Lemma 2: Let A,B be self-adjoint operators in a Hilbert 

space JY and suppose that the domain D (AB) is dense, that 
AB is closable, that D (B ) contains the range of A, that B- 1 

exists, and that one has D(B - I (AB )*) ::J D (AB )*). Then 
(AB)* = B *A *. 

Corollary: If A,B are self-adjoint operators in a Hilbert 
space JY, with B,B - 1 bounded and D (AB) dense, AB closa
ble, then (AB)* = B *A *. 

Proof That (AB)* ::J B * A * = BA is obvious. By the as
sumption that B- 1 exists on a domain containing D (A ) we 
have 

(AB)**B -1 ::J A . (2.17) 

From this it follows easily, using the self-adjointness of B- 1
, 

that 

«AB)**B -1)* C A * =A. (2.18) 

On the other hand, 

«AB)**B -1)* ::J B -1(AB)*; (2.19) 

hence, from (2.18), 

A X = B- 1 (AB)* X (2.20) 

for all XED (B -1 (AB )*). Since by assumption the range of 
A is contained in D (B), (2.20) yields 

BA X = (AB)* X (2.21) 

for all XED (B - I (AB )*); thus alortiori, due to the assump
tion D (B - I (AB )*) ::J D «AB )*) , 

BA ::J (AB)* . (2.22) 

But (2.22) yields then the Lemma .• As a consequence of the 
Corollary to Lemma 2 we have the following 

Lemma 3: Let CPn be admissible, CPn > 0 a.e., and as
sume CP/CPn E L OO(R d). Then 

H(n) = (CPn1cp)Hn (CPn1cp) 

as self-adjoint operators in L 2(df-ln) . 
Proof Take =L\df-ln),A =H!12, andB =qJn1qJin 

Corollary of Lemma 2. Then, D (H ~12(CPnlcp» 
= D (H (n)1/2) being dense, we see that the assumption 

D (AB ) dense is fulfilled. Also (AB)* exists and is densely 
defined, since 
(qJ n / qJ)H :,/2 is densely defined, qJ n / qJ being bounded. Hence 
the assumption that AB be closable is satisfied. The lemma 
follows from the Corollary to Lemma 2. • 

In order now to get a corresponding result to Theorem 1 
for the Schrodinger operator Hn instead of H (n) we shall use 
Lemma 2 together with the following result, which follows 
immediately from a general result of Kurtz37 whose Hilbert 
space version says that strong resolvent convergence is 
equivalent to the existence of the strong graph limit (see e.g., 
Ref. 38, p. 293). 
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Lemma 4: For all g E D (H) there exists a sequence gn 
ED (H (n» , converging strongly in L 2(dx) to g and such 
thatH(n)gn converges strongly inL 2 (dx) toHg as n ---+ 00 •• 

Let now gbe arbitrary inD (H) C L 2(dx) and letgn be as in 
Lemma 4. Consider the sequence In = (qJn1CP )gn in 
L 2(dx). SupposeqJn/qJ i 1 inL 00 (dx), then we have thatg is 
the strong limit in L 2(dx) of In . Consider now HJ n . We 
have HJ n = Hn(CPn/CP) gn and from Lemma 3, 

(2.23) 

sincegn ED(H(n». 

But H (n)gn ---+ Hg strongly as n ---+ 00, by Lemma 4. On 
the other hand CPn/qJ t 1 in L 00 (dx) implies (qJ/CPn)H in L 00 

(dx). ThenH(n)gn ---+ Hg implies (cpICPn)H(n)gn ---+Hg 
strongly as n ---+ 00. Thus, from (2.23), Hn In ---+ Hg, strong
ly as n ---+ 00. We now want to use the result of Kurtz men
tioned above that the strong resolvent convergence is equiv
alent to the existence of the strong graph limit. First we 
remark that fora pair \g,Hgj ,g E D (H) we have proven the 
existence of a sequence In ED (Hn) with In ---+ g and Hn 
In ---+ Hg , strongly as n ---+ 00. This is, however, the same as 
to say that \g, HgJ is in the strong graph limit of Hn and 
hence one has the strong resolvent convergence of Hn to H. 
Hence we have proven the following 

Theorem 5: Let CPn ,CP be admissible functions on R d 

such that 0 <qJl <qJ2 <"'<qJ a.e., qJn/qJ t I in L OO(dx). Let 
Hn be the self-adjoint operator in L 2(dx) associated with the 
energy form inL 2(df-ln) given by df-ln = qJ ~ dx. LetHbe the 
self-adjoint operator in L 2(dx) associated with the energy 
form in L 2(df-l) given by df-l = qJ 2 dx. Then one has that Hn 
converges to H as n ---+ 00 in the strong resolvent sense .• 

Remark: As in the Remark following Theorem 1 we can 
replace the assumption that cP be admissible by the assump
tion that cP < if; a.e., with 1/J admissible. We shall now consider 
the situation where CPn is a decreasing sequence of positive 
admissible functions on R d , such that qJl >qJ2 >"'>qJn 
>'''>cP> 0 a.e. Then we have, defining h (n) , h as in (2.6), 
(2.8) 

h (I»h (2» .. ·>h (n» .. ·>h> 0 . 

Supposecpn ! cpa.e.LetD(hoo)=un D(h(n» C D(h)andfor 
I ED (h 00 ) , h 00 (f) limn ~ 00 h (n)(f). From a result of Si
mon (Theorem 3.2 in Ref. 36) one has that H (n) converges in 
the strong resolvent sense as n ---+ 00 to the closure of the 
largest closable quadratic form less than h 00 • Assume qJ is 
admissible. Then h is closed being the energy form associated 
with qJ, hence h restricted to D (h 00 ) is closable and coincides 
with h 00 • By a result of Kato (Ref. 35, Theorem VIII, 3.11) 
one has then that the closure of h 00 is actually equal to hand 
H (n) converges in the strong resolvent sense as n ---+ 00 to H. 
If we suppose moreover that qJ n / qJ is in L 00 (dx), then we 
have, analogously as in the proof of Lemma 3, that 
(qJJqJ)Hn(CPn/qJ) = H(n) and if CPn1cp ! 1 inL 00 (dx) we have 
then, as in Theorem 5, that Hn ---+ H in the strong resolvent 
sense. Hence we have the following theorem, which corre
sponds to Theorems 1 and 5 in the case of a monotonic de
creasing sequence CPn rather than a monotonic increasing 
one. 
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Theorem 6: Let rpn be admissible and such that rpl >rp2 
>rpn > ... > rp > 0 a.e. Suppose moreover rpn ~ rp a.e. Let 
h (n)(f) = S (V [// rp ] )2rp~ (dx) and let H (n) be the associat
ed self-adjoint operator on L 2(dx). Then h (n)(f) ~ h (f) as 
n -+ 00, where h (f) = S (V [I /rp ])2rp 2 dx is the energy 
form given by rp2 dx and H is the associated self-adjoint oper
ator on L 2(dx). Moreover if rpn/rp ~ 1 in L ""(dx) then Hn 
-+ H in the strong resolvent sense, where Hn is the energy 
operator in L 2(dx) associated with the energy form given by 
rp~ dx. • 

Examples: (1) Letd = N, rp(x) = e-ui'<jlxi-xjl, 

x = (XI , ... ,xN),x; E R,A E R. rp is an admissible function and 
the corresponding energy form is 

f(V[ I/rp ])2rp 2 dx 

=f(Vf)2 dX - 4A r-f I(xl···x; =xj ••• XN )2 
1< J 

XJldx k + N(N -1)A 2f 12 dx. (2.24) 

The associated Hamiltonian, formally described by 
- Li -4Al: . {j(x - x.) + N(N - 1)A 2 , has been stud-

E < J I J 

ied before in several connections. 39,40 Ifwe take rpn (x) 
= exp[ - A l:i< j (Ix; - x j 12 + lin) 112] ,then we have 

that Vn(x) = Lirpn (x)/rpn (x) are smooth potentials ap
proaching zero at infinity; hence H n = - Li + l:; < j Vn (x; 
- X .) + N (N - 1)A 2 is a Hamiltonian, self-adjoint on the 
dom~in of Li, with two-particle smooth interaction. We can 
apply Theorem 5 to this case to obtain the strong resolvent 
convergence of the regularized Hamiltonian H n to H, H be
ing the self-adjoint operator associated with the energy form 
given by (2.24). 

(2) Consider now the equation - rp" + A I x I - a rp = 0 
on R, with 1 < a < 2. It is noted in Ref. 7 that one has a one
parameter family of solutions lying in L ~oe (R ), rp p 

=(1- {3)rpo+ {3rpl, {3ER,withrpO(x)=x+ O(x3
-

a) 
and rpl(X) = 1 + 0 (x2 - a) in a neighborhood of x = 0, so 
that rpP are admissible. Consider, e.g., rp (x)=rp I(X), then 

A 
rp(x) = 1 - -----

(2 - a)(a - 1) 
X Ixl2-a + O(lxI 2- a) 

in a neighborhood of x = O. For A > 0 we see that we can 
approximate rp(x) by smooth strictly positive functions 
rpn (x) such that 0 < rpn <rp and such that for IXn I <an one 
has rpn (x) = 1 - lin - dnx2 , where an ,dn are suitable con
stants and rpn(x) = rp (x) for Ixl>an . For the continuity of 
rp nand rp' n at x = an one has to require 

A ( Aa ) - a/(2 - a) 
d = 2(a _ 1) (a - 1)(2 - a)n 

and 

( 
Aa )11(2 - a) 

an = (a - 1)(2 - a)n . 

For Ixl <an one has then 
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Lirpn v=-n 
rpn 

a smooth "approximation" of a square well potential of 
width an and depth - 2dn/(1 - n - I) . 

Remark: The assumptions for the results in this section 
involve convergence of rpn to rp in a strong sense; however, 
they do not involve smoothness and/or growth conditions 
on rpn and rp, hence also not on the corresponding drift coeffi
cients {3n = 2Vrpn /rpn ,{3 = 2 Vrp/rp (see Ref. 7) nor the cor
responding potentials Vn = Lirpn/rpn , V = Li rp/rp, which 
might very well not be measurable functions or distributions. 
Let us mention that there are many results in the literature, 
involving other techniques, for the cases where Vn , Vexist as 
measurable functions or distributions. Sufficient conditions 
for strong resolvent convergence are e.g., 

(a)Refs. 32,33: IVn 1< IVn + I I < IV I ,vn -+ V 
pointwise, I V 11/2 D (V)nL 2(dx) dense in L 2(dx), V_ 
<A ( - Li) + D, as forms onD (V), with V _ = - min(V,O); 

(b )Refs. 29,30: Vn , VEL ioe ,Vn , V> 0, V -->- Vn in 
Lioe 

(c) Ref. 34: V = V + + V _ , V_distributional and 
"small" with respect to ( - Li ) in the sense of forms, Vn in
volving smooth approximations of V _ (see Ref. 34 for 
details). 

Other results obtained by methods of stochastic equa
tions and/or for the case d = 1 will be mentioned in the next 
section. 

III. WEAK CONVERGENCE OF REGULARIZED 
PROCESSES 

We first consider the same situation as in Theorems 5 
and 6 in Sec. II. Let rpn be a sequence of admissible functions. 
Then the energy form 1-+ S (V I?dfln = (H ::'2 1 ,H ::'2 f) 
is a closed positive quadratic form on the domain D (H ::'2) 
CL 2(dfln) where HI' .. is the self-adjoint positive operator 
given by HI' .. = V·V , where V is the closure in L 2(dfln) of 
the gradient operator considered as acting on C 6(R d) func
tions in L 2(dfln). Let rp~ > 0 a.e., then L 2(dfln) is unitarily 
equivalent by the mapi -->- rpn 1 to L 2(dx). By this equiv
alence, to HI' .. there corresponds the self-adjoint positive op
erator Hn such that rpn- I Hn rpn 1 = HI' .. 1 for any 
1 ED (HI') . Under the assumptions of Theorem 5 or 6 we 
have that the operator Hn in L 2(dx) converges in the strong 
resolvent sense to the operator H in L 2(dx), where rp is ad
missible and H is defined by rp -I H rp 1 = HI' I, for any 
lED (HI') ,HI' = V·V being the energy operator uniquely 
associated with the energy form given by the admissible 
function rp. By Trotter's theorem the strong resolvent con
verges of Hn to H is equivalent to the strong convergence of 
the semigroups e - IH .. in L 2(dx) to the semigroup e - IH in 

L 2(dx), t> O. By Fukushima's results we have that e - IHI' .. 
and e - IHI' , and hence e - IH .. and e - IH , are Markov semi
groups in L 2(dfln) , L 2(dfl) resp. L 2(dx). Suppose now first 
that Sdfln < 00 so that we can assume S dfln = 1. Let 
t -+ S n (t ) be a realization of the homogeneous Markov pro
cess given by the invariant measurefln and the Markov semi
group e - IHI' .. . Let I; , i = 1 , ... ,k be bounded Borel func-
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tions on R <I • Consider the expectations 

I I I (Sn(t I » ... I k (Sn(t ,»dp*" 

for tl ).· .. ).t k , where p* n is the measure associated to the 
process Sn (t) i.e., on the space of trajectories of Sn (t). Since 
S n (t ) is a Markov process with semi group e - tHp" and invar
iant measure Pn we have 

III (s,,(1 I»···fds,,(t k»dP*n 

= (fl,exp[ -(tl -t 2)H
"
J/2 exP[ -(t2 -t 3 )HpJ 

Xexp[ -(1'-1 -tk)HpJlkt, (3.1) 

where ( , )n is the scalar product in L 2(dpn)' But 

(fl ,exp[ - (t I - t 2)Hp " ]/2'" 
Xexp[ - (t k _I - t k)H

"
" ]Ik)n 

= ('Pn I I ,'P" exp [ - (t I - t 2 )H
"

" ]'P "- I 12 'Pn 

X exp [ - (t 2 - t 3 )H"" l·· 
Xexp[ -(lk-I -tkHpJ'P;;I'Pnlk), (3.2) 

where ( , ) is the scalar product in L 2(dx). Using that, from 
(2.1), 

(3.3) 

we get that (3.2) is equal to 

('Pnll,exp[ -(t I -t2)Hn]/2exP[ -(t2 -t 3 H n ]- .. 

Xexp[ -(tk-I -lk)Hn]'Pnlk)' (3.4) 

Suppose now that the assumptions of Theorem 5 or 6 are 
satisfied, so that one has strong convergence of the semi
group e - t H", t ). 0 to the semigroupe- tH, t;;;, 0, as n _ 00. 

Moreover, under the assumptions of Theorem 5 or 6 we have 
'Pn h - 'Ph strongly as n - 00, for all h ED ('P); hence we 
have that (3.4) converges as n - 00 to (IP I I , 

exp [ - (t I - t 2)H ]J 2 ... exp [ - (t k _ I - t k)]1P I k) ; 

hence from (3.1), (3.2) using also that e - tHis a contraction, 
we get 

}~~oo I I I (Sn (t I » ... I k (Sn (t k» dp* n 

= ('PI I ,exp [ - (t I - t 2)H ] 12'" 

X exp [ - (t k _ I - t k)H ]'P I k) ; 

thus using 

'Pe - tH,,'P - I = e - tH , 

which follows from (2.1), we get 

}i~oo I I I (S" (t I » ... I k (Sn (t k »dp * n 

= ffl(s(tl»"'lk(s(tk»dP*, 

(3.5) 

(3.6) 

where S (t ) is the Markov process given by the invariant mea
sure p and the Markov semigroup exp( - t Hp) in L 2(dp) 
and p * is the corresponding measure on path space. From 
this it follows that the convergence (3.6) holds also when 
II j ~ I Ij (so (t ) is replaced by g(Sn (t I» '''',Sn (/k ) for arbi
trary gEe b (R kd) • In particular the finite dimensional dis
tributions of s" converges to those of S. Thus we have proven 
the following. 
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Theorem 7: Let the assumptions of Theorem 5 or Theo
rem 6 be satisfied. Let dp" = 'P ~ dx be probability measures 
and let S n' S be the homogeneous conservative Markov pro
cesses given by the Markov semigroups exp( - t H ) resp. 

p" 

exp( - t Hp), t ). 0, and the invariant measures p" resp. p. 
Then 5" - 5 in the sense that the finite dimensional distri
butions converge. • 

In the case where we do not necessarily have f dPn < 00 

we remark that according to Ref. 7 we have, for 'P" > 0, a.e., 
that the energy forms associated with 'Pn resp. 'P are regular 
in the sense of Fukushima.2 As shown by Fukushima2

-4 (see 
also Refs. 5 and 6), we can associate properly to these forms 
Hunt processes S ~ (t ) resp. 5 x(t ), started at x in R d modulo 
polar sets. Moreover, for quasi-every x in R d and all A> 0, 
the kernels G ~ (x,dy) resp. G;. (x,dx) of G ~ =(H + A ) - I 

Ii" 

and G;. = (H" + A ) - I are defined, so that for t > 0 and 
IECo(R d) (continuous functions of bounded support), one 
has 

(G~f)(x)= f G~(x,dy)/(y) 
resp. 

(G;. f)(x) = f G;. (x,dy)/(y) . 

Becauseof'Pn(Hp" +A)-l'P"-1 =(H" +,1)-1, 
'P (Hp + A)'P -I = (H + A ) -I , for all a > 0 [which is a 

consequence of (2.1)] we see that the kernels G ~.OP"(x,dy) and 
G f(x,dy) of (Hn + A) - I ,(H + A) -I are defined by 

G~·<r"(x,dy) = 'P"(x)G1(x,dy)'P "-I(y) (3.7) 

and 

G Hx,dy) = 'P (x)G;. (x,dy)'P - I (y) . (3.8) 

Now let 'Pn ,'P be as in Theorems 5 or 6, so that one has the 
strong resolvent convergence of H" to H. Then, strongly in 
L 2(dx) 

(Hn + A) -I I I (Hn + A) -I 12 .. -(H" + A) -I I k 

- (H + A ) - I I I (H + A ) - I 12 ···(H + A ) - I I k 

as n _ 00, for all liEL 2(dx) ,(Hn + A) -I being uniformly 
bounded. Thus 

L ,p n'''''(x,dYI)1 I (YI )G~·op"(YI ,dYz)/ 2 (Y2) 

X .. ·G n·<p"(Yk _I,d Yk)1 key,) 

- f G'f(.,dYI )/1 (YI )Gf(YI ,dY2)/2(Y2) 

XGf(Yk_I,dy.)lk(Yk) 

as n _ 00, strongly in L 2(dx). In particular the finite dimen
sional distributions converge as n _ 00, strongly in L 2(dx). 
By subsequences we have then also convergence of the finite 
dimensional distributions, for a.e. initial condition x. We 
have thus proven the following. 

Theorem 8: Let the assumptions of Theorem 5 or Theo
rem 6 be satisfied. Let S ~ (t ),5 X(t ) be the regular Hunt pro
cesses properly associated in the sense of Fukushima with 
the regular energy forms given by dPn = 'P ~ dx. Then S~ 
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~ t x in the sense of convergence of finite dimensional distri
butions, strongly in L 2(dx) and, by subsequences, pointwise 
almost surely for every x .• We shall conclude with some 
remarks. In the case, where the assumptions on qJn ,qJ are not 
strong enough to allow to conclude that Hn necessarily con
verges strongly to H. we still have some control on the limit 
by the following theorem: 

Theorem 9: Let qJn be admissible and suppose qJn i qJ 

a.e., with qJ admissible and in L 2(dx). Suppose C~(R d) 
C D(Hn) , then(f,Hng)~ (f ,H g), for all I,gEC~(R d), 

where ( , ) is the scalar product in L 2(dx). If. moreover, 
f3 E L 2(dx) , then E /l., (f (S n (0» g(S n (t ») has uniformly 
bounded second derivative with respect to t , where E fL .. is the 
expectation with respect to the stationary Markov process 
S n with infinitesimal generator H

fL
" and invariant finite mea

sure df..ln ,and I,g EO C~(R d). If, moreover, Sn(t) con
verges weakly to some process, 1](t) (in the sense of conver
gence of the finite dimensional distributions), then 
E/1- «f(1](O»g(1](O») is a twice differentiable function of t 
and 

- ~ E(f(1](O»g(1](t»)l, ~O = (f,H g) 

for any I,g EC 2(R d) . If 1](t) is a Markov process with in
finitesimal generator H7J we have H7J = H on C~(R d). 

Proof The prooffollows from the proof of Theorem 3.7 
in Ref. 11. • 

Remark: The assumption that qJ be admissible is e.g., 
satisfied when the qJ" are such that f (V 1)2qJ ~ dx .;:;C (f 12 
X qJ ~ dx) 1/2 for all IE CO' (R ") . In this case one has name
ly C ~(R d) C D (V*) as follows from Ref. 12. 

Remark: The case of d = 1 gives an indication that the 
assumptions of Theorems 5 and 6 are not optimal. From a 
result of Rosenkrantz41 we can prove, e.g., the following 
result. 

Theorem 10: Let d = 1 and let qJ" be admissible such 
that the corresponding Markov process S" has continuous 
paths. Assume l/qJn E L ~oc(R d) and 

l+ 00 dXqJn(X)2l
x 

qJn(y)-2dy= 00 

and 

l+ '" dXqJn(X)-2l
x 

qJn(y?dy= 00 

(so that ± 00 are natural boundaries for the process tn)' 
Assume qJ" (x) ~ qJ (x) pointwise for all point of continuity 
of qJ(x). Then one has for every A> 0 

lim sup/[(..i+H,,)-I/](x)- [(..i+H,J-If](x)/ =0, 
n - m XER 

for all I EC 00 (R ), Coo (R ) being the Banach space of bound
ed continuous functions vanishing at infinity. This implies 

lim sup lexp( - t H,,)I - exp( - t H/1-)1 1= O. 
11. -+ co XER 

Moreover Sn -+ S weakly in the sense of weak convergence 
of the finite dimensional distributions. 

Proof In order to apply the result of Rosenkrantz it 
suffices to verify that the assumptions 
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Sa ± 00 dx qJ n (x) - 2 f dYqJ n ( y)2 dy 

= l± 00 dx qJn(xf fd y qJn(Y) -2 = 00 

imply that ± 00 are natural boundaries for the process S n • 

This is, however, easily done noticing that, in standard nota
tions (see e.g., Refs. 41 and 42) the scale function to Sn (as
suming, without loss of generality, that 0 is a point of con
tinuity) iSPn(x) = f~(qJn(s)/qJn(O»2 ds and the speed 
measure to Sn is dmn(x) = (qJn (O)/qJn (xW dx. Then it suf
fices to apply the known criteria for natural boundaries. The 
rest follows from Ref. 41 and e.g., Ref. 43. • 

Remark: Results concerning resolvent convergence in
volving, however, growth or smoothness conditions on f3 or 
V follow also from other methods of stochastic equations.44 

The case d = 1 with smooth qJ [namely qJ E Y(R)] has been 
treated in details in Ref. 20. We shall give elsewhere a de
tailed treatment of the general d = 1 case. 
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Absorption time by a random trap distribution 
Herbert B. Rosenstock 
u.s. Naval Research Laboratory, Washington, D.C. 20375 

(Received 25 January 1980; accepted for publication 4 March 1980) 

Consider a particle performing a random walk to nearest neighbors on a simple cubic lattice in any 
number of dimensions D. The lattice contains a fraction q of randomly located "trapping" sites 
which absorb the walker when stepped on. We calculate the mean time to trapping. This involves 
the expected number V (t) of distinct sites that a walker would visit in t steps in absence of traps, a 
quantity known only asymptotically for large t; however, an exact calculation possible in one 
dimension suggests that the results are unexpectedly precise. The trapping time is proportional to 
q-I for D = 3 or greater, and more complicated for D = 1,2. 

1. INTRODUCTION 

Consider a simple cubic (SC) lattice in any number D of 
dimensions and infinite in extent on which a particle is per
forming a random walk by stepping, with equal probability 
iD, on one of the nearest neighbors after a specified time 
interval. The lattice contains two kinds of sites: ordinary 
ones, and a small fraction q of "traps," randomly located and 
with the property of "trapping" the walker and presumably 
ending the walk. Physical applications that come to mind 
include energy transfer in luminescing organic solids, I clus
ter formation in silver halide grains,2,3 as well as the classical 
gambler's ruin problem.4 

The following formulas gives the mean time to absorp
tion in a random walk among randomly located traps of 
density q, valid in any dimension: 

(n) = ! tq[V(t)- V(t-l)}(1-q)v(t-I). (1) 
t= I 

Here V (t), usually called the "range" of walk, means the 
number of distinct sites that would be visited in t steps if 
there were no traps. In the above formula, the last term 
(1 - q) v (t - I) is the probability of not stepping on a trap in 
the first t - I steps; the central one is the probability 
[V(t) - Vet -l)]thatthetthstepleadtoanewsite(sinceifit 
led to an old site, that site certainly would not be a trap), 
multiplied by the probability q that the new site indeed is a 
trap. Finally, the front term '2.t sums the duration t over this 
probability distribution. 

According to Ref. 5, Eq. (111.15), V is asymptotically 
given by 

{

(8t /tr)1/2, ID, 

V(t) = (1Tt flogt), 2D, 

(1 - F)t, 3D or higher, 

(2) 

where 6-8 F, a numerical constant, is the probability of (even
tually) returning to the origin in the absence of traps. 

To evaluate Eq. (1), we first replace Vet - 1) in the ex
ponent (only) by V(t): 

(n) = L tq[ V(t) - Vet -1)](1 _ q)V(t) (3) 
1= I 

and change the sum to an integral, 

(n)=q tdt-(1-q)V 1'" dV 

o dt 
(4) 

or 

(5) 

where t = t (V) is now the solution of whichever ofEqs. (2) is 
appropriate to our dimensionality. 

In evaluating this, we should remember that the formu
las (2) are valid asymptotically, i.e., for long walks (large t). 
However, most walks are quite long. (For example, if traps 
are located periodically a distance q -liD apart, a walk start
ing at a site next to a trap will last q-I - 1 steps; see Ref. 3, 

Appendix H.) So we expect the results to be valid for small q, 
perhaps below 0.1. More about this will be discussed later. 

2. THREE OR MORE DIMENSIONS 

This is the easiest case. The integral approximation (5) 
is not needed, for we can substitute the last of Eqs. (2) into 
Eq. (1) and do the sum exactly. The result is 

(n) = q(l - F) (6) 
[1 - (1 - q)1 - F F 

or, for small q, 

(n) = l/q(1 - F). (7) 

On the attached Fig. I the two formulas are indistinguish
able for q < 0.1. We have plotted it for the 3D SC lattice, for 
which F = 0.340537. In 4D, Fwould be9 0.20; in 5D, it 
would be 0.13. Fis also known9 for some 3D lattices that are 
not SC, and is numerically not very different In Fig. 1, any 
such change would produce no more than a slight shift in the 
curve; its slope would not change. 

3. TWO DIMENSIONS 

This is the most difficult case, because of the complicat
ed form ofEq. (2) in 2D. Before we can carry out the integra
tion (5), we must express t in terms of Vby solving the second 
of Eqs. (2), which we rewrite as 

f(t) = 0, (8) 

where 
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1010 ,-------.r-----------------, 

(n) 

1D-EXACT,EQN. (16) 
o EQN. (5), (15) 

2D-<n), EQN. (5) 
C<n>." EON. (14) 

3D- EON. (6) OR (7) 

q 

FIG. 1. Mean trapping times in one, two, and three dimensions. In each 
case, the "best" result is shown as a solid curve. 

f(t) = t - u log(t) and u = V hr. (9) 

We use an iterative scheme called Newton's method, 
which involves guessing an initial solution to and produces 
sucessive approximations t 1,t2,··· according to the formula 

f(x;) 
ti+ 1 = ti - f'(x

i
)' (10) 

which with Eqs. (9) becomes 

ti+1 = tiU(lOgti -l)/(ti - u). (11) 

We start with 

to = U logu (12) 

and find that for all V> 8, three iterations yield accuracy to 
six significant figures. Equation (S) can now be evaluated 
numerically. If instead of the correct t we put our initial 
guess to into Eq. (S) and write 

(n)o = q f" todVe - qV, (13) 

we find that this can be evaluated analytically, 

1 
(n)o = - ( - 10g1Tq + 1 - C), with C = 0.S77216. 

rrq 
(14) 
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The "correct" (n) evaluated numerically and (n)o given by 
Eq. (14) are both ploted in Fig. 1, the former as a curve, the 
latter as squares. The approximation (13) is very close. 

4. ONE DIMENSION 

Straightforward substitution of the first of Eqs. (2) into 
Eq. (S) gives 

(n) = 1T/4q2. (1S) 

However, this problem can also be solved exactly. [Re
member that Eq. (IS) is not exact because Eqs. (2) are not 
valid for short walks.] In 1D, only two traps can absorb any 
particular walker: the first one to his left and the first one to 
his right. We therefore have (n) = ~a Dasu(q), where Da is 
the expected duration ofa walk on a 1D lattice of a sites with 
absorbing boundaries, and sa (q) is the probability that, given 
an overall trap density q, a walker finds himself between two 
absorbing sites a distance a apart. This first of these quanti
ties lO is (a -I)(a + 1)/6 and the second 11 aq\l _ q)a -1. 

Substitution and summation gives 

(16) 

which for small q is very close to 1/q2. So we see that our 
expression (IS) differs from the exact one (16) by a factor 
1T/4 = 0.78. On our plot, the two are barely distinguishable 
throughout the range shown. When q increases beyond 0.1, 
the asymptotic expression actually becomes better (surpris
ingly!), becomes precisely correct for q near 0.2146, and only 
then begins to deviate substantially. 

The good agreement in ID of the approximate expres
sion (1S) based on our dimension-independent approxima
tion (1)-(S) with the exact value (16) suggests that the same 
should be true in higher dimensions. In fact, recent work 
suggests3 that one should expect precision to be even better 
in higher dimensions. We have determined the mean length 
as well as the dispersion of walks for a model differing from 
the present one only in the details of the trap distribution 12 in 
both 1D and 2D. The result shows very little dispersion in 
2D, and appreciably more dispersion in ID. It is precisely 
this dispersion-the comparatively large number of walks in 
ID that are much shorter than average-that causes the de
viation between Eqs. (1S) and (16). Since the present figure 
shows this discrepany to be quite small in ID, we can expect 
the discrepancy to be even smaller in 2D. 

Finally, we note the unexpected crossover between the 
2D and 3D curve at q~O.OIS. We can think of no obvious 
physical explanation for this. 

5. SUMMARY 

The mean time to absorption in a random walk among 
randomly located traps of density q is given by 

(n) = _1_ ( -log1Tq + 1 - C) + fiq), in 2D 
rrq {

(1 - q)/q2, III ID 

1/(1 - F)q, in 3D,4D,SD,. ... 
(17) 

Here the quantity f2(q) is given by 
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liq) = q LX> (t - to)dVe - qV, 

with to = u logu, u = V hr, and t the solution of u = t /logt; 
12 is small enough to be omitted in subsequent calculations. F 
is a constant, equal to 0.340537 for the 3D SClattice, and Cis 
Euler's constant, 0.577216···. 
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Unidirectional wave propagation in one-dimensional first order Hamiltonian 
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Defining the velocity of a conserved density to be the velocity of the center of gravity of this 
density, it is shown that for linear equations this velocity equals the weighted group velocity 
(with the density as weight function). For nonlinear equations, expressions for the centrovelocity 
of several conserved densities are derived. In particular, for a class of nonlocal equations, the 
centrovelocity of the energy density turns out to be some weighted average of the group velocity 
of the corresponding linearized equation. For a specific equation of this type, viz, the BBM 
equation, it is shown that upon restricting it to solutions whose initial form represents a long, low 
wave, the centrovelocity of the energy density is positive for all positive time. 

1. INTRODUCTION 

In this paper we shall consider equations of the form 

(1.1) 

wherein u is a scalar function of one space variable XE RI and 
the time tE RI. Equation (1.1) may be envisaged as an evolu
tion equation in a function space U consisting of sufficiently 
smooth functions which tend, together with their deriva
tives. to zero for Ix 1_ CXl • Given a functional h on this space, 
h '(u) denotes the functional derivative of h atthe point u (i.e., 
the formal Gateaux derivative with respect to the L2 inner 
product(d IdE)h (u + Ev)IE~o = (h '(u),v) foru,vEU, where 
(,) is the L2 inner product. 

Equation (1.1) is called a first order Hamiltonian sys
tem, with the functional h as the Hamiltonian. Equations of 
this type often occur in mathematical physics. Probably the 
oldest example is the KdV equation 

atu = - ax (u + u2 + uxx ), (1.2) 

which is of the form (1.1) with Hamiltonian 

I{ 1 2 1 1 1 2}d h (u) = 2"u +3u- -2"u x x (1.3) 

(integration is over the whole real line). Korteweg and de 
Vries l derived this equation in 1895 as an approximate de
scription of the evolution of surface waves on a layer of fluid, 
under the assumption that the waves were mainly running in 
one direction. Due to this last assumption, they obtained an 
equation which is of first order in time, whereas Boussinesq 
had already obtained an equation of second order in time for 
the evolution of surface waves which admits solutions repre
senting waves running in both directions. It turned out that 
this is just a particular instance of a much more general situa
tion: Starting with a Hamiltonian system with canonically 
conjugate variables q and p, for which q enters as a potential 
function (in which form Boussinesq's equation can be re
phrased), the restriction to solutions which mainly run in 
one direction leads, within some approximation, to an equa
tion of the form (1.1) (cf. Whitham2

, Benjamin', and in par
ticular Broer', Broer et al.', and van Groesen6

). 

Initiated by the pioneering work of Gardner et al. (cf. 

Ref. 7 for references) and Lax8
, the interest in the KdV and 

related equation(s) has considerably increased during the 
past ten years because it turned out that this equation is a 
completely integrable system (Zacharov and Faddeev9) 
which is soluble with the aid of inverse scattering theory. 

In this paper we shall not deal with these aspects of 
(some) equations of the form (1.1). Our aim is to investigate 
what sense can be given to such statements as "Eq. (1.1) 
(approximately) describes unidirectionally propagating 
waves" and to derive conditions under which an equation of 
this type deserves such a qualification. Although several no
tions of propagativity are mentioned in the literature (such 
as phase, group, front, and signal velocity amongst many 
others), especially for nonlinear equations this point seems 
to have been overlooked somewhat. 

Therefore, in Sec. 2 we shall define and comment on a 
notion of propagativity which can be used for any (nonlin
ear) system which has a conserved density and which is es
sentially nothing but the velocity of the center of gravity 
(centrovelocity) of this conserved density. Adopting this 
definition, it is shown in Sec. 3 that for linear equations ofthe 
form (1.1), the centrovelocity of any definite quadratic den
sity is equal to the weighted group velocity, with the density 
as the weight function. This result shows that for linear equa
tions the group velocity plays a fundamental role in the prop
agation of arbitrary wave forms (not necessarily "small wave 
packets" or domains of only "weak dispersion"), in contra
distinction to a statement by Krotscheck and Kundt lO who 
pose that" ... the group velocity cannot be used for a rigorous 
discussion of propagation speeds: it has only approximate 
character, and loses its meaning in domains of strong 
dispersion" . 

In Sec. 4 we shall derive expressions for the centrovelo
city of several conserved densities ofEq. (1.1). In Sec. 5 we 
shall specialize these results to a class of equations for which 
Eq. (1.1) is a local equation (i.e., h ' is a local operator), and 
give sufficient conditions which assure that such an equation 
is unidirectionally propagative for all solutions. In Sec. 6 we 
consider nonlocal equations. In particular, we shall show 
that for a restricted class of such equations the centrovelo
city of the conserved energy density [i.e., the density corre-
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sponding to the invariant integral h (u)] is given by a weight
ed average of the group velocity of the corresponding 
linearized equation. An important example of a nonlocal 
equation of the form (1.1) is the BBM equation 

(1 - tf; )atu = - ax (u + u2
), (1.4) 

which was proposed by Benjamin, Bona, and Mahony!! as an 
alternative to the KdV equation to describe long, low waves. 

In the final section we shall rigorously prove that the 
centrovelocity of the energy density ofEq. (1.4) is positive 
for all t> 0 for any solution of Eq. (1.4) whose initial value 
belongs to a specified class offunctions, where this class can 
be interpreted as the class of long, low wave forms. 

2. PRELIMINARIES AND DEFINITIONS 

In order to assure that with every evolution equation of 
the form 

(2.1) 

there corresponds a unique Hamiltonian hEC I(U,Rl), we 
require 

h (0) = h '(0) = O. 

Moreover, we only consider translational invariant func
tionals h (i.e., h ' does not depend explicitly on XE Rl). 

In the following we shall call Eq. (2.1) a local equation if 
h ' is a local operator, i.e., ifh '(u)(x) depends on the function 
u and its derivatives at the place x only. Equation (2.1) is said 
to be nonlocal if h ' is not a local operator. Clearly, the KdV 
equation (1.2) is a local equation. The BBM equation (1.4) is 
not of the form (2.1) but it can be brought to this form by a 
simple linear transformation. 

More generally, we shall consider equations of the form 

atDv = - axk '(v) [k (0) = k '(0) = 0], (2.2) 

wherein D is some symmetric, regular operator on U, com
muting with ax' Transformation properties between Eqs. 
(2.1) and (2.2) can easily be described. 

Proposition 2.1: (i) Let L be a regular operator on U, 
commuting with ax' Under the transformation v: = L ~ IU, 

Eq. (2.1) transforms into Eq. (2.2) with 

D=L*L and k(v):=h (Lv). 

(ii) If the operator D admits the representation D = L * L for 
some regular operator L, then under the transformation 
u: = Lv, Eq. (2.2) transforms into Eq. (2.1) with 

h(u)=k(L-Iu). 

Proof If k (v) = h (Lv), then on differentiating with re
spect to v there results 

(k '(v),w) = (h '(Lv),Lw), 'ftwEU, 

or 

k'(v) =L*h'(Lv). 

Hence, if u = Lv, 

L * [alu + axh '(u)] = aIL *Lv + axk '(v), 

which proves (i). Part (ii) is proved analogously. 0 
The BBM equation (1.4) is of the form (2.2) with 
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As follows from proposition 2.1, it can be brought to the 
form (2.1) by the linear transformation u: = D 112v, where 
D 1/2 is the symmetric, positive square root of the operator D. 
Then it is seen that the BBM equation is a nonlocal equation. 

However, for many purposes it is simpler to deal direct
ly with equations in the form (2.2) than with the correspond
ing transformed form of the equations. When dealing with 
non local operators, the following definition is not complete
ly standard. 

Definition 2.2: A functional eEC I( U,Rl) is said to be an 
invariant integral for Eq. (2.1) if 

ale(u) = 0 

for every solution of Eq. (2.1). Any operator E on U for 
which 

e(u) = IE (u)dx 

is an invariant integral will be called a conserved density for 
Eq. (2.1). 

Remark 2.3: From this definition it follows that if E is a 
conserved density, then there exists aflux density Tsuch that 

aIE(u) +axT(u) =0, 

T(u)--+O for Ixl---+oo (2.4) 

for every solution of Eq. (2.1). The expressions (2.4) are of 
the form of a local conservation law. However, only if Tis a 
local operator do we obtain the usual result that for arbitrary 
interval (a,b )CRl, atS~E (u) depends only on the value ofu 
and its derivatives with respect to x at the points x = a and 
x=b. 

Lemma 2.4: Thefunctionals Su dx, h, and m, with 

m(u): = J u2dx, 

are invariant integrals for Eq. (2.1), whereas the functionals 
Svdx, k, and 

m(v): = IV.DVdX 

are invariant integralsfor Eq. (2.2). 
Proof Integrating the equations over the whole real 

axis, the statement for the linear densities follows immedi
ately. Furthermore, for solutions of Eq. (2.1) we have 

ath (u) = (h '(u),alu) = (h '(u), - axh '(u» = 0 

and 

alm(u) = 2(u,alu) 

= -2(u,axh'(u»=2(h'(u),ux )=O 
(the last equality because h is a translational invariant func
tional). The corresponding results for Eq. (2.2) now follow 
because of proposition 2.1. 0 

Remark 2.5: If Eq. (2.1) is meant to describe a specific 
physical system (such as the water wave problem), invariant 
integrals often admit a physical interpretation (such as con
servation of mass, energy, and momentum). 
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We now come to the main ideas concerning the propa
gation of conserved densities. 

Definition 2.6: Let E be any conserved density of (2.1) 
with e(u) = SE(u)dx the corresponding invariant integral. 
For UEU, the center of gravity of E (u) will be denoted by 
Xe(u) and is defined if e(u)*O by 

f [x -XE(u) ].E (u)dx = O. (2.5) 

For a solution u ofEq. (2.1), the centrovelocity of E is defined 
to be the velocity of the center of gravity of E (u): 

VE(u)(t):=J,Xelu(t)]. (2.6) 

The density E is said to be propagated to the right by a solu
tion u of Eq. (2.1) at time t if Vdu)(t) > 0, and Eq. (2.1) is 
said to be unidirectionally propagative (to the right) with 
respect to E if VE(u)(t) > 0 for every nontrivial solution of 
Eq. (2.1) and all tE RI. 

With respect to this definition some remarks have to be 
made. 

Remark 2.7: If Tis the flux density corresponding to the 
conserved density E [i.e., E and Tsatisfy Eq. (2.4) for every 
solution ofEq. (2.1)], the VE is easily seen to be given by 

VE(u) = -I_·fT(U)dX. (2.7) 
e(u) 

Remark 2.8: Although the centrovelocity of a con
served density as defined above has some physical signifi
cance, it is of course by no means the only possible way to 
describe propagation phenomena. However, some advan
tages of the proposed definition may be noticed: (i) it is not 
necessary to restrict to a special class of solutions (such as 
monochromatic solutions in linear equations); (ii) the defini
tion is the same for nonlinear and for linear equations; (iii) it 
is possible (as will become clear in (he next sections) to for
mulate, with relative ease, general conditions on the func
tional h (or on the operator D and the functional k) which 
assure that Eq. (2.1) [Eq. (2.2)] is unidirectionally propaga
tive with respect to some density; (iv) if the equation admits a 
solution which travels undisturbed in shape with constant 
velocity c, say u(x,t) = tp (x - ct), then VE(cp )(t) = c for all 
time and every conserved density E. 

Remark 2.9: As a consequence of the proposed defini
tion, with every conserved density there is associated a veloc
ity for every solution. Suppose EI and E2 are two different 
conserved densities [possibly with the same invariant func
tional (!); cf. Remark 2.lO]. Then, if VI and V2 denote the 
corresponding velocities, the velocity VI2 of the conserved 
density E\2 = EI + E2 is given by 

e,.V, +e2 ,V2 V12 = ----
e, + e2 

for every solution. 
Furthermore, in general there is no evidence at all that 

if the density EI is being propagated to the right by some 
solution u, the same is true for the density E2 • However, for 
linear equations with constant coefficients it will be shown in 
the next section that ifEq. (2.1) is unidirectionally propaga
tive with respect to some definite, quadratic conserved densi
ty, then the same is true for every quadratic density. For 
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nonlinear equations no such strong relationship between the 
propagativities of different conserved densities has been 
found (nor can be expected to hold). 

Remark 2.lO: Closely related with the foregoing re
mark is the following observation: If E is a conserved densi
ty, with T the corresponding flux density, then E *, defined 
by 

E*(u): = E (u) + JxF(u), 

where F(u) is any expression in u satisfying F(u)---....o for 
Ix 1-00 if UE U, is also a conserved density with the same 
invariant integral 

e(u) = f E (u)dx = f E *(u)dx. 

The flux density T * corresponding to E * is given by 

T*(u) = T (u) - J,F (u), 

and if X and X * denote the centers of gravity of E and E *, 
respectively, with corresponding velocities Vand V*, we 
have 

and 

X (u) - X*(u) = _1_ .fF(U)dX 
e(u) 

V(u) - V*(u) = -l_·f[T(U) - T*(u)]dx. 
e(u) 

From this it follows that, upon adding a term JxF to the 
density, the corresponding velocity will change in general: 
Only if the total flux is not altered will the velocity remain 
the same. 

Remark 2.11: In general, the velocity functional V E is 
not an invariant integral. However, if the conserved density 
E has a conserved flux, i.e., if the total flux itself if an invar
iant integral 

J,fT(U)dX=O, 

then VE as given by Eq. (2.7) is an invariant integral. In that 
case, the center of gravity is a linear function of t: 

X(u)(t) =t·V(u) +Xo(u), (2.8) 

whereXo is an invariant integral (the position of the center of 
gravity at t = 0). Inserting Eq. (2.8) into (2.5) gives 

f [xE (u) - tT (u) ]dx = XO (U)J E (u)dx, 

which leads to the following invariant functional which con
tains the x and t variable explicitly: 

J, f [xE (u) - tT (u) ]dx = O. (2.9) 

3. PROPAGATION IN LINEAR SYSTEMS 

Linear first order Hamiltonian systems are described by 
an equation of the form 

(3.1) 

where L is some symmetric operator. The Hamiltonian for 
such equations is the quadratic functional 
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h (u) = -!(u,Lu). (3.2) 

In the following we shall restrict ourselves to the simplest 
class of operators, viz., the class of pseudo differential opera
tors (with constant coefficients). If M is a pseudodifferential 
operator, we shall denote the symbol of M by it as follows: 

__ A 

Mu(k) = M (k ).fl(k), 

wherein u denotes the Fourier transform of the function u. 
Theorem 3.I:AnylineardensityE(u) = Pu, where Pisa 

pseudodifJerentialoperator, is conserved. The center of grav
ity and its velocity can be definedfor solutionsfor which 
S Pu dx~ and we have 

(3.3) 

Hence, all linear densities are being propagated with the same 
constant speed i (0), independent of the particular solution. 

Proof Since P commutes with ax' we have 

a,pu + axPLu = O. 

From this it follows with Eq. (2.7) and Fourier transforma
tion that 

V
E 

(u) (t) = SPLu dx = P (~).i (O)·u(O) = i (0). 0 
SPu dx P (O)·u(O) 

Quadratic conserved densities are more interesting and 
have been studied in great detail. It is at this point that the 
concept of group velocity enters the discussion of propaga
tion. The dispersion relation for Eq. (3.1) is 

w = k.i (k ), (3.4) 

and corresponding to the group velocity dw/ dk, we define an 
operator G. 

Definition 3.2: The group-velocity operator G is defined 
to be the pseudodifferential operator with symbol 

A dw d A 

G(k):= -(k)= -[k·L(k)]. 
dk dk 

Lemma 3.3: As L is symmetric, the operator G is 
symmetric. 

(3.5) 

Proof The proof is immediate from the fact that a pseu
dodifferential operator M is symmetric if and only if its sym
bol satisfies it (k)E Rl for kE Rl. 0 

Lemma 3.4: Any quadratic density E (u) = PU'Qu, 
where P and Q are pseudodifJerential operators, is a conserved 
density for Eq. (3.1). 

Proof Generally, E (u) = Pu·Qu is a conserved density 
of Eq. (3.1) if P and Q satisfy 

Clearly, for pseudodifferential operators P and Q, this condi
tion is satisfied. 0 

As a typical result concerning the relation between 
group velocity and the propagation of conserved densities by 
monochromatic solution ofEq. (3.1), we quote the following 
result: 

Theorem 3.5: Let E be a quadratic conserved density, 
with corresponding flux density T. Then E is being propagat
ed with the group velocity in thelollowing sense: For mono
chromatic solutions ¢ (x,t ) = ¢o expi(kox - Wo t ), where ¢o 
is a constant and Wo = w(ko), the following relation holds: 
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T (¢) = dw (k ). 
E (¢) dk 0 

(3.6) 

This theorem is well known and can be found, for example, 
in de Graaf and Broer12. With the proposed definition 2.6, it 
turns out that the group velocity plays an equally important 
role in the propagation of quadratic densities by non periodic 
solutions. 

Theorem 3.6: Consider a definite (conserved) quadratic 
density E (u) = Au·Au, whereA issomepseudodifJerentialop
era tor. Then, the centrovelocity of this density is (an invariant 
integral and is) given by 

VE (u) = (Au,Au) - 1.(Au,GAu), (3.7) 

wherein G is the group-velocity operator. Hence, VE(u) equals 
the weighted group velocity, with weigh.tfunction IAuI 2

• 

Proof Inserting Eq. (3.1) directly into definition (2.6), it 
follows that 

VE(u) = 2.(Au~) -1.(Au, -xaJ.Au). 

With Parseval's theorem and Eq. (3.4) we find 
...-....,.-.. ~ ............ 

VE(u) = 2.(Au,Au) -1.(Au,ak [w.Au]), 

and after some straightforward manipulations 

/'<- -- (........ dw /"-.) VE(u) = (Au,AU)-I. Au, dk ·Au 

= (Au,Au) -1.(Au,GAu). (3.8) 

This proves Eq. (3.7), and as VE is a quadratic functional, it 
is an invariant integral according to Lemma 3.4. 0 

An immediate consequence of this theorem is the 
following: 

Corrolary 3.7: Equation (3.1) is unidirectionally propa
gative (to the right) with respect to any definite, quadratic 
density if and only if the group velocity is nonnegative for all 
wave numbers: 

G (k ) :;;,0, for all kE RI. (3.9) 
Remark 3.8: For more general quadratic densities of 

theformE(u) = Au·Bu, with A andBpseudodifferentialop
era tors, the corresponding centrovelocity is easily found to 
be the invariant integral 

VE(u) = (Au,Bu) -1.(Au,GBu) (3.10) 

for solutions for which e(u) = (Au,Bu) =1=0. 
Remark 3.9: For two specific densities, viz., the mo

mentum density [A = I in Eq. (3.7)] and the energy density 
[A 2 = Lin Eq. (3.7)], the result (3.7) can already be found in 
Wehausen and Laitone (Ref. 13, Sec. 15). 

Our more general formulation makes their results 
somewhat more transparent. 

4. PROPAGATION IN NONLINEAR SYSTEMS 

For the first order Hamiltonian equations under 
consideration 

a,u = - axh '(u), 

the Hamiltonian h can be written as 

h (u) = f H (u)dx, 

(4.1) 

(4.2) 

where H is some (nonlinear) operator on U. Only differentia-
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ble operators H will be considered, i.e., operators H for 
which, for every UEU, there exists a linear operator, depend
ing on u, and denoted by H'(u), the derivative of H at the 
point u, such that 

d 
dE H (u + EV) I E=O = H'(u)v, 

for every function VEU. As we also have 

:€ h (u + £v) IE=o = f h '(u)·vdx, 

it follows that 

fh '(u)·vdx = f H'(u)vdx 

for every VEU. Hence, there exists an operator B such that 

h '(u).v = H'(u)v - axB (u,v). (4.3) 

Note that B (u,v) is linear in v, nonlinear in u (except 
when His quadratic), and thatB (u,v)-<l for Ix 1-+00 on the 
considered class offunctions. As h is assumed to be a transla
tional invariant functional, it follows that 

(4.4) 

and, as h does not depend explicitly on t, we also have 

a,H (u) = h '(u).u, + axB (u,u,). (4.5) 

With these results it is not difficult to find the local conserva
tion laws for the conserved densities ofEq. (4.1). In fact, as it 
stands, Eq. (4.1) is of the form ofa local conservation law for 
the density u. For the conserved density u2

, the correspond
ing flux density follows with the aid ofEq. (4.4): 

a,u2 = 2u·u, = -2u·axh '(u) 

= -2ax [u.h'(u) -H(u) +B(u,ux )]. 

In the same way, using Eq. (4.5), we find the following for 
the conserved density H (u): 

a,H(u) = -h'(u).axh'(u) -axB(u,axh'(u» 

= -ax {Hh'(u)]2+B(uAh'(u»}. 

Having found the flux densities corresponding to the con
served densities of Eq. (4.1), the centrovelocities of these 
densities follow immediately with Eq. (2.7) and we have ob
tained theorem 4.1. 

Theorem 4.1: For Eq. (4.1) we have thefollowing: (i) The 
centrovelocity of the conserved density u is given by 

(4.6) 

(ii) The centrovelocity of the conserved quadratic density 
u2 is given by 

V (u) = 2'llull- 2J {u.h '(u) - H (u) + B (u,u x )}dx. 

(4.7) 

(iii) The centrovelocity of the (energy) density H (u) is 
given by 

V (u) = h (u) -I J {Hh '(U)]2 + B (u,axh '(u»}dx. (4.8) 
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With these general results it is possible, at least in principle, 
to investigate whether one of the conserved densities is being 
propagated to the right by a particular solution. However, 
the possibility to find conditions on the functional h which 
assure that some of these velocity functionals are positive 
depends very much on the "nature" of the operator h '. In 
fact, for local equations it is possible to investigate this mat
ter completely. By way of example we shall consider a class 
oflocal equations in the next section. This class is relatively 
simple but has nonetheless all the peculiarities of more gen
erallocal equations. In contradistinction, even the most sim
ple nonlocal equations are difficult to deal with. This is due 
to the mathematical difficulties encountered in the investiga
tion of the positivity offunctionals with nonquadratic nonlo
cal integrands. Nevertheless, for a special class of non local 
equations we shall derive some remarkable results concern
ing the propagation of the energy density in Sees. 6 and 7. 

5. A CLASS OF LOCAL EQUATIONS 

We consider local equations of the form (4.1) for which 
the Hamiltonian h (u) is given by 

(5.1) 

where Nand S are smooth (C 2) functions of their arguments 
with derivatives nand s, respectively: 

n(y): = N'(y) = dN (y), yE Rl, 
dy 

dS 
s(z): =S'(z) = - (z), zERI 

dz 

(primes denote differentiations with respect to the argu
ments). We assume that 

N (0) = S (0) = nCO) = s(O) = 0, 

o = N (0) = S (0) = nCO) to assure that h (0) = h '(0) = 0 and 
s(O) = Ois no restriction. Equation (4.1) withh asin Eq. (5.1) 
then reads 

(5.2) 

In a straightforward way, the following results are obtained 
from theorem 4.1. 

Theorem 5.1: The centrovelocities of the conserved 
densities 

u, U·U, N(u) +S(ux ) 

for Eq. (5.2) are given by 

V(u) = (f UdX) - IJnCu)dx, 

V(u) =2.llull-2J{u.nCu) -NCu) +2ux's(ux ) 

- S (u" )}dx, 

V(u) = h (u)- IJ{ ~ n2(u) + 2ux's(ux ).n'(u) 

+ ~ [axs(ux)Y}dX. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

To assure that Eq. (5.2) is unidirectionally propagative with 
respect to the densities u2 and/or N (u) + S (u x) it suffices to 
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state conditions for the functions Nand S which assure that 
the velocity functionals (5.5) and/or (5.6) are nonnegative 
on the considered class of functions U. In that way we get 
Theorem 5.2. 

Theorem 5.2: Equation (5.1) is unidirectionally propa
gative to the right with respect to (i) the density u2 if 

y·n(y) -N(y);;'O, VJlERI, 

2z.s(z) - S (z) ;;'0, VZE Rl; 

(ii) the (energy)densityN (u) + S (ux )(requiredtobepositive) 

if 
N(y);;'O, n'(y);;'O, VYERI, 

S(z);;,O, 2z,s(z);;,O, VZERI; 

(iii) both the density u 2 and the energy density if 
N(y);;'O, y·n(y) -N(y);;'O, n'(y);;'O VYERl, 

S (z) ;;.0, 2z,s(z) - S (z) ;;.0, VZE Rl. 

Remark 5.3: Linearizing Eq. (5.2) gives 

atu = - ax {n'(O).u - s'(O).~u}, (5.7) 

which has the dispersion relation 

w(k) =n'(0).k+s'(0).k 3 

and group velocity 

dw (k) =n'(O) +3s'(0).k 2• 

dk 

The velocity functionals of the density u 2 and the linearized 
energy density !n'(0).u2 + ¥'(O).u; of this linear equation 
(5.7) [as given by Eq. (3.7)] are easily seen to be the quadratic 
terms in a Taylor expansion of the integrands ofEqs. (5.5) 
and (5.6), respectively. 

Remark 5.4: As u and u 2 are conserved densities for Eq. 
(5.2), the velocity (5.4) is an invariant functional if 

n(u) = au +f3u2
, a,/3ERI. 

In that case, u is a conserved density with conserved flux and 
according to remark 2.11, there exists an invariant function
al which depends on x and t explicitly; in this case 

at f {xu - tn(u)}dx = o. (5.8) 

Remark 5.5: The KdV equation (1.2) belongs to the 
considered class of equations with 

N (y) = !y2 + ky 3, S (z) = !Z2. 

This equation is neither unidirectionally propagative with 
respect to the density u 2 nor with respect to its energy densi
ty, as may be confirmed from the expressions (5.5) and (5.6). 
The velocity functional (5.4) is an invariant functional, and 
Eq. (5.8) reads 

(5.9) 

Apart from a trivial transformation, this functional was al
ready given by Miura et al14. 

6. A CLASS OF NON LOCAL EQUATIONS 

1651 

Here we shall examine equations of the form 

atDu = - axe'(u), 
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(6.1) 

where the functional e is given by 

e(u) = f N (u)dx, 

with N a smooth (C 2
) function of its argument, n(u): 

(6.2) 

= (dN /du)(u), N (0) = nCO) = 0, and whereD = A 2 with A 
some positive symmetric pseudodifferential operator. From 
Sec. 2 it follows that, via a simple linear transformation, Eq. 
(6.1) can be brought into an equation of the form (4.1), but 
except when A -I is an ordinary differential operator, this 
equation will be of non local type. In these cases it is some
what simpler to deal directly with the form (6.1). 

For Eq. (6.1) we have three invariant integrals: 

f UdX, f(u,DU), fe(U) 

(cf. lemma 2.4). The velocity of the linear density u is again 
given by Eq. (5.2) and remark 5.4 applies as well: If Sn(u)dx 
is an invariant functional, then 

at f {xDu - tn (u ) }dx = O. 

For the following we define the symmetric operator G as the 
pseudodifferential operator with symbol G, where 

G(k) =ak[k.D -l(k)] 

= i> - l(k ).[1 - k.D - l(k ).akD (k)]. (6.3) 

Remark 6.1: Note that if u has a linear term, say 
n'(O) = 1, then w(k): = k.D - \k) is the dispersion relation 
of the linearized equation (6.1), and then G (k) is the corre
sponding group velocity. However, if Eq.(6.1) does not ad
mit a formal linearization, i.e., if n' = (0) = 0, this interpre
tation of wand G no longer makes sense, but the results to be 
derived remain valid! 

Theorem 6.2: The centrovelocity o/the energy density 
N(u) is given by 

V(u) = !e(u) -1.(n(u),Gn(u». (6.4) 

Consequently, Eqs. (6.1) and (6.2) are unidirectionally propa
gative to the right with respect to the energy density (assumed 
to be positive) if and only if 

G (k ) ;;.0, V kE Rl. (6.5) 

Proof The simplest way to derive this result is analo
gous to the proof of Theorem 3.6: Using Fourier-transform 
techniques and writing fi for the Fourier transform of the 
expression n(u), we find 

at fXN (u)dx = (x·n(u),atu) 

Hence, 

= (n(u), - xaxD - In(u)) 

= !(fi(k ),G (k )·fi(k ». 

V (u) = !e(u) - 1.(n,Gfi) 

= !e(u) - 1.(n(u),Gn(u» 

and the theorem follows. 0 
Remark 6.3: The BBM equation (1.4) belongs to the 

considered class of equations with 

(6.6) 
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For this operator D, the function G is not positive for all 
kERI: 

G(k)=(l+k2)-2.(l-k2). (6.7) 

Hence, the BBM equation is not unidirectionally propaga
tive with respect to its (nondefinite) energy density. (See 
however the results of the next section for a restricted set of 
solutions.) 

Remark 6.4: More generally, if D can be written as 

D=(l+k 2)a, aERI, (6.8) 

then G is given by 

G (k ) = (1 + k 2) - a - I. [1 + (1 - 2a).k 2]. (6.9) 

Hence, for such operators, condition (6.5) is satisfied if and 
only if 

a<!. (6.10) 

The energy velocity as given by Eq. (6.4) is remarkably 
simple. However, matters are much more complicated for 
the velocity of the (positive) quadratic density Au·Au. Using 
Fourier-transform techniques in intermediate steps, it is not 
difficult to derive the following result in a direct way. 

Theorem 6.5: The centrovelocity of the positive density 
Au·Au can be expressed with the operator G as 

V (u) = (Au,Au) - IJ {u.n(u) - 2N (u) + n(u)·DGu}dx. 

(6.11) 

Note that for linear equations N (u) = !u 2, Eq. (6.11) agrees 
with Eq. (3.7). However, in the more interesting case on non
linear equations it seems to be impossible to derive condi
tions onN andD such that Eq. (6.11) is a positive functional. 

7. UNIDIRECTIONAL PROPAGATION IN LONG, LOW 
WAVE MODELS 

In this section we shall once again examine equations of 
the form 

(7.1) 

where D is a pseudodifferential operator and n(u) a smooth 
function of its argument. The energy density N (u), with 
n(u) = (dN /du)(u), N (0) = nCO) = 0, is no longer required 
to be positive. In view of the results of the foregoing section 
we shall only consider the centro velocity of the energy densi
ty. This velocity is given by Eq. (6.4): 

V (u) = !.e(u) 1.(n(u),Gn(u», (7.2) 

where G is the pseudodifferential operator with symbol giv
en by Eq. (6.3). We shall suppose that 

n'(O) = 1, (7.3) 

such that G can be interpreted as the group-velocity operator 
of the linearized problem. In the foregoing section it was 
shown that the BBM equation 

(1 - a~ )a,u = - ax (u + !u2) (7.4) 

is not unidirectionally propagative with respect to the energy 
density. However, the BBM equation (as many other equa
tions of this type) is derived as an approximate equation for 
the description of "fairly long, fairly low" waves (cf. Broer,. 
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Broer et al.,5 and Benjamin et al." for details about this ap
proximate character of the equation). 

Therefore, it is reasonable to investigate the positivity of 
the functional (7.2) on the restricted class offunctions which 
can be described as long, low waves. To make this idea more 
concrete, let us suppose that we can define two functionals E 

and A whose values E(U) and A (u) are a measure of the height 
and of the "length" of the function u, respectively. Then the 
class of long, low waves can be described as the set of func
tions satisfying 

E(U) <Eo, 

(7.5) 

where Eo and A 0 1 are small positive numbers. Now suppose 
that numbers Eo and Ao can be found such that VE(u) is of 
the same sign (positive say) for every function u which satis
fies Eqs. (7.5). Then, ifu is a solution ofEq. (7.1) which 
satisfies Eqs. (7.5) at some instant to, VE(u)(t) will be posi
tive at t = to and for times t> to as long as u(t) satisfies con
ditions (7.5). A priori, it is by no means clear that solutions 
corresponding to initial data which satisfy Eqs. (7.5) satisfy 
this condition for all t> O. 

Especially for nonlinear equations this is a critical 
point. To demonstrate this for the long wavelength condi
tion for instance, consider the solution of Eq. (7.1) corre
sponding to an initial value g(x) whose Fourier transform g 
satisfies g(k) = 0 for Ik I >ko' kERI (i.e., g consists of long 
wave components only). A Fourier transformation ofEq. 
(7.1) shows that if the equation is linear, then u(k,t) = 0 for 
Ik I>ko for all t>O, but if the equation is nonlinear, then 
u(k,t )*0 for almost all kERI, no matter how small t> 0: 
Initial long wave components generate short wave compo
nents instantly. From these remarks and observations the 
following definition will be acceptable. 

Definition 7.1: Let there be given two positive function
als E and A [for which E(U) and A (u) are a measure for the 
height and the length ofa function UEU, respectively]. Then, 
Eq. (7.1) is said to be unidirectionally propagative with re
spect to the energy density N (u) for (A) long and (E) low 
waves if positive numbers Eo and Ao can be found such that 
V(u)(t »0 for all t > 0 for every solution u whose initial value 
Uo satisfies 

E(Uo)<Eo , 

(7.6) 

For the following we suppose that the symbol of the 
group-velocity operator G can be estimated as 

(7.7) 

where G (0) and care positive numbers. For long wave mod
els such an estimate is generally possible: The long wave 
components propagate with the largest, positive speed (the 
group velocity has a positive maximum at k = 0). With Eq. 
(7.7) the velocity functional (7.2) can be estimated as 

V(U):>lG (0).lln(u)11 2 
'{1 _ c2.llaxn(u)112}. (7.8) 

"'2 e(u) Iln(u)//2 

From this it immediately follows that V(u»O if 
A (u»f, (7.9) 
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if the functional A is defined by 

_ I lIaxn(u)1I 
A (u) : = IIn(u)11 (7.10) 

Remark 7.2: The functional A defined by Eq. (7.10) can 
indeed be interpreted as an averaged wave length: A (u) - 2 is 
the weighted average of k 2 with weight function In0JW. An
other way to interpret A (u) as a measure of the "length" of 
the function u follows from the observation 

A (U
I
.)-2=p2'A (V)2, for ul'(x):=v(px); (7.11) 

hence, A (ull)-+oo for p-o. 
In the following we shall show that it is sometimes pos

sible to find conditions of the form (7.6), i.e., conditions im
posed on the initial data only, which assure that the resulting 
solutions satisfy condition (7.9) for all t;;;.O. For simplicity 
we shall restrict ourselves in the first instance to a specific 
equation, viz., the BBM equation (7.4). Note that this equa
tion satisfies Eq. (7.7) with 

(; (0) = 1, 1'2 = 3. (7.12) 

For what follows we have to recall that H I(RI) denotes the 
first Sobolev space of functions UE L2 (RI) which have (gen
eralized) derivatives u x E L2 (RI). Supplied with the norm 
II III it is a Banach space which is continuously embedded in 
CO(RI): 

lu I:' <!lluIiL UE H I (R/), 

where 

lui oc : = sUPxER,lu(x) I, 

lIulli: = lI u ll 2 + Ilux 112. 

(7.13) 

Concerning the existence of a classical solution of the initial 
value problem for the BBM equation, we quote the following 
result: 

Lemma 7.3: Let UoEC 2(RI)n H I(RI). Then there exists 
a unique (classical) solution u of Eq. (7.4) with 

u(x,O) = Uo (x) 

and 

u(',t ),a{u(.,t )EC 2(RI )nH I(RI), for all t;;;.O. 

Consequently, the (momentum)functional 

m(u): = !(u,Du) 

and the energy functional e(u) are neatly defined and are 
invariant integrals: 

m(u(t» = m(uo ), e(u(t» = e(uo ), V t;;;.O. 

Proof The proof ofthis result can be found in Benjamin 
et al." 0 

We are now in a position to formulate the main result. 
Theorem 7.4: The RRM equation (7.4) is unidirectional

ly propagative to the right with respect to the energy densityfor 
the class of long, low waves, which is characterized as the 
solutions whose initial value Uo satisfy 

UoEC 2(RI )n HI (Rl ), 

A (uo ) >Ao, 

E(Uo)<Eo, (7.14) 

for sufficiently small positive numbers Eo and A 0- I. Here, A is 
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the functional defined by Eq. (7.10) and 

E(U): = Ilull l . 

Proof In view of the estimate (7.8) and result (7.12) we 
have to show that Ao and Eo can be found such that 

(7.15) 

for every t;;;.O and every solution with initial data satisfying 
Eq. (7.14). Let Uo denote the initial value and define 8 > ° by 

Iluo ll 1
2 

= !82
• 

As 

m(u) = !(u,(l - a; )u) = !llulii 
is an invariant functional, it follows that 

Iluili = !82
, Vt;;;.O 

and with Eq. (7.13), that 

lui"" <8, Vt;;;.O. 

(7.16) 

(7.17) 

Then we can derive the following useful estimates for the 
functionals e and A: 

!(1 - i<5)-1iuIl 2 ';;e(u).;;!(1 + i<5)-11u II 2, Vt;;;.O 

and, provided 8 < 2, 

(7.18) 

(7.19) 

As e is an invariant functional, it follows from Eq. 
(7.18) that 

(1 - ¥5)-1iuo 112.;;(1 + i<5)-i1uIl 2
, Vt;;;.O. (7.20) 

Writing Ao = A (u(x,O», it follows from Eq. (7.19) that 

(~)2.(~ -1)';:..1. -2 

1 + !8 lIuo 112 '" 0 , 

and, as Iluli l is invariant, we obtain, provided 8 < 1, 

J!1L ,;: 1 + A - 2. ( 1 + !8
2

) Vt;;;.O. (7.21) 
lIuo 112 '" 0 1 - 8 ' 

With Eqs. (7.20) and (7.21) we can majorize the right hand 
side of Eq. (7.19) and obtain 

A (u) - 2,;: (~)2 . {( 1 + i<5 ) 
'" 1 - 18 1 - ~ 2 3 

-[ 1 +A O-
2

• ( ~ ~ !: YJ -I}, Vt;;;.O. (7.22) 

This result shows that A (u) - 2 can be majorized uniformly 
with respect to t in terms of initial value 8 and Ao . Moreover, 
it is easily seen that the right hand side of Eq. (7.22) can be 
bounded by * if {) and A 0- 1 are taken sufficiently small. This 
shows that condition (7.15) is satisfied for {) (and hence Eo) 
and Ao sufficiently small. With the extra observation that 
e(u) is positive if {) < 3, as follows from Eq. (7.18), this proves 
the theorem. 0 

Remark 7.5: From a physical point of view the forego
ing theorem is satisfactory because the requirements define 
the functions to be low waves, as follows from the estimate 
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(7.13), and to be long waves in the sense of remark 7.2. How
ever, it is possible to show that the velocity functional (7.2) is 
positive on a larger class of functions. Therefore, define the 
functional A by 

A (u): = m(u) . (7.23) 
e(u) 

Then it can be shown that 

V(u»o, foreveryuESy , 

where Sy is the set of functions for which 

€(u): = lIull l <y, 

(7.24) 

for some y, ° < y < 2, where the function r (y) is given by 

r(Y)=(l+ ~y)-I'(l+ ~l-!Y). 
3 3 1+ Y 

[Note that r (0) = l' r (2) = ~, and 

r(y»l, forO<y<yo= +( -fIf - ~). 
(7.26) 

As the functionals E and A are invariant functionals for 
the BBM equation, it follows that V (u )(t ) > ° for all t>O for 
every solution whose initial value satisfies conditions (7.25). 
Although the functional A has the advantage of being an 
invariant functional, its relevance as a measure of the 
"length" of a function is less clear. Nevertheless, for 
functions 

U/j./l (x): = ()v(f./,x) , 

we have 

such that 

A (u/j,p. )-1 for (),f./, > 0. 

From this it follows that for the class oflong, low waves 
A:::::: 1, and hence, because ofEq. (7.26), this class is included 
in the set Sy for Y < Yo' This shows that the result stated 
above includes the contents of Theorem 7.5. 

Remark 7.6: It is illustrative to apply the above de
scribed method to more general equations of the form (7.1), 
where D is given by Eq. (6.8). The first problem to be consid
ered concerns the existence of global solutions of the initial 
value problem for such equations. For 0'> 0, let H U denote 
the fractional order Sobolev space, defined as the set 

HU: = {UE L 2 Iu·(1 + k 2)u/2E L 2 }, 

supplied with the norm 

lIull~" = f~ 00 (1 + k 2)u·luI 2dk. 

For arbitrary 0' > 0, H U is a Banach space, but only if 0' > ! is 
H U continuously embedded in CO and have the property that 
multiplication of elements from H U is a continuous oper
ation inHu. 

Along the same lines as in the proof of Lemma 7.3, it is 
possible (using a contraction mapping principle, now in a 
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space based on H ~ to prove the existence of a unique solu
tion, over some time interval [O,T] of the integral equation 
corresponding to Eq. (7.1): 

u(x,t) = Uo (x) - faxD -I n(U(7))d7, (7.27) 

where T depends on the H U norm of the initial value Uo only: 

(7.28) 

Assuming Uo E H s, for s > 0', it can be shown, using well
known bootstrap arguments, that the solution ofEq. (7.27) is 
also in H s. This implies that if s is sufficiently large, u is also a 
solution of the original equation over the time interval [0, T]. 
Moreover, in that case the functional m(u) = !(u,Du) 
= !llull~<T is in fact an invariant integral, from which it fol

lows that because ofEq. (7.28) the local solution can be con
tinued over an arbitrary time interval, which gives us the 
desired existence result. 

To arrive at an useful estimate for the functional V, note 
that the group velocity (6.9) can be estimated as 

G(k»1-3[(1+k2)"-I]. (7.29) 

Then Vas given by Eq. (7.2) can be estimated as 

V,,(u»!e(u) -1·{lIn(u)11 2 
- 3[lIn(u)II~" -lln(u)11 2

]} 

~ Iln(u) 112 . [1 _ 3A a- 2(U)], 
2 e(u) 

if the "averaged wavelength" functionalA u is defined by 

( 1In(u)II~" )_1/2 
A (u) = - 1 

a Iln(u)11 2 

In much the same way as was done in the proof of Theorem 
7.4, it is then possible to show that Vu(u»O for all time t> 0 
if u is a solution with initial data satisfying Au (uo) > A 0 and 
m(u) = !II ull~" < Eo, for A 0 and Eo sufficiently small. [It is 
intriguing to observe that no value of 0' for which these re
sults can be obtained along the lines indicated above (O'>!) 
corresponds to an operator D which leads to a group velocity 
G (k) which is positive for all real k; cf. Eq. (6.10)]. 
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Symmetries and vacuum Maxwell's equations 
W.-H. Steeb 
Universitiit Paderborn, Theoretische Physik, D-4790 Paderborn, West Germany 

(Received 22 January 1980; accepted for publication 22 February 1980) 

A new class of infinitesimal symmetries are given for Maxwell's equations in the absence of 
sources. 

Let M = ]R4 [space-time (x I' X2, X3 ,ct)] and suppose 
that M is a pseudo-Riemannian manifold, where the metric 
tensor field is given by (Minkowski space) 

g = dx I ® dx I + dX2 ® dX2 + dX3 ® dX3 - dX4 ® dX4 , 
(1) 

i.e., gil = g22 = g33 = 1, g44 = - 1, (X4 = ct). Consider the 
2-form 

[3 = B3dxI/\dx2 + B ldx2 /\dx3 + B2dx3/\dxI 

+ Eldxl/\dt + E2dx2/\dt + E3dx3/\dt (2) 

defined on M, where /\ is the exterior, or wedge, product. 
For Riemannian or pseudo-Riemannian manifolds the 

Hodge *-operator (duality operation) is defined on differen
tial forms: * is anf-linear mapping and transforms ap-form 
into its dual (m - p)-form (dim M = m). The *-operator ap
plied to ap-form defined on an arbitrary Riemannian (or 
pseudo-Riemannian) manifold with metric tensor field g is 
defined by 

*(dx /\dx. /\ ···/\dx.): 
II 11 lp 

m .. 1 g I gi,j, ... g',Ip -----
j,··1", ~ I (m - p)! Vj;! 

X t j , "1", dXjp + I /\ ... /\ dxj", ' 

(3) 

where tj' .. 'j", is the total antisymmetric tensor 

(t1,2"m = + 1), g=det(gij) and ~j gijgjk = t5~ (Kronecker 
symbol). 

For the present case (Minkowski space) we obtain 

*[3 = .!i.L dx2/\ dX3 + !!:L dX3/\ dx J + ~ dx J /\ dX2 
C C C 

- B3C dx}/\dt - BlcdxJ/\dt - B2c dx2/\dt. 
(4) 

Observe that **[3 = - [3. Now Maxwell's equations in the 
absence of sources are given by 

d[3= 0 (5) 

and 

d (*[3) = 0, (6) 

Moreover, note that 

[3/\[3 = 2(B IE J + B 2E z + B3E3) n (7) 

and 

(
Ei E~ E~ 

[3/\*[3= -+ -+ -
c c c 

-BicB~c-B~c )n, (8) 

where n is the volume element in space-time, i.e., 
n = dx I /\ dx2 /\ dX3/\ dt, 

The aim of the present paper is to give a new class of 
transformations which leave invariant the given set of partial 
differential equations. The invariance of the vacuum Max
well equations has been investigated by Harrison and Esta
brook. 1 We study additional transformations which have 
not been given by Harrison and Estabrook, I 

Let us introduce the abbreviation 

( 
aBI 

( .... )- BI,B2,BJ,EI,E2,E3' -- ,.,., 
aX I 

X aBI , aB2 , ... , aB3 , aEJ ,.'" aEJ) (9) 
at aX J at aX I at 

The conditions d[3 = 0 and d (*[3) = 0 lead to the following 
set of linear partial differential equations of first order: 

F I( .. ,,)= aBJ _ aB2 _ _. aEI = 0 , 
aX2 aX3 CZ at 

aB) aB3 __ • aEz Fi .... )=-- =0, 
ax} aX I CZ at 

aBz aB J _ _. aE3 Fl .... ) -- =0, 
aX I axz c2 at 

aE3 aEz + aBI Fi .... ) --- =0, 
axz aX3 at 

F
s
( .... )= aEJ _ aE3 + aBz = 0 , 

ax] aX I at 

(lO) 

F
6

( .... )= aEz _ aEI + aB} = 0 , 
aX I axz at 

Fi .... )= aBI + aBz + aB, = 0 
ax) aX2 ax, ' 

aE) aEz + aE3 --0, Fg{-- .. )_-+ 
aX I aX2 aX3 

Let us briefly describe the method for investigating the 
symmetries, We put aB)/axc-~p)), aB l/ax2-Plz, 
".,aE3Iat-P64' Following Dieudonne2 we consider for in
vestigation the infinitesimal symmetries of the following dif
ferential forms: 

F s(·· .... · .. ·•·· ...... •· .. · .... ··•·•·· .... •·· .... •· .. · .. ··•·· .. · .. ··), 

dF),dF2"·,,dFs, 

a l = dBI - (PII dX I + PI2 dX2 + PI3 dx] + PI4 dt), 
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a 2 = dD2 - (P2I dX I + P22 dX2 + P23 dX3 + P24 dt), 

a 3 = dD3 - (P31 dX I + P32 dX2 + P33 dX3 + P34 dt), 

/31 = dEl - (P41 dx I + P42 dxz + P43 dX3 + P44 dt), 

/32 = dE2 - (PSI dX I + PSZ dxz + P53 dX3 + PS4 dt), 

/33 = dE3 - (P61 dx I + P6Z dxz + P63 dX3 + P64 dt), 

da l, da2, da3, d/3I' d/3z, d/33' 

Hence F;(i = 1, ... ,8) is a O-form (function), 

(11) 

dF;(i = 1, ... ,8) a I-form; a; and/3;(i = 1,2,3) are I-forms, 
and da; and d/3;(i = 1,2,3) 2-forms; d denotes the exterior 
derivative. 

Thus 

1 
FI(···) = P32 - P23 - """"2 P44' 

C 

1 
Fi···) = PI3 - P31 - """"2 PS4, 

C 

1 
F3("') = P21 - PI2 - """"2 P64 , 

c 

Fi···) = h2 - P53 + PI4> 

Fs("') = P43 - hI + Pw 

F6("') = P51 - P42 + P34' 

Fi···) = PII + P22 + P33' 

Fg(.··) = P41 + P52 + P63' 

Now let 

(12) 

(FI, ... ,Fg, dFI,· .. , dFg, a l,· .. ,{33' da l , ••• ,d(33) (13) 

denote the ideal generated by FI, ... , d/33' Moreover, let Z 
denote a vector field (infinitesimal generator) defined on 
R6+24 = R30, i.e., 

(14) 

The partial differential equations given above are called 
invariant with respect to Z if 

LzFjE(F;) (i = 1, ... ,8), 

LzdF;E(F;. dFj,aj , /3j) (i = 1, ... ,8;j = 1,2,3), 

LZajE(F;, dF;, aj' /3j) (i = 1, ... ,8;j = 1,2,3), 

L z /3jE(F;, dF;.aj , /3j) (i = 1, ... ,8;j = 1,2,3), (15) 

L z dajE(F;, dF;, aj ,{3j, daj d/3j) (i = 1, ... ,8;j = 1,2,3), 

L z d/3jE(F;. dF;, aj' /3j, daj , d(3) (i = 1, ... ,8;j = 1,2,3), 

where L z (.) denotes the Lie derivative with respect to Z. 
Let 

ZI= ± (D;~+ Ej~) 
;~ I aD; aE; 

(16) 

Then the once-extended vector field is given by3 

_ 6 4 a 
ZI = ZI + L L hj --

k ~ I j~ I apkj 
(17) 
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We find that the system of partial differential equations (10) 
is invariant under i l . A straightforward calculation shows 
that 

(I 8) 

Lz. aj = aj; Lz. /3j = /3j . 

In order to obtain Lz. dF" Lz. daj , and L z . d/3j, we refer to 
the rule d (LxY)=== Lx (dy) for an arbitrary vector field x and 
an arbitrary form y. ZI describes the field scale change. Now 
let 

Z2= ± (E; .~_ CD;~) 
,~I caD, aE, 

Then the once-extended vector field is given by3 

iz = Zz + ~ { ± (P4j aa - Plj aa ) 
c ; ~ I 'Plj 'P4j 

+ (PSj aa. - P2j aJ
) + (P6j aa. - P3j aa )}. 

'P2; 'Ps; 'P3; 'P6; 

A straightforward calculation shows that the system of par
tial differential equations (10) is invariant under i z• For ex
ample, we find 

Lz,FI = F4,· .. ,Lz ,F6 = F7• L z ,F7 = - F6 

and 

I 
L z , a; = - /3;; L z , /3; = - ca, . 

c 
The vector fields ZI and Zz commute, i.e., 

[ZI, Z2] = O. 

Consequently 

[iI' i z] = O. 

The infinitesimal generators described above have been giv
en by Harrison and Estabrook. 1 Zz generates, via a Lie se
ries, the rotations 

Ej--+E; cosa + cD; sina; Dj--+D; cosa - (E;!c) sina. 

Finally, note that ZI[*(/3 A(3)] = 2[*( /3 A(3)] and 
ZI[*(/3 A *(3)] = 2[*(/3 A *(3»), 

Let us now give further infinitesimal generators which 
leave invariant the system of partial differential equations 
(10). Consider 

Z3 = (PZ3 - P32 + c12 P44) a~1 + (P31 - PI3 + :z PS4) 

a ( 1) a x aD
2 

+ PIZ - PZI + ",?P64 aD
3

' 

a a 
Z4 = (PS3 - hz - P14) a'E + (hI - P43 - P24) --

I aE2 

a + (P4Z - PSI - P34) aE ' 
3 

Zs = ~23 - P32 + c12 P44) a~1 + (P31 - PI3 + clz PS4) 

a ( I) a x aE
2 

+ PI2 - P21 + CZ P64 aE
3

' 

a a 
Z6 = (PS3 - P62 - P14) aD

I 
+ (P61 - P43 - P24) aD

2 
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( 
J J 

Z7 = (PII + P22 + P33) JE
I 

+ JE
2 

+ 

J J ) 
JB2 + JB3 ' 

( 
J J J ) 

Z9 = (P41 + P52 + P63) JE + JE + JE ' 
I 2 3 

ZIO=(P41 +P52+P63) --+ --+ -- . ( 
J J J ) 

JB I JB2 JB3 
A straightforward calculation shows that the system of par
tial differential equations is invariant under Z3, Z4"'" ZIO' 
In particular, we find 

1658 

L z , Fj = ° (k = 3, ... ,1O;j = 1, ... ,7), 

LZ,ai = - dFi , L z, Pi = 0, 

Lz. a i = 0, Lz. Pi = dFi + 3 , 

L z , a i = 0, L z , Pi = - dFi , 

Lz. a i = - dFi + 3 , Lz. Pi = 0, 

J. Math. Phys., Vol. 21, No.7, July 1980 

(i = 1,2,3) 

L z , a i = 0, L z , Pi = dF7 , 

L z• a i = dF7, L z , Pi = ° , 
L z. a i = 0, Lz. Pi = dFg , 

L z " a i = dFg, L z " Pi = ° . 
In contrast to the vector fields Z I and Z2' the vector fields 
Z3""'ZIO lead to a new class of in variances. Whereas the 
vector fields ZI and Z2 generate tangent transformation 
groups of Lie, the vector fields Z3""'ZIO generate Lie-Back
lund tangent transformation groups. In order to obtain the 
Lie-Backlund tangent transformation group, we must cal
culate the extension of the infinitesimal generator up to infi
nite order. 4 

IRK. Harrison and F.B. Estabrook, J. Math. Phys. 12,653 (\971). 
2J. Dieudonne, Treatise on Analysis (Academic, New York, 1974), Chap. 
18. 

3G.W. Bluman and J.D. Cole, Similarity Methodsfor Differential Equa
tions (Springer, New York, 1974), p. 158. 

4R.L. Anderson and N.H. Ibragimov, Lie-Backlund Transformations in 
Applications (SIAM, Philadelphia, 1979), pp. 41,49. 
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Para-Fermi quantization in the representation of SO(n) 
T. Maekawa and N. Noguchi 
Department of Physics, Kumamoto University, Kumamoto 860, Japan 

(Received 19 December 1979; accepted for publication 14 March 1980) 

The result of the representation theory ofSO(n) is applied to the quantization of/para-Fermi 
oscillators, and it is shown that a special irreducible representation of SO(2/ + 1) is realized in the 
quantization of the field with order p when the condition of vacuum is used. The group theoretical 
meaning of the quantities such as vacuum, order p, and the space of the state in the para-Fermi 
quantization is made clear, and it is seen that the space of the state vectors corresponds to that of 
the single- or double-valued representations according to p even or odd. 

I. INTRODUCTION 

Paraquantization offield is studied by many authors l
-

3 

and two methods corresponding to the generalization of Fer
mi and Bose statistics are known useful. The/parafield oper
ators are arranged to satisfy the commutation relations of 
SO(2/ + 1) 4 or Sp(2J,R ) 5 according to the generalized Fer
mi or Bose operators. Therefore, the close connection be
tween the parafield quantization and the representation the
ory of the groups is expected, but it seems that we know a few 
of the connections such as the Green decomposition and the 
Kronecker product representation of the fundamental 
spin or representation.4 As the representation ofSO(n) is well 
known, it will be important to clarify the connection between 
the para-Fermi quantization and the representation ofSO(n) 
in order to make further developments of the parafield. 

The purpose of this article is to apply the representation 
ofSO(n) to the para-Fermi-quantization and to make clear 
the meaning of vacuum, order p of the para-Fermi quantiza
tion and the space of the state vectors with the fixed order p. 2 

In Sec. II, a brief summary of the representation ofSO(n) is 
given for fixing the notations and for the following discus
sion. In Sec. III, the result of the representation ofSO(n) is 
used to define the vacuum state, and then the meaning of the 
vacuum and order of the quantization and space with the 
fixed order, which are introduced in earlier papers2 indepen
dently of the unitary irreducible representation (VIR) of 
SO(n), are made clearer. 

II. BRIEF SUMMARY OF THE REPRESENTATION OF 
SO(n) 

In this section, the results needed for the following sec
tion on the group SO(n) are summarized briefiy.6.7 

The infinitesimal generators Djk (= - D kj , Hermitian) 
of the representation ofSO(n) satisfy the commutation 
relations 

The basis vectors for the VIR of SO(n), classified by the 
group chain SO(n):::>SO(n -1):::> .. ·:::>SO(2), are given by 
the Gel'fand and Tsetlin6 labels as follows: 

mn - t t ,mn - t 2 , ... ,mn - t (n -1)/2 ] 

m51 ,m52 

m41 ,m42 

m 31 

m 21 

(2.2) 

where [j/2] means the largest integer smaller or equal toj/2. 
The numbers mjk are simultaneously integers or half-inte
gers and are subject to the restrictions 

m2j+li+1 <,m2ji<,m2j+li (i= 1,2, ... ,j-l), 

m 2ji + 1 <,m2j _ 1 i <,m2ji (i = 2,3, ... ,j -1), 

Im2iil<,m2j_Ij_1 <,m2jj _ 1 , 

Im2iil<,m2j+lj' (2.3) 

The VIR ofSO(n) is characterized by the [nI2] numbers m nj 

in the top row in (2.2) and the rows and columns of the 
matrix elements of Djk are labeled by those below the second 
row in (2.2). 

The second-order Casimir operator is given by 
(nI2] 

F (n)- ~ D2 
- £.. jk' 

j> k 

with the eigenvalue with respect to (2.2f 
(n/2] 

F(n) = L mnimnj + n - 2J). 
j~ 1 

(2.4) 

(2.5) 

Making use of(2.1), we obtain the relation forj<,n -2, 

[D F (n-I) F(n-2)] -D 2'D D 
jn , . - - jn - 1 j n - 1 n - 1 n 

= -Djn -2iDn_tnDjn_1 . (2.6) 

It follows from (2.6) together with (2.5) that all matrix ele
ments of the Lie algebra, i.e., Djk , are determined from those 
of Djj _ 1 (j = 2,3, ... ,n). 

The dimension of the VIR ofSO(n) is given with mnj as 
follows7: 
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N (mnl ,mn2 , ... ,mn(n -1)/2) 

= [(n - 2)!(n - 4)!! (n
j
ti:12 

(n - 2j - 3)! ] -I 

(n ril2 
X 11 (21n , - 1) 

i= 1 
(n :riJ12 (n ri12 

X 11 11 [(/nj-D2-(lnk -D2], (2.7) 
j~1 k~j+1 

for n odd, and 

N(mnl,mn2, .. ·,mnnI2) 

= 2(n - 2)/2 [(n - 2)!(n - 4)!! (n
j
!i:/2 (n - 2j - 3)! ] - I 

X 
(n TiJ12 'IJ'12 

11 (/~j -/~k)' (2.8) 
j~1 k~j+1 

for n even. The quantity Ijk is defined by 

Ijk =mjk + [(j+l)/2] -k (k= 1,2, ... ,[j12]). 
(2.9) 

The action of the generators Djj + I (1 <j<n - 1) on the 
bases (2.2) is given as follows6

.
7

: 

k 

D2k2k+1 Imij) = I A (m2k)lm2kj + 1) 
j~ I 

k - I A (m 2kj -1)lm2kj -1), 
j~ I 

k -I 

D2k_,2klmij) = I B(m2k_,j)lm2k_,j +1) 
j~1 

k-I 

(2.10) 

- I B(m2k_lj -1)lm2k _ ,j -0 
j~ I 

+ C2k Imij) , (2. 11 a) 

(2. 11 b) 

It is noted that in the bases on the right-hand side only the 
numbers, which change under the action of the generator, 
are written except the base Imij)' The matrix elements A, B, 
and C are given in the form 

A (m 2kj ) = V {X( [(l2k-I, _!)2 - (/2kj + !)2] 

k 2 2 } 1/2 
X III [(12k + I i - D - (/2kj + D ] 

X { ,VI' (I ~k' - I ~k) [I ~ki - (l ~kj + 1)2]} -1/2 , 

(2.12) 

(2.13) 

C2k = :0: 12k - 2 i ,~\ 12k; [0: 12k - Ii (12k - I i - 1) ] - I , 

(2.14) 

where the prime on IT means the product of factors except 
for i =j. 

In the next section, we need the representation in the 
case of n odd. Therefore, we define the base I min) in the case 
of n ( = 2f + 1), odd by the base (2.2), with the possible mini
mum numbers mij given by (2.3), i.e .. 
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mnl ,mn2 , ... ,mn! -I ,mn! 

mn2 ,mn3 , ... ,mn!' - mn! 

Imin) = (2.15) 

mn! 

-mn! 

It, then, follows from (2.11) and (2.14) that the base (2.15) is 
the eigenvector of D1j _ J 2) with the eigenvalue, i.e., 

D2J_,2jlmin) =C2)lmin), (2.16) 

where the C2) is the C2) evaluated at the base (2.15). It is easy 
to give the explicit expression for the C2j, but we do not need 
it here. These results will be used in the next section. 

III. PARA-FERMI QUANTIZATION AND THE UIR OF 
SO(n) 

Let aj (j = 1,2, ... ,J) be a set of operators and aJ their 
adjoints. The para-Fermi quantization of these operators is 
defined by the commutation relations 1 

[aj,[at,a/]] = 28jk a/ , 
(3.1) 

[aj,[ak,a/]] = 0, 

where [A,B] = AB - BA. If we define the quantities -0k in 
terms of a) and aJ as follows, 

J2j2k-1 = -J2k - 12j =!(Njk +Nkj +Ljk -Mjk ), 

J2j -I 2k- 1= - J2k - I 2j -I = - !i(Njk - N kj + Ljk + Mjk ) , 

J2j2k = - J2k2j = - !i(~k - N kj - Ljk - ~k)' (3.2) 

J2j _I 2! + I = - J2! + 1 2j _I = !(aj + aJ) , 

J2j2!+ I = - J2!+ 12j = - !i(aj - aJ), 

where 

~k = HaJ,a k ], Ljk = HaJ,a!], Mjk = Haj,ad ' 

we havef(2f + 1) [ = n(n - 1)/2] Hermitian operators Jjk 
and it follows from (3.1) and their adjoints that the quantities 
Jjk satisfy the same commutation relations as (2.1) for the 
generators of SO(n) (n = 2f + 1).4 

Usual para-Fermi quantization may be summarized as 
follows.2 The unique no-particle state 10) (vacuum) is de
fined by the eigenstate of the operators Njj (= - J1j _ I 2) ) 

with the minimum eigenvalue, and due to (3.1) 

ajlO) = (J2j _ 12!+1 +iJ2j2!+I)IO) =0, (3.3) 

for all j = 1,2, ... ,f Then, the order p of the para-Fermi quan
tization is defined by 

aja;IO) = 8jl plO) (3.4) 

It is, then, shown that the space of the para-Fermi quantiza
tion with the fixed p is spanned by the vectors which are 
obtained by operating all possible a J on 10) and p becomes a 
nonnegative integer due to the positive definiteness of the 
norm of the state vectors.2 However, it seems necessary to 
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clarify the group-theoretical meaning of the vacuum, order 
p, irreducibility, and single- or double-valued 
represen tation. 

If we use the representation theory ofSO(n) and defini
tion of the vacuum, the meaning of the above quantities such 
as the vacuum, order p, etc., becomes evident. In what fol
lows, we show the close connection. 

Making use of the same notations as in Sec. 2, we obtain 
from (2.16) 

N1ilmin)= -J2j_12jlmin) = -C2j lmin). (3.5) 

It is, thus, expected that the state Imin) corresponds to the 
vacuum state because the vacuum state is defined by the 
minimum eigenstate of Nil (j = 1,2, ... ,/). Therefore, in or
der that the state Imin) denotes the vacuum, it is necessary 
to be subjected to the following conditions due to (3.1): 

ajlmin) =(J2j-12f+1 +iJ2j2f+I)lmin) =0, (3.6) 

forallj(j = 1,2, ... ,/). OperatingaJfrom the left of(3.6) and 
summing over j after making use of the relations (2.1) and 
(2.4), we obtain 

[F<2f+ ll _F(2fl_ jtl D2j-12j ]Imin) =0. (3.7) 

(3.7) leads to the conditions 

f mnj(mnj + 2f + 1 - 2]) 
j=1 

f-I 
- .I mnj + I (m nj + I +2f -2.J) - mnAmnf +1) = 0, 

j= I 

B (m 2j -Ik) = 0 (j = 2,3, ... ,j; k = 1,2, ... ,j - 1) , (3.8) 

where (2.5), (2.16), and (2.11) are used and B (m 2j -lk)'S are 
given at the possible minimum values (2.15) of mjk • The fol
lowing result is obtained from (3.8) with (2.13): 

(3.9) 

Thus, the vacuum state, which will be written with the same 
symbol 10) as in (3.3), is completely characterized by a num
ber mnl which is written as p/2, and it follows that 10) is 
explicitly given by (2.15) with all m nj = p/2 (j = 1,2, ... ,/) 
and becomes the eigenvector of Nil with the eigenvalue 
- mnl (= - p/2) 

Nil 10) = -! plO) , (3.10) 

for we have C2j = mnl (j;;;.2) in the case of(3.9). It is obvious 
from (3.5), (3.6), and the expression of Nil given below (3.2) 
that the vacuum state 10) satisfies the relation 

ajar 10) = Ojk plO) , (3.11) 

which agrees with (3.4). Thus, we see thatp is the order of the 
para-Fermi quantization defined by (3.4). 

Therefore, it is seen that thefpara-Fermi oscillators 
with the order p ( = 2mnl ) is given by the representation of 
SO(n) characterized by a number p, and the single- or dou-
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ble-valuedness of the representation is trivial according to p 
even or odd. It is easy to give the GeI'fand and Tsetlin bases 
by operating the raising (or lowering) operators on 10) (or 
I max) ), 8 but we remark briefly about the representation dia

gonalizing Nil . 
From (3.1), we obtain for s = 1,2, ... 

(3.12) 

Thus, the following relation holds from (3.5) and (3.12): 

Nil tr (a~nO) = (- ~p +s) tr (a1),'10) , (3.13) 
k = I k= I 

with nonnegative integers Sk and the action of (a!y on 10) 
becomes identically zero for S > P due to (2.10) and (2.11). It 
follows from (3.12) that in general the eigenvectors of Nil are 
degenerate. In order to specify the bases diagonalizing Nil 
uniquely, we needf(f -1)/2 commuting operators more 
because we have only f commuting operators Nil but 
f(f + 1)/2 operators are needed to specify the matrix ele
ments uniquely. 

It is obvious that the result of the action of aj or a J on 
the states such as (3.12) can be expressed in terms of the 
linear combination of the Gel'fand and Tsetlin bases given 
by (2.2) with m nl = mn2 = ... = m nf = p/2 . The dimen
sion of the space with the order p is, of course, given from 
(2.7) (n = 21 + 1) by 

N(p) = [(2f -I)! (2f - 3)!! ~I( (2f -2) -2)! tl 
X 

(p +2f -l)!! frr-I (f - J)! (p +2f -2J)! 

(p-l)!! j=1 (p+f-J)! 
(3.14) 

Thus, we may conclude that there exists the close connection 
between the quantities such as the vacuum, order p, irreduci
ble representation space withp in the para-Fermi quantiza
tion and those such as the minimum state defined in Sec. 2, 
characteristic number m nl (= p/2) , and irreducible repre
sentation space of the group SO(n). The result will play an 
important role in the further development of the para-Fermi 
quantization. 
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The high-energy polynomial and logarithmic behavior of renormalized Feynman amplitudes, 
involving subtractions, is studied with total generality when some or all of the external momenta 
of the graphs in question become large in Euclidean space nonexceptionally for theories which on 
experimental grounds may contain zero mass particles. Initially, all the propagators are defined to 
have nonzero masses in their denominators. The vanishing masses are led to vanish, and in 
general, at different rates. Rules are given for applications and examples are then worked out to 
demonstrate the application of these rules. 

I. INTRODUCTION 

On dimensional grounds the high-energy behavior of a 
Feynman amplitude and its zero-mass behavior are expected 
to be intimitaly connected. The actual connection is, howev
er, far from obvious especially when several momenta and 
several masses are involved in an amplitude and when some, 
not necessarily all, of the masses approach zero, and in gen
eral, at different rates. A thorough and quite general study of 
the zero-mass behavior of Feynman amplitudes has been re
cently carried out in Euclidean space· alld we shall spell out 
in this paper the basic conclusions needed here. On the other 
hand, our previous high-energy studyl of subtracted ampli
tudes relied on a nonzero mass constraint in the theory. The 
purpose of this work is to carry out a general study of the 
high-energy behavior of subtracted-out Feynman ampli
tudes for theories that may contain zero-mass particles on 
experimental grounds. Initially we write for the denomina
tors of the propagators, corresponding to a pole term Q 1, 

Q 2 + ,ul in the expression for the (subtracted) Feynman inte
grand. The study is general and considers: 

(i) The cases when the vanishing masses vanish, in gen
eral, at different rates in conformity with experiments. Ex
perimentally, different small upper bounds are set on masses 
that, theoretically, are taken to be zero. 

(ii) The high-energy behavior of the amplitudes corre
sponds also to cases when some or all the external (nonex
ceptional) momenta become large, and in general, at differ
ent rates. To obtain the final expression for the renormalized 
Feynman integrand one may use the subtractions as given in 
Ref. 3. 

Section II deals with the main analysis. In Sec. III we 
give some examples as illustrations of the rules given in Sec. 
II. 

II. HIGH-ENERGY ANALYSIS 

A Feynman amplitude associated with a proper and 
connected graph G is of the form 

A (P •• Pz,··;,u.,,ul'··) 

f dk.···dk4n R (P.,Pl,··;k.,kl,···;,u •• ,uz,···), (1) 

where 

R (P., pz,··;k.,kl,··;,u., ,ul.···) 

Ai _ I m .. ,···,nil, .. ·.Tot 

TI/(Q 7 + ,u7t' 

j 

(2) 

0"/ > 0, the sum is over nonnegative integers mil •... ,ni. , ...• 
'Til , .... The A i·S are some suitable coefficients and Q/ = qr 
+ k r, with qr = 2 jaJ Pj and k r = 2jb jkj , respectively. de
note the external and internal momenta of the graph G. In 
reference to a subdiagram gC G. we write Q/ = qf + k f, 
where, of course, gr, k rand qf, k f may not necessarily coin
cide and, in general, an external momentum of g may be an 
internal momentum of G. Let 

Yp = [P.,Pl,···,PrJ, Yp = [,u •• ,uz, .... ,us) 

be subsets of the external momenta and masses of the graph 
G. We consider the following scalings by positive numbers 

T/ •• T/z.···'T/r' ,.1,.".1,z,···".1,s: 

P.-T/.···T/r PI> pz-T/Z"'T/r PZ,",Pr-T/rPr • 
(3) 

,u1-,.1,J-l., ,u2-,.1, •,.1, z,Llz,·", ,us-,.1,.,.1,z .. ·,.1,s,us, 

and consider the behavior of A when T/.,T/z, ... ,T/r-OO and 
A I".1,Z""".1" -0. all approaching their limits independently. 
Without loss of generality, we may assume that the momenta 
(nonexceptional) that become large at the same rate have 
been grouped into classes, withpI or Pl •... ' or Pr as their 
representative. Similarly, the vanishing masses that vanish 
at the same rate may have been assumed to be identified with 
,u. or ,uz, .. ·, or ,us' Under the scalings in (4), the integrand R, 
as defined in (2), is transformed to 

(4) 

where 

(5) 

{
I, 

Cab = 0, (6) 
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(Q7+IlD-(A 1'''A s?[(i=a;p;+ i=b;k;Y +lli
2
], (7) 

and d (N) is the dimensionality of the numerator of R. Ac
cordingly, the amplitude A is transformed to 

A (1] 1"'1] r PI"'" 1] r Pro Pr + 1 ,"';). til I""')" 1"'Aslls #s + I , ... ) 

= (A1Az'''A,)d(G)A " (8) 

with 

A' = A (p; 'P;"'",JL; ,Il;,") 

= J dk l ·"dk4 R (pi , .. ;k l ,k2 ,"",JLi ,Il;,"')' 

and we may write 

pi = (1]I'''1]rA 1- 1 ... ,.1, s-I) PI""'P; = (1]rA 1-1 ... ,.1, s-I) Pr' 

P; = (A 1-
1 

••• ,.1, s-I)pj' r<j, 

Il~ = (A 1-1"'As-I)llk' s<k, 

Il; = (A z-I"'A s-I)IlI'''',Il; =Ils' 

(9) 

(10) 

In Eq. (8) we have identified d (N) - 2l:p, + 4n with the 
dimensionality of the graph G. Let Nbe the number of p, k, Il 
components and consider p;, P; , .. ;kl ,k2, .. ·",JL; #; ,'" as the 
components of an N-dimensional vector P' in an N-dimen
sional Euclidean space R N. Let J be a 4n-dimensional sub
space of R N, associated with the 4n integration variables. Let 
E be the orthogonal complement of J in R N. Let A (J) denote 
the projection operator onto E along J. 4 In particular, P; , 
P; ,'''",JLi ,Il; , .. may be considered as the components of a 
vector P, with P = A (l)P'. The vector P may be written in 
the form: 

with 

P = (AI'''Ast
l
{ itl (1]i"'1]r)Li + Lr+1 } 

+ t (Aj'''AstlLj+s + C, 
j~2 

LI with non vanishing component PI' 

Lr with non vanishing component Pro 

Lr+1 with non vanishing components Pr+1 ,Pr+2"'; 

Ils+ I ,lls+2 ,"', 

Lr + 2 with non vanishing component Ill' 

Lr + s with nonvanishing component Ils _ I , 

FIG. I. A fourth-order electron self-energy graph. 
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(11) 

(12) 

FIG. 2. Some twelfth-order photon self-energy graphs. 

C with nonvanishing component Ils . 

The transformed amplitude A may be rewritten as 
(AI'''As)d(G)A (P) we denote by Sj = [LI,Lz,· .. ,Lj J a sub
space of E spanned by the vectors L I,L2, .•• ,Lj . We say that 
the parameter 1]i appearing in (11) is associated with the 
subspace Sj' and A i-I, also appearing in (11), is associated 
with the subspaceSr+ i' 1 <;i<;s. For each line I in G carrying 
a momentum-mass (Q f) = (Q ~,Q J,Q ;,Q 1#,) we introduce 
a vector VI such that V/·p' = Q I' In particular, we note that 
(V/·P')(V/·p') = Q 7 + IlT. As Q, = ql + k" we may also in
troduce, separately, V vectors for the external momenta, in
ternal momenta, and the masses carried by each line. 

We give the analysis first (a) for the behavior of A for 
1] 1, .. ·,1] r - 00, A I""')"s -0 for the general cases. We then con
sider the behavior of A in the cases when the limits 
A I ,)..2,"',)..s of A [(b)] may be rigorously taken. 

(a) Let (A ;-1 )= 1] r + i' Letj be a fixed integer in 
1 <; j<;r + s. We consider the behavior of A (P) in reference to 
the parameter 1]j' Let 1j = [G; ,G j' ," J be the set of all sub
diagrams C G, with d (G ;) = d (G n = "', and let [S;, 
S j' ," J be subspaces in R N, with which the subdiagrams 
[G; ,G j' , .. J are associated; i.e., all the V of a G je1j are not 
orthogonal to S j and A (J)S j = A (J)S j' = ... = Sj' such 
that any other subdiagram G', similarly defined, is such that 
d (G ')<;d (G j). If the equality holds, then G 'e1j, by defini
tion. For each G je1j let [gJ, i = 1, .. J be the set of all proper 
but not necessarily connected subdiagrams C G j such that 
for each gJ each connected part of gJ is divergent. For each g} 
consider the subdiagram (G; I gJ) obtained from G j by 
shrinking gj in it to a point and replacing it by a polynomial 
of degree <;d (gj) in its external momenta. Let S t be a sub
space of R N with which the subdiagram (G j I gJ) is associat
ed, i.e., all the V of the lines in G jig} are not orthogonal to 
S ji, all the V of the internal momenta and themassesingj are 
orthogonal to S t, and at least some of the external momenta 

of gJ are not orthogonal to S r (G I g simply denotes a dia
gram G with g, a subdiagram (gC G) in G shrunk to a point.) 
In particular, we note that for j > r all the masses in the lines 
in each gj must be from the set [Ilj _ r + I ""#s J. According
Iy, the behavior of A may be quite generally stated as follows: 

lim A 

fI •• ···.1J,.-ox> 

= 0 ( 1]1' '-'1]~+; y ••. ~ •• , (ln1]17. Y' ···(ln1]17, + y' + ). (13) 

where A I-I =1]r+I''''')''s-1 =1]r+s, 
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r.+P:z. i r!> 
r" r~ ~ 

• • 
(\ ,J.. 

I , 
I , I , 
\/ \ , I 

· r , , 
r.'" 'tr 
I fz. 

G 

FIG. 3. (a) Fermion-Fermion (spin D scattering graph. The dotted lines 
denote scalar bosons. (b) Proper divergent subdiagram g of G with masses 
from the set I fL l· 

(14) 
OJ= -d(G/G;), r+l';;;i,;;;r+s, 

and the sums are over all nonnegative integers Y" ... ,Y,+s 
satisfying 

k 

L Yi.;;;p/([L"L2 , ... ,L1T, j), (15) 
i= I 

for all 1 .;;;k.;;;s + r, and where we ordered the so-called loga
rithmic asymptotic coefficients2

.
5 p/ in an increasing 

(16) 

where 1TI , ... ,1Ts +, is a permutation of 1,2, ... ,s + r. 
(b) Here it is assumed that the limits AI'''',A.s-o in A 

may be rigorously taken. According to Ref. 1, the limits 
AI,A 2, ... ,A.s-o of A exist ifin reference to each parameter Ai' 
1 .;;;i.;;;s, the following two conditions are true: 

(i) Any subdiagram Goc;;,G containing all the external 
verticesofG, with all the masses in G /Go(ifnot empty) from 
the set LUi ,J.li + I , ... ,J.l, J, and any line in Go not participating 
in a closed loop and not carrying an external momenta of G 

carrying a mass from the set I J.lI'···'J.l i-I ,J.l s + I ,J.l s + 2 ," J 
must be such thatd (Go).;;;d (G). This must be true for all Go's 
as just defined. By an external vertex of G, it is meant a vertex 
of G to which an external line to G would be attached. In 
particular, we note that the definition of Go as just given 
implies that if there is an internal vertex in G to which is 
attached just one line of Go, then the mass carried by this line 

must be from the set IJ.lI, .. ·,J.li-1 ,J.ls+ I ,J.ls+2 ," J. 
(ii) For those subdiagrams Go, as defined above, with 

d (Go) = d (G), Go must not contain a divergent proper sub
diagram (c;;, Go) with all the masses in its lines from the set 

IJ.lUJ.li + \ , .. ·,J.ls J. 
In particular, we note that G ( = Go) itself must trivially 

satisfy these two conditions, for all 1 .;;;i.;;;s, to be in the cate
gory (b). According to such a hypothesis limit A = 0 (1) for 
AI,A.2'''',A.,-o, as any subdiagram Go, as defined above, is 
such that d (Go).;;;d (G) (by hypothesis). This means that 
p/(S, + \ ) = ... = p/(S, + s) = O. According to such a hy
pothesis, the behavior of A simplifies to 

lim A 

1J1.···'YJ,·-OO 
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= 0 (7]7(G i)"'7];(G;) Y'~Y. (ln7]1T, )1" "'(ln7]1TY) (17) 

where 
k L Yi';;;P([L\, ... ,L1T,l) (18) 

i= 1 

for all l.;;;k,;;;r, and 

(19) 

where 1T I , ... ,1T, is a permutation of 1, ... ,r. 
In the next section examples will be worked out to illus

trate these rules for graphs in categories (a) and (b). 

III. EXAMPLES 

Consider the classic example of the self-energy graph in 
Fig. 1 with d (G) = 1. Here we are interested in the amplitude 
A (7]q,m,A.J.l) for A-o, 7]--+00. The limit A-o exists, I as any 
subdiagram G' c;;, Gis such thatd (G ').;;;d (G) and Gdoesnot 
contain any divergent proper subdiagram c;;, G having all its 
masses from the set I J.l J . On the other hand, the asymptotic 
coefficients of 7] are (c.f. Ref. 1) a/(S\) = 1 andp/(S\) = 1, 
hence 

lim A (7]Q,m,A.J.l) = 0 (7] [ao + a\ In7]]), (20) 
A .0. 1)--00 

where ao and a I are constants. 
Similarly, for the photon self-energy graphs in Fig. 2 the 

corresponding amplitudes A (7]Q,m,A.J.l) exist for A-o, \ and 
the asymptotic coefficients of 7] are a/(SI) = 2, P/(SI) = 6, 
i.e., 

A-~~~~-~oo A (7]Q,m,A.J.l) = 0 (7]2 nto an (ln7]Y) , (21) 

with aO, ... ,a6 some constants, some of which may be zero. 
Finally consider the graph in Fig. 3 with d (G) = - 4. 

Here we are interested in the behavior of the corresponding 
amplitude A (P\,P2,7] P3,m,A.J.l) for A--+Oand 7]--+00. First we 
note that the limit A-o cannot be rigorously taken, as G 
contains a divergent proper diagram g with its masses from 
the set [J.l J . Consider the amplitude 
A (PI/A,P2/A,7] P3/A,m/A,J.l)' It is easy to see that the as
ymptotic coefficients of A -\ are a/(S2) = - 4 andp/(S2) 
= 1. On the other hand, the asymptotic coefficients of 7] are 

a/(S\) = 1 andp/(S\) = O. Accordingly, 

A-_O, 7}--~ cc 

= 0 {A -4( ~ ) -4 ~ [ao + al In( ~ )]} 

= 0 { ~ [ao + a\ In( ~ )]}. (22) 

The above examples, although elementary, are rich 
enough to demonstrate the rules in Sec. II at work. 

'E. B. Manoukian, J. Math. Phys. 21,1218 (1980). 
2E. B. Manoukian, J. Math. Phys. 19, 917 (1978). 
3E. B. Manoukian, Phys. Rev. D 14, 966, 2202(E) (1976). 
4S. Weinberg, Phys. Rev. 118, 838 (1960). 
'J. P. Fink, J. Math. Phys. 9,1389 (1968). 
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A set of n para-Bose operators of order p is explicitly constructed in terms of n Xp Bose operators. 

1. INTRODUCTION 

The treatment of para-operators is intricate because the 
defining commutator relations are trilinear. Therefore, it is 
very convenient to use the so-called Green decomposition, I ,2 

where the para-Fermi and para-Bose operators are formed 
as linear combinations of several different commuting Fermi 
operators and anticommuting Bose operators, respectively. 
This construction has the peculiarity that in either case the 
basic bilinear relations include commutation as well as anti
commutation relations. 

In recent contributions R. Jagannathan and R. Vasude
van3

,4 have given representations of para-Bose (para-Fermi) 
operators of any order entirely in terms of Bose (Fermi) op
erators. In the case of n para-Bose operators of order p these 
authors form the np operators which enter in the Green de
composition and which obey mixed commutation relations 
by the use of np + [p12] Bose operators, where [p12] de
notes the integer part of p12. Using a different principle of 
construction we show in this note that an alternative Bose 
description can be given where the formation of np operators 
with the desired mixed algebraic properties requires just np 
Bose operators. 

In Sec. 2 we consider the case of a single para-Bose 
operator of aribitrary order p. In Sec. 3 we generalize our 
approach to the situation of an arbitrary number of para
Bose operators of order p. 

2. SINGLE PARA-BOSE OPERATOR OF ORDER P 

Let f a(a)la = 1,2, ... ,p J be of a set ofp Bose-operators 
[a(al,a(f3) + ] = 0 a{3' [a(a) ,a(f3)] = 0, 

a,/3 = 1,2, ... ,p. (2.1) 

Then the unitary operators G (a) (a = 1,2, ... ,p) defined by 

G (a) = exp(i1ra(a) + a(a» 

have the properties 

G(a) = G(a)+ = (G(a)t1, (G(a»2 = 1, 

and they satisfy the relations 

(2.2) 

(2.3) 

(2.4) 
f a(a),G (a) I = ( a(a)+ ,G (a) ) = 0, (2.5) 

[a(a),G(f3)] = [a(a)+ ,G(f3)] = 0, a =/-/3. (2.6) 

We mention that according to Eq. (2.5) the unitary operator 
G (a) generates the canonical transformation 
a(a),a(a) + -+ _ a(">, _ a(a) + . 

From Eqs. (2.3)-(2.6) it follows immediately that the 

operators G(a) (a = 1,2, ... ,p) defined by 
_ _ a-I 

G(l)= 1, G(a)= n G(v), a> 1, (2.7) 
l'= 1 

obey the relations 

G(a) = G(a) + = (G(a)t1,(G(a)? = 1,[G(a),G(f3)] = 0, (2.8) 

f a(a),G(f3) J = f aia)+ ,G(f3) J = 0, a </3, (2.9) 

(2.10) 

Ifwe now define the operators f b (a)la = 1,2, ... ,p J by 

b (a) = G(a)a(a), (2.11) 

we find from Eqs. (2.8) and (2.10) that 

b (a) + = G(a)a(a) + , (2.12) 

and from Eqs. (2.8)-(2.10) it follows that the operators b (a) 

form a set of p anticommuting Bose operators 

[b (al,b (a) + ] = 1, [b (a),b (a)] = 0, (2.13) 

fb(al,b(f3)J = [b(a),b(f3)+ J =0, a =/-/3. (2.14) 

Equation (2.13) is an immediate consequence of Eqs. (2.8) 
and (2.10). For a proof of Eq. (2.14) let us consider, for ex
ample, the anticommutator of the operators b (a),b (f3) + with 
a =/-/3. Using Eqs. (2.8)-(2.12) we have 

f b (a),b (f3) + J = G(a)a(a)G(f3)a(f3) + + G(f3)a(f3) + G(a)a(a) 

= { - ~(a)~(f3)[a(a),a(f3) +], a </3 

+ G(a)G(f3)[a(a),a(f3) + ], a>/3 

= 0, a =/-/3. (2.15) 

Following Green's ansatz we arrive at the desired para-Bose 
operator A (p) of order p 

A (p) = f bra), (2.16) 
a=1 

which satisfies the general para-Bose commutation relation 
for a single degree of freedom: 

[A,fA., A J] = 2A. (2.17) 

3. ARBITRARY NUMBER OF PARA-BOSE OPERATORS 
OF ORDER P 

If we now consider a set! aja)la = 1,2, ... ,p;j = 1,2, ... ,n I 
of np Bose operators 

[aJa>,aY!) + ] = Da{3Djk , [aja),ay!)] = 0, 

a,/3 = 1,2, ... ,p; j,k = 1,2, ... ,n, (3.1) 

we can define the operators analogous to those ofEq. (2.2) by 

(3.2) 
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such that 

G(a) = G(a)+ = (G(a»)-l (G(a»)2 = 1 
) } )' J ' 

[Gtl,G~)] = 0, (3.3) 

rata) G(a)l = [a(a) + G(a)l = ° 
) , J )' } ' 

[at),G~)] = [ajaH ,G~)] = 0, a=l=p and/or }=I=k. 

If we arrange the Bose operators aia) into the n sets 
[aja)la = 1,2, ... ,p I, we may apply to each set the procedure 
of Sec. 2. As a result we get the n sets of operators 
[bj")la = 1,2, ... ,pJ with 

bra) = (f(a)a(a) 
J J J ' 

_ _ a-I 

G(I)=I,G(a)= IIG(") a>1 
J J J ' • 

1/=1 

(3.4) 

(3.5) 

According to Sec. 2 the operators lija),bja) + within each set, 
i.e., for fixed}, obey the mixed commutation relations (2.13) 
and (2.14) and operators from different sets commute by the 
construction 

[bjal, b~)] = [bja),b~H ] = 0, }=I=k. (3.6) 

Although the operators bja), lija) + satisfy some sort of 
mixed commutation relations, these relations are not of the 
type which is necessary in order to form from these operators 
n para-Bose operators of order p by the use of Green's ansatz. 

This deficiency can easily be cured by defining the np 
operators b ja) by 

b (a) = (f(a)a(a) b (a) + = (f(a)a(a) + 
J (n) J ' J (n) J ' 

where the operators 

G-(1) - 1 G-(a) ~ lIn G-(a) 
(n) - , (n) - i 

i= 1 

n a-I 

= II II G~V), a> 1, 
i= I v= I 

obey the relations [compare with (2.8)-(2.10)] 
(f(a) - (f(a) + _ «(f(a»)-l 

(n) - (n) - (n) , 

(G-(a»)2 - 1 [G-(a) G-(f3)] - ° 
(n) -, (n) , (n) - , 

[ala) (f(f3)J = [ala) + (f(f3)J = 0 a <13, 
J ' (n) J' (n) , 

[ala) (f(f3)] = [ala) + (f(f3)] = 0 a-:;,p. 
J ' (n) J' (n) , 7 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11 ) 

It then follows from these relations that the operators b ja) 
may be arranged into p sets [b ja)l} = 1,2, ... ,n J of anticom
muting Bose operators 

[b (a) b (a) + ] = O. [b (a) b (a)] = 0 
} ' k }k' J' k , 

[b ja),b ~)J = [b ja),b ~H I = 0, a =1=13, 

a,p = 1,2, ... ,p; },k = 1,2, ... ,n. (3.12) 

Hence, by Green's ansatz we find the n para-Bose operators 
of order p 

A (p) - ~ b (a) • - 1 2 
j - L j' } - , , ... ,n, (3.13) 

a=l 

which satisfy the general para-Bose commutation relations 

[Ai,[A /, Ad] = 20ij Ak , 

[Ai,[Aj,Ad] = 0, (3.14) 

i,}, k = 1,2" .. ,n. 

The method we have used in order to construct from np 
Bose operators aja),a5a) + a set of np operators which satisfy 
mixed commutation relations relies on the special properties 
(3.3) of the operators Gja). If we compare the definitions 
(3.4), (3.5) and (3.7), (3.8) we see that the different types of 
mixed commutation relations of the operators bja) ,lija) + 
and b yl,b 5a

) + result from the use of different combinations 
ofthe operators G ~v). When using other combination of these 
operators we obviously can form operators with other types 
of mixed algebraic properties. As a final remark we mention 
that the special properties of the operator G, associated with 
a Bose degree of freedom, play an essential role in the Klein 
transformation,S where a set of pure Fermi operators is con
structed from a set of pure Bose operators. For a discussion 
of this point we refer to Ref. 6. 

'H.S. Green, Phys. Rev. 90, 270 (1953). 
20.W. Greenberg and A.M.L. Messiah, Phys. Rev. B 138, 1155 (1965). 
JR. lagannathan and R. Vasudevan, 1. Math. Phys. 19, 1493 (1978). 
4R. lagannathan and R. Vasudevan, 1. Math. Phys. 20, 390 (1979). 
50. Klein, 1. Phys. (USSR) 9,1 (1938). 
's. Naka, Prog. Theor. Phys. 59, 2107 (1978). 
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The solution of the Schrodinger equation for a Hamiltonian H that is a general second order 
polynomial in the canonical coordinates qi and momenta Pi is discussed. Examples of such 
Hamiltonians abound in various fields of physics and, e.g., the problem of small vibrations has 
been solved a long time ago. In the general case we first use linear canonical transformations [the 
group Sp(2n, R)] to reduce H to a simplified representative form HR . Next we imbed each HR into a 
complete set of commuting second order integrals of motion, making use of a recently obtained 
classification of maximal Abelian subalgebras of the algebra sp(2n,R). This imbedding is then used to 
separate variables in the representative Schrodinger equations and to obtain complete sets of their 
eigenfunctions. Finally the solutions of the representative equations can be transformed back into 
those of the original one making use ofrepreentations of the canonical transformations. The program 
is implemented fully for n = 1,2 and its structure is analyzed for arbitrary n. Special cases ofinterest 
are treated in detail, e.g., Hamiltonians for a system of n particles invariant under rotations, 
translations and permutations. 

1. INTRODUCTION 

The purpose of this article is to discuss the problem of 
finding the solutions of the Schrodinger equation 

c7t'¢(ql , .. ·,qn ) = E¢(ql , .. ·,qn ), (1) 

where c7t'is a quite general quadratic Hamiltonian in phase 
space, i.e., 

(2) 

where ZT = (ql , ... ,qn'PI ,,,,,Ph) and H = HT a real symmet
ric 2n X 2n matrix (the superscript T denotes transposition) 
which we write in the form 

( c AT) 
H= A B ' B=B

T
, C=C T

• (3) 

This type of problem makes its appearance in many 
fields of physics. The simplest example is that of the harmon
ic oscillator, I which is of fundamental importance in many 
body physics, in particular nuclear theory. Classical2 and 
quantum mechanical3 problems involving small vibrations 
provide further examples that have been solved using well 
known methods. More general Hamiltonians of the type (1)
(3) occur in problems of molecular physics and quantum 
chemistry4 either directly or as the result of suitable approxi
mations. A study of nuclear forces and nuclear structureS 
also leads to quadratic Hamiltonians, as do investigations of 
the motion of electrons in magnetic fields. 6 Quadratic Ham
iltonians in canonical coordinates and momenta arise in field 
theories 7; the problem of constructing, for example, vacuum 
states is then isomorphic to the problem stated above. 

a)Work supported in part by the National Research Council of Canada 
Ministere de I'education du gouvemement du Quebec, and the Canada 
Council. 

b)Permanent address: Instituto de Fisica, UNAM, Apdo Postal 20364, 
Mexico 20, D.F. Member of the Instituto Nacional de Energia Nuclear 
and EI Colegio Nacional. 

It should also be mentioned that solvable models are 
hard to come by in nonrelativistic and relativistic quantum 
theory. A general solution of problems (1)-(3) would pro
vide us with entire families of solvable problems, comple
menting the harmonic oscillator, Coulomb potential, and a 
few others that are known. 

Our approach involves the following mathematical 
steps. 

(1) We apply the real linear canonical transforma
tions8

-
1O Sp(2n,JR) to classify the matrices X = KH, with Has 

in Eq. (3) and 

K=( 0 In) (4) -In 0' 

into orbits and then choose a representative element X R on 
each orbit. Each of these elements provides us with jl repre
sentative Hamiltonian c7t'R' Any Hamiltonian of type (1) 
can then be transformed into one of the representative Ham
iltonians by a canonical transformation and these c7t'R can 
be chosen in relatively simple forms. As a mathematical 
problem this amounts to a classification of elements of the 
symplectic Lie algebra sp(2n,JR) into conjugacy classes, a 
problem that has received much attention in the literature 
and been essentially completely solved8

.
1I

-
14

• 

(2) We classify all maximal Abelian subalgebras 
(MAS A) of sp(2n,R) into conjugacy classes under the group 
Sp(2n,JR) and choose a representative subalgebra DR for 
each class. This makes it possible to imbed each matrix X R 

into one (or more) MASA DR' i.e., to imbed each Hamilton
ian c7t'R into a complete set of commuting second order (in 
phase space) integrals of motion. Much work has been done 
on the problem of classifying commuting sets of matrices, 15 

in particular on MASA of semisimple Lie algebras 16.17. Con
siderable progress has been achieved in this direction quite 

tl 18 19 l' .. h h recen y . ,part y In connection Wit t e present paper. 
(3) We solve the Schrodinger equation (1) for each re

presentative Hamiltonian c7t'R . Each embedding of the Ha
miltonian c7t'R into a complete set of commuting second or-
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der operators DR provides us with a means of separating 
variables in the corresponding Schrodinger equation. If sev
eral different embeddings of 7t" R are possible, then several 
different separable coordinate systems will exist. The con
nection between the separation of variables in partial differ
ential equations and sets of commuting second order opera
tors has been the subject of numerous publications. 20-27 

(4) We construct the explicit Sp(2n,JR) transformationg 
that takes a given Hamiltonian 7t" into the corresponding 
representative Hamiltonian 7t" R and the matrix elements of 
the operator Tg , representing g in the space of wave func
tions. These matrix elements make it possible to express the 
eigenfunctions of the Hamiltonian (I) in terms of those of a 
representative Hamiltonian as linear combinations with 
known coefficients (in some cases these will be continuous 
linear combinations, i.e., integral representations with 
known kernels). The construction of g and Tg is a standard 
problem of group representation theory which in general 
has, however, not been solved. 

To put the results of this paper into a somewhat broader 
context, they should be viewed as a meeting point of three 
different but related research programs. These are (1) a sys
tematic study and application of groups of canonical trans
formations in quantum mechanics, 10.20.28-33 (2) a systematic 
study of the subgroup structure of Lie groups, 18-20.34-36 (3) a 
systematic study of the separation of variables in partial dif
ferential equations. 20

-
27 

In Sec. 2 we present some of the general theory involved 
in the problem for 2n dimensional phase space. Section 3 is 
devoted to the simple case when n = 1 and the program can 
be implemented completely. The case of two degrees of free
dom (n = 2) is analyzed in Sec. 4. Comments on the case of 
n = 3 are also presented in this section. In Secs. 5 and 6 we 
return to interesting special cases in 2n dimensional phase 
space, namely, to the problem of small vibrations on the one 
hand and to that of quadratic Hamiltonians invariant under 
rotations, translations, and permutations on the other. 

2. GENERAL COMMENTS ON QUADRATIC 
HAMILTONIANS FOR SYSTEMS WITH n DEGREES OF 
FREEDOM 

Let us now discuss in somewhat more detail the individ
ual steps outlined in the Introduction by means of which it is 
possible to solve Eq. (1). 

A. Classification of elements of sp(2n,JR) 

Matrices X = KH with H as in Eq. (3) and K as in Eq. 
(4) can be written as 

X = (A B T)' AEgl(n,JR), 
-C -A 

B=B'I, C=C T, B,CEJRnxn
• 

They satisfy the equation 

XK+KXT=O 

(5) 

(6) 

and hence XEsp(2n,JR) (the same would be true if K were 
some other real anti symmetric 2n X 2n matrix and other 
choices of K are convenient in certain cases). We use 
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sp(2n,JR) to denote the Lie algebra ofthe symplectic group 
Sp(2n,JR). 

The classification of matrices X into conjugacy classes 
with respect to the group Sp(2n,JR) is based on several simple 
results of linear algebra. I. 

(i) Let Vbe a real 2n dimensional vector space, and let X 
be a real matrix acting on V LetA I , ••• ,A.n and VI , ... , V, be the 
(generalized) eigenvalues and eigenspaces of X, i.e., 

(X - AJ )m,v = 0, VEVp m,>1 

(m, are integers). Then, 

each V. is invariant under X, and 

(7) 

(8) 

det(AI - X) = IT (A - A, )d" d, = dim V,. (9) 
j= 1 

This result makes it possible to reduce any matrix to a block 
diagonal form, each block representing one indecomposable 
component. 

(ii) Now letXEsp(2n,JR) and let us follow Ref. 14. If A, is 
an eigenvalue, so are - A" A r, and - A r and they all have 
the same multiplicity (the star denotes complex 
conjugation). 

(iii) For XEsp(2n,JR) the invariant subspaces V, are mu
tually orthogonal with respect to the invariant symplectic 
bilinear form 

ITKg = 0, lEV" gEVk , ,1,17"'= ± Ak , ± At. (10) 

A consequence of these theorems is that a matrixXEsp(2n,JR) 
must belong to one of the following classes. 14 

1. Orthogonally indecomposable 

Then one of four possibilities can occur: 
(a) X has four distinct complex eigenvalues J.l + iv, 

J.l - iv, - J.l - iv, - J.l + iv, vJ.l==FO, each with multiplicity 
nl2 (this can only happen for n even). 

(b) X has two distinct real eigenvalues a, - a, a> 0, 
each with multiplicity n. 

(c) X has two distinct mutually conjugate pure imagi
nary eigenvalues ± ib, b> 0, each with multiplicity n. 

(d) X has a single eigenvalue ° with multiplicity 2n. 
In each of the above cases the matrix X can be reduced 

by a Sp(2n,JR) transformation to one of several standard 
forms, characterized by eigenvalues of X and in some cases 
by certain additional invariants. This has been studied exten
sively in the literature"-l' and we shall not reproduce the 
details here. 

2. Orthogonally decomposable 

If the 2n dimensional real space V can be decomposed 
into two or more mutually orthogonal invariant subspaces 
V, as in Egs. (8) and (10), then the matrix X can be reduced 
to a block diagonal form, such that each block is one of the 
standard orthogonally indecomposable matrices discussed 
above. This is best done in a realization of sp(2n,R) in which 
the matrix K ofEg. (6) is itself written in a decomposed form: 
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K= 

(11) 

where l<;;;n l <;;;n2 <;;; ... <;;;np' n l + n2 + ... + np = n, and all ni 

are positive integers. We can then choose the representative 

X= (12) 

with each X n , in a representative indecomposable form. 

B. Classification of maximal Abelian subalgebras of 
sp(2n,lR) 

The above classification of sp(2n,R) matrices and Ham
iltonians allows us to transform the Schrodinger equation 
into a simpler form, not however necessarily always simple 
enough to allow for an analytical solution. The problem can 
be further simplified by constructing a complete set of opera
tors !!I? a , commuting with the Hamiltonian JY' and among 
each other and such that each !!I? a is a quadratic homogen
eous polynomial in the dynamical variables qi and Pi' The 
Hamiltonian can then be expressed as 

(13) 

where ta are real constants and any solution of the Schro
dinger equation can be written as a linear combination of the 
solutions of the set of equations 

Since the set of all operators that are homogeneous quadratic 
polynomials in qi andpi forms a basis of the Lie algebra 
sp(2n,R), the problem of finding all possible commuting sets 
of operators 1 Ra ) is equivalent to classifying all MASA of 
sp(2n,R) into conjugacy classes under Sp(2n,R). 

The problem of classifying commuting sets of matrices, 
in particular matrices of the form (5), is a complicated one 
that has received much attention in the literature. 15_19 It is 
important in this connection to realize that a maximal Abe
lian subalgebra of a semisimple Lie algebra need by no means 
necessarily be a Cartan subalgebra. A Cartan subalgebra of a 
semisimple Lie algebra, in addition to being maximal Abe
lian, contains no element that can be represented in a finite 
dimensional representation by a nilpotent matrix N (i.e., 
such that N P = 0 for some positive integer P). 
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It has recently been shown18
,19 that the algebra sp(2n,R) 

can have the following types of MASA: 

1. Maximal Abelian nilpotent subalgebras (MANS) 

In any finite dimensional representation, in particular 
the defining representation of sp(2n,R), a MANS is repre
sented by nilpotent matrices. A MANS is indecomposable 
and in an appropriate realization can be reduced to the 
form 19 

B 

R 

o 
o 

D 

S 

-JRTJ 

o 

(15) 

whereO,.! isaA XAzeromatrix, C= C 7ER,.!x,.!,S=JS TJ 
ERflXfl, RERflXfl is nilpotent, and B,DER"! XI'. Each MANS 
in Eq. (15) corresponds to a definite Kravchuk signa-
ture, 15,18,19 i.e., a triplet of nonnegative integers (A, 211-, A) 
with A + 11- = n, 1 <;;;..1, <;;;n. Each Kravchuk signature must be 
considered separately and the further constraints on the en
tries in Eqs. (15), as well as the classification of these algebras 
into conjugacy classes, must be discussed for each allowed 
signature I8 ,19. 

2. Indecomposable nonnilpotent maximal Abelian 
subalgebras 

These only exist when n is even. They must contain 
precisely one nonnilpotent element which generates a com
pact one parameter subgroup ofSp(2n,R) and can be written 
as 

o 
-1 0 

C= (16) 

o 
-1 0 

in the realization (6) of sp(2n,R). The matrices XEsp(2n,R). 
The matricesXEsp(2n,R) satisfying [X,C] = 0 form an alge
bra isomorphic to su(n/2,n/2) and the corresponding 
MASA are obtained by constructing all maximal Abelian 
nilpotent subalgebras of su(n/2,n/2) (see Refs. 18 and 19). 

3. Orthogonally decomposable MASA 

These are best written in the realization (11) in which 
they have the form 
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s= (17) 

An
p 

where eachAni is a maximal Abelian subalgebraofsp(2n;,R) 
and at most one of the A n

i 
is a maximal Abelian nilpotent 

algebra. Two algebras that differ by a permutation of the A n
i 

only are equivalent and one of them must be eliminated from 
the list. 

4. Decomposable but not orthogonally decomposable 
MASA 

These are best written in the realization (5) in which 
they can be reduced to the form 

(18) 

where A is an irreducible MASA of gl(n,R). 
We see that the classification of MASA of sp(2n,R), 

su(n12,n12), and gl(n,R) are intimately related. The case of 
sp(4,R) will be treated in detail in Sec. 4 and that ofsp(6,R) 
will be sketched there. 

C. Separation of variables and solution of the 
SchrOdinger equation 

Given a Hamiltonian J¥', we now write it in the form 
(13), where Ra (l..;a..;k) is the basis for aMASA (k is the 
dimension of this MASA and need not in general be equal to 
the rank of the algebra). If the subalgebra [Ra J is orthogon
ally decomposable into 2 X 2 blocks, then the equations (14) 
allow separation in Cartesian coordinates. Other cases can 
be associated with other types of separable coordinates, as 
will be seen below for sp( 4,R). If more than one imbedding is 
possible, then more then one separable coordinate system 
exists. 

D. Transformation of the solution of the representative 
problem Into the solution of the original problem 

In order to relate the solutions ofEq. (1) to the obtained 
solutions of the "representative" problem (14), we must find 
the transformation relating the two Hamiltonian matrices 

gXRg- 1 =X, gESp(2n,R), (19) 

and then construct the unitary operators Tg representing the 
group of real linear canonical transformations g in the space 
of wave functions. 

In order to construct g, we can proceed in several steps: 
(i) Establish which class X belongs to, i.e., determine 

whether it is orthogonally decomposable or indecompos
able, what are its eigenvalues and eigenspaces, etc. 

(ii) Write g in the form 

g=glg2g1 

such that 

(20) 

HerefR is a set of basis vectors for the eigenspaces of X R , and 
f a set of basis vectors for the eigenspaces of X. 

The subgroupsgl andg1 are mutually conjugate (and 
hence isomorphic) and are the little groups offR and J, re
spectively. This representation is not necessarily unique and 
different forms of g2 may be needed in order to obtain all 
elements gESp(2n,R) in the form (20). 

The final step is to use Eq. (20) to calculate the represen
tation Tg of g explicitly in terms of the representations of g 1 , 
gl' and g2' In general, it may be quite difficult to construct 
the representation Tg and this is in itself an important prob
lem. In the case of n = 1 this has recently been solved com
pletelylO.29.37 and we reproduce the results in Sec. 3. These 
n = 1 results are also relevant for many body problems in
volving identical particles as we show in Sec. 6. 

Actually, in many physical applications the explicit 
form of Tg is not needed. Indeed, if we are only interested in 
eigenvalues and matrix elements of relevant physical opera
tors, then these can be calculated directly in the representa
tive basis. 

3. QUADRATIC HAMILTONIANS FOR ONE DEGREE OF 
FREEDOM 

For n = 1 the entire program simplifies considerably. 
The Hamiltonian (1) in this case is 

J¥' = a(pq + qp) + bp2 + cq2, (22) 

where a, b, and c are real constants. The matrices Hand 
X=KHare 

(c a) ( a b ) H= , X= . 
a b -c-a 

(23) 

All maximal Abelian subalgebras of sp(2,R) are one di
mensional, and hence the classifications of elements of 
sp(2,R) [step (1) of our program] and of MASA [step (2)] 
coincide. Elements of sp(2,R) are completely characterized 
by the eigenvalues of the corresponding matrix X, equal to 
A = ± (a2 - bC)1/2 = ± (.1 )112 (..1 = - detX). For..1 > 0, 
X is decomposable (but not orthogonally); for..1 = 0, X is 
indecomposable and nilpotent; for..1 < 0, X is indecompos
able nonnilpotent. Using a canonical transformation 
gESp(2,R) (the form of g will be specified below), we can 
transform X to one of three canonical forms 

v ~ 1 ), Xo = ± (~ ~) , 

~) (24) 

for..1 > 0, ..1 = 0, and..1 < 0, respectively. Let us comment 
here that the choice (24) of representatives ofSp(2,R) classes 
of elements is somewhat arbitrary. Alternative and useful 
choices of X_I and Xo would be, for example, 

° ) - (0 ~~,Xo=±1 
- V 1..11 

0) ° . 
gJR =fR' gziR =J, gJ=/ (21) The Schrodinger equation for the three cases (24) can be 
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written as 

c7t'T"pr(q) = KT (p2 + 7"q2)"pr(q) = v"pr(q) , 7" = -1,0,1, 
(25) 

where 

K_I = 1..11 112, Ko = ± 1, K+I = ± 1..11112. (26) 

Had we chosen X _I andXo instead of X _I andXo, respec
tively, the equations (25) would be replaced bi7 

1..1 11I2(pq + qp)ijJ-l(q) = vijJ-l(q), 

± q2ijJO(q) = vijJo(q). 

Step (3) consists of solving the representative equations 
(25). While the sign of K T for 7" = 0, 1 cannot be changed by a 
real linear canonical transformation, it makes sense, from 
the physical point of view, to assume that the kinetic energy 
is positive definite. This fixes the sign to be plus in both cases. 
The solutions ofEq. (25) are of course well known in all three 
cases, namely, the wave functions of a repulsive harmonic 
oscillator (r.h.o.), free particle (f.p.), and harmonic oscillator 
(h.o.) for 7" = -1,0, and 1, respectively.37 Step (4) consists 
of calculating the representations of the Sp(2,R) canonical 
transformations in the r.h.o., f. p., and h.o. bases. These again 
are known. 10,29.37 

Instead of presenting the solutions and transformation 
matrices directly, we consider a somewhat more general 
problem. Indeed, let us replace the coordinate q and momen
tump in Eq. (22) by the 3 vectors q and p and consider a 
quadratic Hamiltonian that is invariant under 0 (3) 
rotations: 

(27) 

As above, this Hamiltonian can be transformed to one 
of three standard forms. Explicitly, this is achieved by a rota
tion in phase space 

qi = q;cosa + p;sina, i = 1,2,3, 
(28) 

Pi = - q;sina + p;cosa, 

with tan 2a = 2a/(b - e), diagonalizing the quadratic form 
(27). The determinant..1 = - a 2 + be is invariant under 
this rotation. A further dilation belonging to Sp(2,R), q; 
= 1..1 1 112q;' , p; = 1..1 1 - 112p;', accompanied, if necessary, by 

a rotation through 11'/2, will reduce JY ofEq. (27) to one of 
the Hamiltonians 

~T = KT (p2 + 1'q2), 7" = ± 1,0, (29) 

with KT as in Eq. (26). Thus, the spherically symmetric Ha
miltonian (27) has been reduced to that of the harmonic os
cillator, repulsive harmonic oscillator, or free particle in Eu
clidean three space. 

Writing q in spherical coordinates (r,O,,p), we can ex
press the eigenfunctions of the operator (29) as 

r-I,p;T(r)Y1m(O,,p), (30) 

where,p ;T(r) satisfies 

( - ~ + 1(/+ 1) + 7"r)tfJ ;T(r) = v,p ~'"(r)(31) 
dr r 

and we have added an index 0' = ± to indicate parity with 
respect to the change r_ - r. For the three dimensional 
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problem only the 0' = - is relevant, i.e., the wave function 
must vanish at r = 0, but for the one dimensional problem, 
which corresponds to I = 0, both values 0' = ± are possible. 

We take for the normalized,p ;T(r) the phases used in 
Ref. 37 and thus we have for 7" = +, 0' = - that 
v = 2n + I + 3/2 and replacing the index v in ,p ;T(r) of Eq. 
(31) by n, we obtain 

,pl- + (r) = ( 2(n!) )1/2rl + 1 
n r(n+f+3/2) 

Xexp( -r/2)L~+I/2(r), (32a) 

whereL is a Laguerre polynomiaP8. For 0' = +, we are only 
interested in I = 0 and we have 

,p0+ + (r) = ( 2(n!) )
1I2

exp( _ r/2)L -1I2(r) 
n r (n + 1/2) n' 

(32b) 

where, as is well known38, the Laguerre polynomials appear
ing in Eq. (32a) for f = 0 and in Eq. (32b) are actually Her
mite polynomials of odd and even order, respectively. 

Passing now to 7" = -, 0' = -, the eigenvalue v can 
take all real values in the range - 00 < v < 00 and then37 

,p ~- - (r) = Cvlr-1/2Miv/2,(I/2)11+ (112 >I( - ir), (32c) 

where M is a Whittaker function38 and the normalization 
constant Cvl takes the value 

Cvl = (211') - 112expi{!11'[ (/ + 3/2) - (iv/2)] 

+ (v/2)ln2}r [+(f + ~) + i;]jr(1 + ~). 
For 0' = +, we are again only interested in 1= 0 and we get 

,p~+ - (r) = _1_ eXPi[ ~(J.- _ iV) + ~ In2] 
v2; 2 2 2 2 

xr( ~ + i; )MiVI2,-1/4 (_ ir). (32d) 

Finally, for 7" = 0,0' = -, the eigenvalue v takes all 
real positive values o 0;;;; v 0;;;; 00 and then37 

,p ~ - OCr) = exp[i ; (f + ~)] (vr) 112J1 + 112 (vr), 

(32e) 

where J is a Bessel function. For 0' = +,f = 0, we get 

,p ~ + ° = exp(i11'/4) (vr) 1/2J _ 112 (vr) 

= ..J!; exp(i11'/4 )cosvr. (32t) 

We need now the representation on the states (30) of a 
canonical transformation that affects in the same way all 
three components of the q,p vectors, i.e., 

(
tI UI) 

S = vI wI ' tw - uv = 1, (33) 

where I is a 3 X 3 matrix. Obviously, S commutes with the 
rotations 0 (3) in this vector space and so it will not affect the 
angular part Y1m(O,,p). Thus, what is required is 

Ps,p ;T(r) = f,p ;:;T(r)9';:;~(S )dv', (34) 

where the representation is now also characterized by the 
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angular momentum I and the parity u = ± and, when 
7 = +, the integration becomes a sum over the discrete in
dexn'. 

The representations for 7 = +, 0 were derived in pre
! 

,&!~;~,,"i (S) = 21t <TIl j (1!2)]r [n' + n + 1 + u(l +~) 1 

vious publications 10,29 and those for 7 = - are given in Ref. 
37, where also the results for 7 = +,0 are summarized. 
From this last reference we get for 7 = +: 

X ({n'!n!r [n' + 1 + u(l + 1/2) lr [n + 1 + u(l + 1/2) ]}1/2 

X [ (w - t) - i (u + v) 1 ,,' [ (t - w) - i (u + v) 1" [ (t + w) + i (u - v) 1 - ,,' - " I al/+ (112)] 

X,FI - n, - n, - n - n - u 1+- ; , [ , , (1) t 2 + u2 + v2 + w2 + 1 ]) 
- 2 t 2 + u2 + v2 + w2 

- 1 
(35a) 

where 2FI is a hypergeometric function 3S that reduces to a 
polynomial of the argument and whose degree is min(n,n'). 

For7= -, we in turn get 

~~v- (S) = r (a)r (a'){411T [1 + u(l +!)]}-I 
Xt -Uw -U'(2iu)i(v-v')/2 

X 2 F I [a',a;1 +u(l+!);(tW)-I], (35b) 

where 

a = + + ~ (I + + ) + i;, 
, 1 u ( 1) iv' 

a = T + T 1+ T - 2' 
The expression (35b) is valid for tw> 1 but its analytic con
tinuation to all real values t, u, v, and w restricted by 
tw - uv = 1 presents no problem.37 

Finally, for 7 = 0, we obtain 

~~ = exp { - i; [1 + u(l +!) l}U -1(V'V)1I2 

xexp[ (i12u) (tv + Wv,2)Ja (l+ 112)( V~V). (35c) 

which is valid for u+O, i.e., v = u - I(tw - 1), but it has a 
well-defined limit29

•
37 even when u~. 

Note that in all cases 7 = ± ,0 we are interested in arbi
trary integer I for u = -, but only in I = 0 for u = +. 

We see that for quadratic Hamiltonians with one degree 
of freedom we are able to implement fully the program out
lined in the previous sections. Though our results are valid 
only for one particle rotational invariant Hamiltonians in 
phase space, we shall show in Sec. 6 that they also apply to n 
identical particle Hamiltonians which are then invariant un
der permutations of the indices. 

In the next section we implement most of our program 
for the case n = 2 and in the process face up to some of the 
difficulties that are also present in the problem for an arbi
trary n. 

4. QUADRATIC HAMILTONIANS IN PHASE SPACE FOR 
TWO DEGREES OF FREEDOM 

For n = 2 we shall need several different realizations of 
the algebra sp(4,R), corresponding to different choices of K 
in Eq. (6). We discuss these realizations in the Appendix 
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Iwhere we also give a realization ofthe isomorphism39 be
tween the algebras sp(4,R) and 0(3,2). This is useful in the 
present context, since all subalgebras of 0(3,2) have recently 
been classified36 and the classification can be used here. 

A convenient basis for sp( 4,R) is provided by a set of 10 
matrices AI , ... ,A4;BI , ... ,B3;CI , ... ,C3. In each realization 
discussed in the Appendix these basis matrices are obtained 
by setting all entries in the sp( 4,R) matrices equal to zero, 
except the one labeled by the same letter as the basis gener
ator. This entry is set equal to 1. Thus, for example, A I is 
obtained by seting a l = 1 in Eq. (A3), (A5), (A7), or (A9) 
and all other entries equal to zero. These generators can be 
identified with dynamical variables, using the relations (2) 
and (3). Indeed, it is easy to check that the quadratic 
operators 

AI= 
i 

T(qIPI + PI ql ), A3= - iq2PI' 

A2 = 
i 

T(q2P2 + P2q2)' A4 = - iqlP2' 

BI = 
i 2 

TPI' CI = 
i 2 

-~I' 
(36) 

B2 = 
i 2 

T P2' C2 = 
i 2 

-~2' 

B3= - iPIP2' C3 = - iql q2 

(where Pk = - ialaqk) satisfy the same commutation rela
tions as the matrices Ai> B i> and C;. 

Let us now follow the general procedure outlined in 
Sec. 2. 

A. Classification of elements of sp(4,R) 
1. Orthogonally decomposable elements 

The only allowed partition of 4 is 4 = 2 + 2 so that Eq. 
(12) reduces to 

X= ral o ), X; Esp(2,R) 
X2 

(37) 

[see realization (AS)]. The one dimensional subalgebras of 
sp(2,R) are well known and were discussed in Sec. 3. The six 
possible choices for the pair (XI ,x2) lead to six possible types 
of Hamiltonians (in this section we lump together Hamilto
nians differing by a nonzero multiplicative constant): 

M. Moshinsky and P. Winternitz 1672 



                                                                                                                                    

c7t'~ = p~ - q~ + Ii (p~ - qn, 

c7t'1 = pi + qi + Ii (p~ - qn, 

c7t'~ = pi + qi + Ii (p~ + qn, 

c7t'4 =pi +p~ -qL 

c7t'~ = pi + qi + €pL € = ± 1, 

c7t'~ = pi + KP~, K = ± 1,0. (38) 

Thus, orthogonally decomposable sp(2,R) matrices 
correspond to Hamiltonians that can be written as 

c7t' = c7t'1 + c7t'2' (39) 

where each c7t'j describes a one dimensional harmonic oscil
lator, repulsive harmonic oscillator, or free particle, moving 
in the ith direction. 

2. Orthogonally indecomposable elements 

In this case we use the realization (A3) ofsp(4,R). The 
following possibilities occur: 

(i) two imaginary eigenvalues ± ill (Ii > 0, real): 

X, ~ (ix 1 I D· 
x, ~ (-;x 1 It), (~) 
(ii) four complex eigenvalues ( ± f.-l, ± iv): 

C 
f.-l v 

~} -f.-l 0 0 
X3 = ~ 0 0 

v -f.-l 
(iii) for two real eigenvalues ± Ii; 

X.~ U 
Ii 0 

Ii 0 

0 -Ii 
0 -Ii 

(iv) one eigenvalue 0: 

o 
o 
o 

o 

o 
-€ 0 

~} 
-Ii 

f.-l>0, v>O; (41) 

(42) 

(43) 

(notice that XI and X4 are decomposable, and X2, X3 , and 
Xs indecomposable). The matrices XI , .. Xs give rise to five 
more types of representative Hamiltonians: 

c7t'7 = Q2PI - q1P2' 

~ =pi +p~ +€(q2PI -qIP2), €= ± 1, 

c7t'~ = pi + p~ - qi - q~ + Ii (q2PI - qIP2), 

c7t'1D = qlPI + PI ql + q2P2 + P2q2 + 2q2PI' 

c7t'11 =2PIP2 +q~. 

Thus, in four dimensional phase space a general qua-
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dratic Hamiltonian depending on 10 parameters [a linear 
combination of all operators in Eq. (36)] can be reduced to 
one of the 11 representative Hamiltonians (38) and (44). No
tice that some of these are actually infinite families, depend
ing on a continuous parameter Ii, others are pairs (depending 
on € = ± 1), and the rest are individual Hamiltonians. 

B. Maximal Abelian subalgebras of sp(4,lR) 

Since in this case n = 2 is even, all types of MASA oc
cur. Following the general theory outlined in Sec. 2, we con
struct them all. 

1. Orthogonally decomposable MASA 

We use the realization (AS) of the Appendix and write 
all orthogonally decomposable subalgebras of sp( 4,R) as 

(45) 

This provides us with five MASA; they in turn correspond to 
the following pairs of dynamical observables: 

DI = {pi - qi,p~ - qH, 

D2 = {pi + qi,p~ - qH, 

D3 = {pi,p~ - qH, 

D4 = {pi + qi,p~ + qH, 

Ds = {pi + qi,pH· 

2. Maximal Abelian nilpotent subalgebras 

(46) 

The Kravchuk signature (2 0 2) provides us with one 
MANS which in the realization (A3) is 

o 
o 
o 
o 

corresponding to the observables 

D6 = {Pi,pLPIP2}. (47) 

The other Kravchuk signature (1 2 1) leads to one further 
MANS which in the realization (A 7) can be written as 

o 
o 
o 

o 

o 
o 

The corresponding observables would be [q2PI + p~ ,pi J; 
however, we prefer to use a more convenient pair conjugate 
to this one, namely, 

DID = {2PIP2 + q~,pn. (48) 

3. Indecomposable but not MANS 

In realization (A3) these must be contained in the cen-
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tralizer centC of C in sp(4,R): 

el 
1 

J 0 
C= 

0 

-1 

C 
a3 ht 0 

- a3 at 0 ht 
centC= 

0 Ct -at a, ) 
0 Ct -a3 -at 

Here, centCis the algebra u(l) Ell su(l, 1) [u(l) is generated by 
C]. The only indecomposable MASA obtained in this man-
ner is 

corresponding to 

o 
o 
o 

D7 = {pi + p~ ,qtP2 - q2Pt}. 

/ 

I 
1 

(49) 

;' 

\ 

4. Decomposable but not orthogonally decomposable 
subalgebras 

In realization (A3) these can all be written as 

where A is an indecomposable MASA of gl(2,R). We thus 
obtain two more subalgebras 

( ~~3 
x= 0 

o 

(
a~ 

X= 0 

o 
o 
o 

o 
o 

o 
o 

o 
o 

They correspond to the observables 

Dg = {qtPt + Pt qt + q2P2 + P2q2 ,q.P2 - Q2P.}, 

----

(SO) 

sp(2,R) + sp(2.R) 

{xiPJ}'x~.P~. 
{x2P2}'x~.P~ 

0(2) + sp(2,R) 

x rPZ-x2P j , {xIDr+x2P2J, 

g'(2,R) 

{x r P I +X 2 P2}' {xl p]-x 2Pz), 
A4 • J 2 

PI Pz,p l' 

2 

", 
2 2 

PI-x) • 

2 2 
P2-x Z 

H; 
2 2 

p)-x]-+-

A(p;-X~) 

"2 
2 2 

PI+x 1 • 

2 2 
P2-x Z 

H: 
p ~+p;-

, 2 
x

l
-x

2 

H~ 
2 2 

P l+xI+ 

) (p;-x;) 

-- / 

H; 
2 2 

Pl+x]+ 

;, (p;+x;) 

! 

H; 
2 2 

PI +X 1+ 

2 2 
P2+x 2 

"5 
2 2 

P J+x], 

2 P, 

2 2 2 2 
P

j
+D

Z
,X

j
+X

2 

2 P, 

. 'i 

x 2 ,PI x 2 

", "8 "9 D,D 

2 2 
{xj P I+x 2 PZ}' {x j P t+ x 2Pz}, ZP 1 P2+ x;, PI +P z, 

x)P2- x 2P ] x)PZ-xZP 1 xzP j r; 

\ 
~ ~ 

H, He 
8 

WI 
9 HIO H" 

x]pz-xzP r 
2 2 

PI -+-Pi" p~+pi- {xl P l + 2PIP2+x; 

E (xZp]-
2 2 

x 2Pz)+ -x
1
-x

2 

X1Pz) + \(xZp]- 2x Zp] 

XI p z) 
~ '--

FIG, I. Some subalgebras of sp(4,JR). Four ofthe seven maximal subalgebras are shown, ~s are all of the Abelian subalgebras. D, ",DIO are maximal Abelian 
subalgebras (Do.i are not maximal). All one-dimensional subalgebras are indicated in the bottom row. The corresponding dynamical variables are given 
(i,k = \,2). Mutual inclusions are indicated. The algebraA4" is four-dimensional nilpotent". The ranges of parameters are as in formulas (38) and (44); 
however, in some cases specific values may be separated out (e.g., H: is separate, and hence for H 1 we have O.;:"{ < I). Curly brackets indicate anticommuta
tors, e.g., {x,Pk) = X,p. + PkX,. Note that the variable q, in the text is replaced by X; in the figure. 
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D9 = {qIPI +Plql +q2P2 +P2q2,q2PI}. 

Several comments are appropriate at this stage. 
(i) The number of conjugacy classes of one dimensional 

subalgebras of sp(4,R) is infinite. We have however orga
nized them into 11 types, many of which depend on a con
tinuous parameter. These 11 types correspond to the Hamil
tonians .Jf'1 ' .... .Jf'lt of Eqs. (38) and (44). For sp(2n,R), 
n>3, we would also obtain a parametrizable infinity of 
Hamiltonians. 

(ii) The number of maximal Abelian subalgebras of 
sp(4,R) is finite, namely, 10. They are represented by the 
dynamical systems Dp ... ,DID of Eqs. (46)-(50). Nine of 
these algebras have dimension d = 2 [the rank ofsp(4,R) is 
alsor = 2], and one hasd = 3. The algebra sp(6,R) also has a 
finite number of maximal Abelian subalgebras. For 
sp(2n,R), n:>4, we would obtain a parametrizable infinity of 
maximal Abelian subalgebras and their dimensions d satisfy 
d<:[n(n + 1)]/2. 

(iii) Each Hamiltonian.Jf'a (a = 1, ... ,11) can be incor
porated into at least one of the dynamical systems D I , ... ,D ID , 

i.e., written as a linear combination of the basis elements of 
the corresponding Dk (k = 1, ... ,10). The mutual inclusions 
among some relevant subalgebras of sp( 4,H) are shown on 
Fig. 1. 

(iv) Notice that while D6 corresponds to an indecom
posable MASA, each of its one dimensional subalgebras is 
orthogonally decomposable. In particular, ~ = pi + KP~ 
is contained in D 6 • 

C. Solutions of the representative SchrOdlnger 
equations 

So far we have shown that any quadratic Hamiltonian 
in four dimensional phase space can be reduced by means of 
real linear canonical transformations into one of 11 simpli
fied standard forms. In tum, each of the Hamiltonians 
.Jf'1, ... ,.Jf'1I can be written as a linear combination of two 
basis elements of some maximal Abelian subalgebra DI , ... , 
DID of sp( 4,R). Hence, all that we have to do at this stage is to 
find the common eigenfunctions of each dynamical system 
DI, ... ,DID · 

For the decomposable case DI , ... ,Ds and also for D6, 
this problem is trivial since in each case we get two equations 
of the type 

(- :; + 1"1 qi ),p(QI ,q2) = VI ,p(ql ,qz ), 

( - :~ + 1"2q~ ),p(ql>q2) = V 2 ,p(ql ,q2)' 

where 1"1 and 1"2 are independently equal to 0 or ± 1. Thus, 
we have separation of variables in Cartesian coordinates and 
the wave function can be written as 

,p(ql ,Q2) = ¢ ~~'T'(ql )¢ ~:'T'(q2)' (51) 

where ¢ eUT(qi) is the wave function (32) of a one dimensional 
harmonic oscillator, repulsive osciIlator, or free particle, ac
cording to whether 1"; is equal to + 1, - 1, or 0, 
respectively. 
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Two of the remaining indecomposable systems are 
equally simple to treat, namely D7 and Ds. Indeed, D7 sim
ply corresponds to a free particle with given angular momen
tum and Ds is equivalent to a repulsive harmonic oscillator 
with given angular momentum (qIPI +Plql +q2P2 +P2q2 
can be transformed into p~ + p~ - qi - qi). The corre
sponding equations can be solved by separating variables in 
polar coordinates 

ql = r coS<jJ, q2 = r sin¢. 

The wave functions satisfying 

are 

(p~ + pD,p(r,¢ ) = k 2,p(r,¢ ), 

(qlPz - q2PI ),p = m,p, 

(52) 

(53) 

(54) 

and describe the system D 7 • The equations for the system Ds 
are 

{qIPI +Plql +P2q2 +Q2P2ltPAm(r,¢) 

= A.,pAm (r,¢ ), 

(qtP2 - q2PI ),pAm (r,¢ ) = m,pAm (r,¢ ), 

and their solution is 

,pAm (r,¢ ) = fAl2 - leim4>. 

Now let us consider the system D9 : 

(qIPI + PI ql + q2P2 + P2 q2 ),p(ql ,q2 ) 

= 2)..1 ,p(q.,q2)' 

q2P. ,p(ql ,q2 ) = A.2 ,p(q. ,q2 ). 

In order to separate variables we introduce 

(55) 

(56) 

(57) 

a=ql/q2' f3=qtq2' (58) 

and put tP(q. ,Q2) =f(a)g(f3). Solving Eq. (57), we obtain 

( 
f3 )(iA, - .)12 iA,a iA, _. (. A.2Q. ) 

,pA ,A2 
(Ql ,Q2 ) = -;; e = Q2 exp I q;-

(59) 
Finally, system DID allows separation in Cartesian 

coordinates: 

pi ,p(QI ,Q2 ) = k i ,p(QpQ2 ), 
(60) 

(2p.P2 + qi ),p(q. ,q2 ) = A.,p(q. ,q2 ). 

The solutions can be written as 

(61) 

We can now summarize the results of this section. The 
most general quadratic Hamiltonian in four-dimensional 
phase space has been reduced to one of 11 forms. The wave 
functions of Hamiltonians .Jf'~ , ... ,.Jf'~ can be expressed in 
terms of products of the wave functions of very elementary 
quantum mechanical systems, namely, one-dimensional free 
particles, harmonic oscillators, or repulsive harmonic oscil
lators (in Cartesian coordinates). The wave functions of.Jf'7' 
.Jf'~ , and .Jf'~ can be expressed in terms of similarly elemen
tary two dimensional systems (in polar coordinates). The 
two individual remaining Hamiltonians.Jf'1D and .Jf' •• are 
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slightly more complicated but their wave functions can be 
expressed in terms of the functions (59) and (61), 
respectively. 

D. Transformations relating the general Hamiltonians 
and their solutions to the representative ones 

The final step in our procedure is to find a group ele
mentgESp(4,R) realizing the transformation (19) and to 
construct the representation Tg in the appropriate bases. For 
each of the 10 systems DI , ... ,DIO , we have constructed the 
basis wave functions. In order to construct Tg we should 
represent the group f1 in the form of a double coset decom
position f1 = f13 f12 f11 , where f13 and f11 should prefer
ably be the same group and the action of f11 and [93 on the 
basis functions should be as simple as possible. 

On Fig. 1, we show some relevant subgroups of5l>(4,R) 
(or rather their Lie algebras). In particular, we indicate all 
maximal Abelian subalgebras D A (A = 1, ... ,10) and tJ1e 
three additional two dimensional nonmaximal Abelian su
balgebras, of which one, namely D6,1 = !p~ ,pi J, is of special 
importance. We also indicate all one dimensional subalge
bras Hu (a = 1, ... ,11) and their inclusions in D A ' 

ThesubalgebrasD I , ... ,Ds andD6 ,1 are orthogonally de
composable and they contain all the subalgebras HI , ... ,He' 
All orthogonally decomposable subalgebras are contained in 
one of the maximal subalgebras of sp( 4,R), namely, 
sp(2,R) Ell sp(2,R). In this case it is possible to prove that ev
ery element gESp(4,R) can be written as 

(62) 

where r, for different elements of g takes one of three possible 
forms 

r = expa(A3 - A4 ), r = expa(A3 + A4 ), or 

r= expA4, (63) 

with O';;;;a < 21T (the element A3 - A4 generates rotations), 
- 00 < a < 00 (A 3 + A4 generates hyperbolic transforma

tions), and expA4 has the character of a translation. The 
action of go andgo onDI, ... ,Ds andD6,1 bases is known and 
was reviewed in Sec. 3. Thus, only the matrix elements of r 
need to be evaluated. The double coset decomposition (62) is 
thus very helpful. 

ThesystemsD7 andDs (and alsoD4) allow for a separa
tion of variables in polar coordinates. In this case the group 
reduction Sp( 4,R)::J 0(2) ® Sp(2,R) is more appropriate. A 
decomposition of the type f1 = f11 A f11 with f11 

= 0(2) ® Sp(2,R) would be desirable in this case. It does 
however not seem to be available in the literature and we 
have not determined all the forms of A that are necessary in 
order to represent every element gESp( 4,R) in terms of this 
double coset decomposition. (A must clearly depend on at 
least two parameters.) 

The system Dq is best treated in terms of a Sp( 4,R) 
::J GI(2,R) decomposition. Again, the exact forms needed for 
A in the double coset decomposition f1 = f12A f12 [f12 

EGI(2,R)] is not known. 
Finally, the subgroup corresponding to DIO can be im-
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bedded into a nilpotent group corresponding to theA4 I type 
aigebra3S {pi ,q~ ;PIP2 ,PI q2 J which in tum is contained in the 
pseudo-Euclidean subgroup E(2, 1) of SP( 4,R). In this case 
the decomposition f13 = f13A f13 with f13 = E(2, 1) would 
be appropriate. 

We plan to return to the problem of constructing the 
necessary decompositions of Sp( 4,R) and the representa
tions Tg in the future. Let usjust comment that the complete 
subalgebra structure of sp( 4,R) is quite complicated, but is 
known36

• In particular, sp(4,R) has seven maximal subalge
bras, of which we only show four on Fig. 1. 

E. Comments on six dimensional phase space 

The algebra sp(6,R) can again be realized in several dif
ferent useful ways, depending on the choice of Kin Eq. (6). 
Choosing K as in Eq. (4) with N = 3, we have 

X = ( A B T)' AEgl(3,R), 
-C -A 

B=BT, C=C T, B,CER3X3 (64) 

We can again choose a basis consisting of 21 matrices A ik ,B ik 
= B ki> and Cik = C ki' having an entry 1 on the intersection 

of the ith row and k th column and 0 elsewhere. These opera
tors can be identified with the dynamical variables as in Eq. 
(36), i.e., we put 

i 
A'k = - -(qkP, + P,qk)' I,k = 1,2,3, 

2 

Bkk = 
i 2 - --ifk, Bk, = - iPkP" k*l, 

Ckk = 
i 2 

- 2!lk, Ck, = - iqkq" k*l. 

(65) 

A classification of the generators of sp( 6,R) and hence a 
classification of quadratic Hamiltonians can be extracted, 
e.g., from Ref. 14. We shall not reproduce it here. A classifi
cation of the maximal Abelian subalgebras of sp(6,R) was 
obtained quite recently 19. As in the case ofsp(4,R), there 
exists a finite number of MASA (not true for arbitrary n), 
namely, 29. Since n = 3 is odd, only three types of MAS A 
exist. The orthogonally decomposable ones correspond to 
the partitions 6 = 2 +2 +2 (nine three·dimensional alge
bras) or 6 = 4 +2 (two four-dimensional subalgebras and 
11 three-dimensional ones). The partition 2 +2 +2 obvi
ously corresponds to various combinations of harmonic os
cillators, free particles, and repulsive oscillators in each of 
the dimensions. The partition 4 +2 corresponds to a h.o" 
f.p., or r.h.o. in one dimension and one of the systems Db' 
... ,DIO in the remaining two (we recall that at most one of the 
subalgebras in the decomposition is allowed to be nilpotent). 

Decomposable but not orthogonally decomposable 
MANS are obtained by putting B = C = 0 in Eq. (64) and 
taking A in the form of an indecomposable MASA of gl(3,R). 
Three such MASA exist, all of dimension d = 3. 

Finally, we have maximal Abelian nilpotent subalge
bras. The Kravchuk pattern (3 0 3) leads to one six-dimen
sional MANS (corresponding to the operators p~ , pi, p~, 
PIP2' P2P" and P,PI)' The pattern (2 2 2) leads to two four
dimensional MASA and (1 4 1) to three three-dimensional 
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ones. It would be a simple matter to write out the quadratic 
operators, corresponding to each MASA, but we shall not do 
this here. 

5. QUADRATIC HAMILTONIANS IN 2n-DIMENSIONAL 
PHASE SPACE CONTAINING NO BILINEAR TERMS IN 
qPj' (i,} = 1, ... ,n) 

As indicated in the title of this section we wish to deal 
with Hamiltonians JY'such that the corresponding matrix in 
the Lie algebra sp(2n,R) is 

X= [0 B], B=B T
, C=C T

, B,CERnxn. (66) 
-C ° 

When, furthermore, both Band C are positive definite, we 
have the problem of small vibrations2

,3. In what follows we 
shall assume B positive definite, as it is related to the mo
menta and, when diagonalized, its terms can be interpreted 
as recipocals of masses. On the other hand, we shall not 
impose the positive definite restrictions on C. 

We first show that for the X in Eq. (66) the squares of 
the eigenvalues mentioned in Sec. 2 are all real and so A is 
either real or pure imaginary and in both cases with each A 
we can pair a ( - A ). For this purpose we note that as A 
satisfies det(AI2n - X) = ° we have 

det(AI2n - X )det(AI2n + X) = det(A 212n - X2) 

° ] -0 
A 2In + CB - , 

(67) 

where 12n and In are, respectively, 2n X 2n and n X n unit 
matrices. As B is a positive definite real symmetric matrix, 
all its eigenvalues are positive and thus B 112 exists. There
fore, Eq. (67) leads to 

(68) 

and as B 1I2CB 1/2 is real and symmetric, the A 2 are all real. 
How does one proceed to find the classes to which be

long the matrices (66) of the Lie algebra? As usuaI,2 one first 
carries out an n X n orthogonal transformation & in configu
ration space to diagonalize B, and then a dilation transfor
mation D (given by a diagonal matrix whose eigenvalues are 
the inverse square roots of the eigenvalues of B) to reduce B 
to the unit matrix. Finally, one carries out an orthogonal 
transformation &' to convert D -I & rC& D into a diagonal 
matrix whose eigenvalues, necessarily real, we denote by Wi' 
i = 1, ... ,n. The X = KH is thus transformed to 

° 

° 
(69) 
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where from Eq. (68) we see that 

A 7 = - Wi' i = 1,2, ... ,n. (70) 

The problem (69) is completely solvable in quantum 
mechanics as it corresponds to the Hamiltonian 

i (PT + w;q7), (71) 
i= I 

separable in the n coordinates, which means that we have a 
set of n quadratic observables P7 + w;q;, i = 1,2, ... ,n that 
commute among themselves and with the Hamiltonian. 
They are the orthogonally decomposable MASA's for the 
partition 2n = 2 + 2 + .,. + 2, which, incidentally, also ap
pear in many problems that do contain bilinear terms q;Pj' 
i,j = 1, ... ,n, as seen in the previous section. 

Before discussing the set of quadratic observables men
tioned, we carry out a further dilation D' given by q; 
-Iwi 1- 1I4qi>Pi_lwi 11IPi when IWi 1*0, so that the terms 
in Eq. (71) become either 

Iwll12(P2+q2), p2, or IwI 1I2(p2 _ q2), (72) 

depending on whether w> 0, W = 0, or W < 0, respectively. 
As a last step we consider a permutation P of the indices 

i = 1,2, ... ,n that enumerates first the Wi positive (n + of 
them), then Wi = ° (no of them), and finally Wi negative (n. 
ofthem), where n+ + no + n. = n. Thus, we can now write 
the following complete set of quadratic commuting observa
bles in the normal coordinate system 

n 112(P7 + 1'iq7), i = 1,2, ... ,n, 

where 

(73a) 

n i = 1, 1'i = 0, for n+ + 1.;;;i<;;;n+ + no, (73b) 

ni = - Wi' 1'i = - 1, for n+ + no + l<;;;i<;;;n, 

and the Hamiltonian JY'in the same system is just the sum of 
the operators (73a). 

For the problem discussed here, the elements of the 
Abelian subalgebra of sp(2n,R) mentioned in Sec. 2 are given 
by Eqs. (73) when we replace the column vector q of compo· 
nents qi i = 1,2, ... ,n by 

(74) 

and a similar substitution for the momenta, All the operators 
in Eq. (74) are n X n matrices associated with point transfor
mations in configuration space, 

All we have done so far is to discuss an elementary prob
lem2 in the language developed in the previous sections for 
quadratic Hamiltonians in phase space, There remains 
though the question of expressing the eigenstates of the ob
servables (73) in the original configuration space. At first 
sight this seems only to imply that we take the wave function 

where the ¢ 's are given in Eq. (32), and replace the qj> 
i = 1, ... ,n of q by R - Iq as in Eq. (74). 

(75) 

The last solution would be very cumbersome to use in 
applications such as the calculation of matrix elements. 
Thus, we can either translate the observables we are interest-
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ed in into the normal coordinate system and calculate their 
matrix elements with respect to the eigenstates (75) or ex
pand ,//(R - Iq) back in terms of '//(q). This last procedure 
implies finding the representation..d (R )-not necessarily ir
reducible----of the linear point transformation (74) on the 
basis (75). 

Because of the explicit form (74) of R - I, we see that 
..d (R ) decomposes into representations of dilations D affect
ing only one coordinate at a time and of n X n orthogonal 
transformation tJ as PC tJ. For dilations the representation 
problem was solved in Eq. (35) of Sec. 3 if we take there 
D = a -I, (J = r = O. Thus, we are concerned only with 
..d (tJ). 

From the forms (73) and (75) of the states it appears 
convenient to consider the following subgroup of the n di
mensional orthogonal group 

[

tJ(n+xn+) 

tJ(nXn):J tJ(noxno) 

o 

where the matrices have the dimensions indicated. The re
presentations of tJ(nr Xn r ), 7' = + ,0, - can be deter
mined if we pass from the corresponding products 

lljtP c::.r(qJ in Cartesian coordinates to states in hyperspheri
cal coordinates of the harmonic oscillator (7' = +), free par
ticle (7' = 0), and repulsive oscillator (7' = -). Once we 
have these representations in hyperspherical coordinates, we 
can translate them to Cartesian ones with the help of the 
expansions of one type of solutions in terms of the other, e.g., 
the expansion of plane waves into spherical waves40 when 
7' = 0, no = 3. Thus, in principle, a general way is available 
to find the representation of tJ(nr Xn r ), 7' = + ,0, - on the 
basis (75). 

Our problem though is not finished. Clearly, the next 
step is to decompose an arbitrary n X n orthogonal matrix tJ 
into 

tJ = (j I tJ 2 tJ I , (77) 

where tJ I and (j I belong to the subgroup (76) while tJ 2 is 
outside it, i.e., a double coset decomposition of the group tJ 
with respect to the subgroup (76). This in itself is no small 
undertaking, but even if we succeed there will still remain the 
problem of finding the representation of tJ 2 in the basis (75). 
No general procedure seems to be available in this case 
though occasionally brute force methods (i.e., direct evalua
tion of the scalar product of the transformed state and the 
original one) may be successful. 

While we cannot implement our program fully even in 
the elementary problem discussed in this section, awareness 
of its structure may permit evaluation of specific cases of 
physical interest. For example, it may happen that all the Wj 

are either positive, zero, or negative, in which case the sub
group (76) coincides with &'(n X n) and so the determination 
of the representation seems feasible, at least in principle. 

As a last point we note, as was done in Sec. 3, that all our 
arguments can be extended from scalars qi' Pi' i = 1, ... ,n to 
three dimensional vectors qi' Pi' so long as the products P iPj 
and qjqj are replaced by the scalar products Pi'Pj and qi'qj' 
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We note that here R is a 3n X 3n matrix, each of whose com
ponents is given by the corresponding element in the n X n 
matrix R but now multiplied by the unit three dimensional 
matrix. The representation of this 3n X 3n R on the basis 
states corresponding to Eq. (75) will of course be a more 
complex affair, but already some examples of great physical 
interest were discussed long ago in the literature.41 

6. QUADRATIC HAMILTONIANS IN PHASE SPACE 
INVARIANT UNDER ROTATIONS, TRANSLATIONS, 
AND PERMUTATIONS 

In the previous sections we discussed general proce
dures for arriving at the eigenstates of quadratic Hamilto
nians in phase space. In the present one we wish to consider 
these Hamiltonians as related with n identical particles mov
ing in a three dimensional space. The Hamiltonians must 
then be invariant under rotations, which implies that they 
can only be linear combinations of the scalar products qj'qj' 
P,'Pj' and ~(qi'Pj + Pj·qJ· They also need to be invariant un
der translations which gives rise to some simple restrictions 
which we prefer to discuss later. Finally, as the particles are 
identical, they must be invariant under permutations of the 
indices i = 1, ... ,n simultaneously for coordinates and mo
menta. This implies that the matrix H of Eq. (3) satisfies 

[~ 0] [HII 
p- I = Hi2 

H12] , 
H22 

(78) 

where all submatrices in Eq. (78) are n X nand P is an arbi
trary permutation matrix. Clearly, then we must first discuss 
the form of the matrix h of components 

h = Ilhij II, iJ = 1,2, ... ,n, (79) 

if it satisfies for any P the relation 

PhP - I = h. (80) 

The h will stand for H II , H 12 , and H22 and that is why we 
prefer the notation (78) to that of Eq. (3). 

An arbitrary permutation P can be formed from pro
ducts and powers of just two generating ones42 

P'=(1234···n), 

P" = (12), 

(8Ia) 

(8Ib) 

corresponding, respectively, to a cyclic permutation and to a 
transposition of the indices. Ifwe apply P' to h, it transforms 

hij-hi + t,j + I modulo n, (82) 

and thus comparing with the original h we get 

hll =h22 =h33 = ... =hnn' 

h/ h23 = h34 = ... = hn _ In = hnl' 

hl~7h24 = ... =hn_ 11 =hn2' (83) 

./. 
h ln =h2t =h32 = ... =hnn _ l , 

where the arrows will be explained below. We note now that 
the application of P" gives the transformation 

htt-h22' hl2-h21' hli-h2i> hit -hi2 , 
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hij-h;j, for i,j = 3,4, ... ,n, (84a) 

so that comparing with the original set h we get 

hlI = h22 , h12 = h21 , 

hJj = h2i> hi! = h;2' for i = 3,4, ... ,n. (84b) 
Looking back now at Eq. (83), we see that Eq. (84b) 

makes h23 in the second row equal to h l3 in the third, h24 in 
the third equal to h 14 in the fourth, and so on as indicated by 
the arrows. Thus, clearly, hi; = f3 for all i, hij = Y for all i,j 
such that i=l=j, and thus the matrix h takes the form 

Y 
f3 

Y 
Y (85) 

Y 
The Hamiltonian matrix (78) has then three submatrices of 
the type (85) associated withHII , H 12 , andH22 and we shall 
denote the corresponding parameters by f311' YII' f312' Y12' 
f322' and Y22' 

We wish now to reduce the Hamiltonian matrix to a 
canonical form in which, in particular, we can see the eigen
values as well as the Abelian subalgebra of sp(2n,R) with 
which it is associated. To achieve this purpose we first notice 
that the quadratic form xThx, where h is given by Eq. (85) 
and x is an n component column vector x = (Xi' 
i = 1 ,2, ... ,n J, can be written as 

xThx = (f3 - y) Ix; + nyx'~, (86) 
;= I 

where 
1 0 

x~ = --= L X j • (87a) v'n i=1 

Clearly, then, an orthogonal transformation to center of 
mass coordinate x~ and Jacobi coordinates x;, 
j = 1,2, ... ,n - I, defined by 

x; = [j(j + 1 )] -1/2 .t Xi - [j/(j + 1 )] 1I2Xj+1 , 
i= I 

(87b) 
reduces the quadratic form to 

0-1 

xThx = (f3 - Y) L x7 + [f3 + (n -I )y]x'~. (88) 
;= 1 

The above analysis immediately suggests that a change 
from qj to q; and pj to p;, where the primed variables are 
defined in terms of the original ones as in Eq. (87), will re
duce the Hamiltonian to the form 

n-I n-l 

cW' = (/311 - YII ) L q'; + (/312 - Y12) L (q;.p; + p;.q;) 
i=l 1=1 

0-1 

+ (/322 - Y22) L P'7 + [f311 + (n -I )YII ]q'~ 
i= I 

+ [f312 + (n - 1 )Y12 ] (q~ .p~ + p~ .q~ ) 
+ [f3n + (n -I )Y22 ]p'~. (89) 

Before transforming further to a solvable Hamiltonian 
we note that in Eq. (89) the condition of translational invari
ance is very easy to implement. The Jacobi coordinates q;, 
i = 1,2, ... ,n - 1 do not change under translations and so 
only the center of mass changes to 

(90) 
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where qo is some constant vector. Clearly, the Hamiltonian 
remains then invariant if and only if 

f312 = (1 - n)YI2' f311 = (1 - n)Yll' (91) 

so that only the kinetic energy term p'~ remains associated 
with the center of mass. The matrix associated with each 
Jacobi degree offreedom qi and Pi> i = 1,2, ... ,n - 1 takes 
then the form 

[ 
- nYII - nYI2 ] (92) 
- nY12 f322 - Y22 ' 

and thus for quadratic Hamiltonians invariant under rota
tion, translation, and permutations there are n - 1 equal 
eigenvalues 

A 7 = - Ll = n2r72 + nYII (/322 - Y22 ), 
i = 1,2, ... ,n - 1, (93a) 

while for the center of mass degree of freedom we get of 
course 

A ~ = O. (93b) 

The Hamiltonian (89) can be transformed through 

q;' = q;cosa + p;sina, . 
, . , 1= 1,2, ... ,n - 1, (94) 

p;' = - qjslOa + p;cosa, 

where a, independent of i, is selected so that the symmetric 
matrix (92) becomes diagonal. Furthermore, we can consid
er the dilation transformation discussed in the paragraphs 
preceding Eqs. (29) and (72). Denoting by q;' and p; our 
coordinates and momenta after all these operations, respec
tively, we see that the Abelian subalgebra discussed in Sees. 
3, ... ,5 has as elements 

~2 

Po' 

i = 1,2, ... ,n - I, (95a) 

(9Sb) 

where r = 1, 0, and -I if Ll > 0, Ll = 0, or Ll < 0, respective
ly, and KT is given by Eq. (26). The Hamiltonian in the co
ordinate system q; and p;', i = 1,2, ... ,n is the sum of all the 
terms in Eqs. (95). 

The eigenstates of Eqs. (95) in the configuration space 
are given by Eqs. (32), and besides we can get the corre
sponding eigenstates in the Jacobi coordinates q; expressed 
as a linear combination of them. For this we would only need 
the representation (35) of the linear canonical transforma
tion (33). 

Our eigenstates are then linear combinations of pro
ducts of the wave functions (30), i.e., 

(96) 

where rj , OJ, and lPj are spherical coordinates associated with 
the coordinates q;, i = 1,2, ... ,n - I, u is restricted to nega
tive parity (as indicated in Sec. 3), and r = +, 0, or -
depending on whether Ll > 0, Ll = 0, or Ll < 0, respectively. 

The states (96) do not correspond of course to definite 
total angular momentum or a given representation of the 
symmetric group S(n) of permutations of n particles. The 
first point can be achieved by coupling successively the angu
lar momenta while the second has been explicitly discussed 
elsewhere in the case r = + by making full use of the con-
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cept of transformation brackets4l for harmonic oscillator 
functions as well as the chain of groups for n particles in the 
harmonic oscillator, i.e.,l 

U3n :J U3n _ 3 ® U3 

U311 _.\ :J U3 XU
II

_ l 

U U 

0, 011 1 (97) 

U U 

O2 SII' 

For the case T = 0 this last part of the program can be 
achieved even more easily if we just discuss everything in 
terms of plane rather than spherical waves. 

There remains the case of T = - for which something 
equivalent to the concept of transformation brackets5

,41 for 
harmonic oscillator functions has to be developed for the 
repulsive oscillator. This though is a subject whose discus
sion we wish to leave to another publication. 

Essentially, a full discussion has been carried out for the 
most general quadratic Hamiltonian in phase space invar
iant under rotations, translations, and permutations. This is 
a likely type of Hamiltonian to appear in many body prob
lems involving identical particles. Furthermore, it is a genu
ine generalization of the small vibration problem as it also 
involves terms of the type qj 'Pj' 

7. CONCLUSIONS 

The main result of this paper is the conclusion that 
physical problems leading to quadratic Hamiltonians can be 
explicitly solved. The solution makes use of real linear ca
nonical transformations Sp(2n,R), of an imbedding of the 
Hamiltonian into a complete set of commuting quadratic 
integrals of motion, and of the resulting separation of varia
bles in the Schrodinger equation. The canonical transforma
tions thus play two roles in the present context. First, the 
entire group Sp(2n,R) is used to transform a general Hamil
tonian of the considered type into a much simpler one, name
ly, one of the representative Hamiltonians!JP R' Next, a sub
group of Sp(2n,R) is used to help separate variables in the 
simplified equation, this subgroup being an appropriate 
maximal Abelian subgroup of Sp(2n,lR). This subgroup of 
the group of canonical transformations leaves invariant the 
obtained Schrodinger equation. 

We consider this to be an illustration of the dual role 
played by canonical transformations in quantum mechanics: 
to reduce complicated problems to simpler ones on the one 
hand and to help solve the simplified problems on the other. 

A large part of this article was devoted to low dimen
sional cases, namely, to one and two degrees offreedom. Let 
us make two comments here. Firstly, when considering two 
or three body problems in Euclidean three space, described 
by quadratic Hamiltonians that are rotationally invariant, 
precisely these n = I and n = 2 cases occur (where each qj 
and p j is to be interpreted as a vector qj or Pi' respectively, 
and each product as a scalar product). Secondly, when con
sidering systems with more degrees of freedom, as those 
treated in Secs. 5 and 6, many of the Hamiltonians and sets of 
integrals of motion will correspond to orthogonally decom-
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posable subalgebras of sp(2n,R). These in turn lead to sys
tems already treated in lower dimensions. In particular, the 
n = I and n = 2 cases will thus come up again for any n:> 3. 
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APPENDIX: DIFFERENT REALIZATIONS OF THE 
ALGEBRA Sp(4,R) AND THE ISOMORPHISM WITH 0(3,2) 

In the text we make use of several realizations of the 
algebra sp( 4,R). In all cases these are 4 X 4 real matrices X, 
satisfying 

(AI) 

Several choices of the skew symmetric matrix K are conve
nient for various applications. Mainly we Use 

Ko K= (~I ~); (A2) 

then we have 

X :=%= ( A B) 
o _ C -A T 

a l a 3 b l 

b, ) 
( a, 

a 2 b3 b2 

-ci - C 3 -at -a4 

- c3 - C2 -a3 - a z 

(A3) 

Whenever decomposable subalgebras are involved it is more 
convenient to choose 

C J ~RKoR -1 0 '- 1 K I = 
0 

-1 
(A4) 

R~R -,~ (~ 
0 0 

~) 0 I 

0 o . 
0 0 1 

We then obtain 

C 
b l a 3 

b, ) 
-I -CI -al - c3 - a 4 

XI =RXR = 
b3 a 2 

b
2 

. 
a 4 

- C3 - a 3 -C2 - a z 

(A5) 

Finally, when considering some of the maximal Abelian su
balgebras it is convenient to choose 

o 
o 
-1 

o 

o 

o 
o 

O~I) =ZKZ -I, 
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We then obtain 

a l a 3 b3 

b, ) 
X 2 =ZXZ- l = ( a, 

a 2 b2 ~~3 . - C3 -C2 -a2 

-Cl -C3 -a4 -al 

(A7) 

It is well known39 that the classical group Sp(4,R) and 
SO(3,2) are locally isomorphic, i.e., that the algebras sp( 4,R) 

I 

elements as follows: 

( 0 

- b, + b2 - c, + C2 -a, +a4 

b, - b2 + c, - C2 0 -b, -c, 
1 

b3 +c, 0 y= - a, -a4 

2 _ b, + b2 + c, - c2 -a, -a2 b, -c, 

-a, +a2 b, + b2 - C, - C2 a3 +a4 

The letters in the realizations (A3), (AS), (A 7), and 
(A9) have exactly the same meaning, i.e., if we construct the 
basis matrices A 1 ,.oo,A4' B l>oo.,B3' and Cl>oo"C3 by setting, 
for example, for A I , the entry a I = 1 and all others equal to 
zero, we obtain in each case 10 matrices that satisfy the same 
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The purpose of the present paper is to clarify in a general way and to document the great 
advantage of using, instead of the higher-order JWKB-approximations, certain related but much 
simpler higher-order phase-integral approximations. 

1. INTRODUCTION 

If one wants to achieve a higher accuracy than that ob
tainable by means of the first-order JWKB-approximation, 
it may seem natural to tum the attention to the higher-order 
JWKB-approximations. There exist, however, certain relat
ed but much simpler higher-order phase-integral approxi
mations, first systematically introduced by N. Froman I and 
later generalized by N. Froman and P. O. Froman (Ref. 2, 
and pp. 126-31 in Ref. 3), which are preferable from several 
points of view. In Sec. 2 we shall make some general com
ments on and comparisons between the above-mentioned 
two kinds of approximations. In order to demonstrate in 
some detail how much simpler and more satisfactory the 
treatment of connection problems becomes if one uses the 
higher-order phase-integral approximations instead of the 
higher-order JWKB-approximations we shall in Sec. 3 ana
lyze a treatment in which the higher-order JWKB-approxi
mations were used. 

2. GENERAL REMARKS ON THE HIGHER-ORDER 
JWKB-APPROXIMATIONS AND THE HIGHER-ORDER 
PHASE-INTEGRAL APPROXIMATIONS 

The development of a rigorous and general theory for 
treating connection problems for higher-order phase-inte
gral approximations, with complete control of the approxi
mations involved and estimates of the errors, proceeded in 
three steps. The first step4 was the development of a rigorous 
theory for mastering the connection problems of the first
order JWKB-approximation and certain modifications of it. 
The second and most decisive step was that N. Froman I 
showed that in the infinite JWKB-series the sum of the odd
order terms can be exactly expressed in terms of the sum of 
the even-order terms. This yields a simplified expression for 
the wavefunction which, in a classically allowed region, dis
plays a very simple relation between phase and amplitude. 
When the infinite series occurring in this expression for the 
wavefunction is truncated, one gets approximations with 
analytical properties quite different from those of the higher
order JWKB-approximations in the regions around the tran
sition points. This is described in some detail on pp. 452-60 
in Ref. 5. The analytical expressions for the higher-order 
approximations obtained through the above-mentioned 
transformation [cf. Eq. (7) in Ref. 5], followed by truncation, 
are considerably simpler than those of the higher-order 
JWKB-approximations [cf. Eqs. (5a-c) in Ref. 5], but, suffi
ciently far away from the transition points, the two kinds of 

approximations differ numerically very little from each oth
er. The third step (Ref. 2, and pp. 126-31 in Ref. 3) was the 
construction of a general and consistent modification proce
dure for generalizing the actual phase-integral approxima
tions of arbitrary order so that they can also be used in cer
tain cases where the corresponding unmodified approxi
mations would break down. 

To distinguish these new approximations, obtained as 
described above, from the higher-order JWKB-approxima
tions, we shall call them higher-order phase-integral ap
proximations, or more precisely, in accordance with a ter
minology introduced by McHugh (cf. p. 280 in Ref. 6), 
higher-order phase-integral approximations of symmetric 
form. To retain the close correspondence between the high
er-order JWKB-approximations and the higher-order 
phase-integral approximations, odd integers are used to des
ignate the orders of the latter approximations (cf. p. 454 in 
Ref. 5). 

It should be noted that, if actually pursued to higher 
orders, the procedure used by Messiah in Sec. 7 ofCh. VI of 
Ref. 7 would yield the unmodified version of this new type of 
higher-order phase-integral approximations instead of the 
higher-order JWKB-approximations. The distinction be
tween these two kinds of approximations does not appear in 
Messiah's treatment, since he restricts himself to deriving 
the first-order approximation. Broer8 used the same proce
dure as Messiah and pursued it by deriving the first two 
higher-order unmodified approximations, but he did not dis
tinguish the resulting higher-order approximations from the 
higher-order JWKB-approximations. The unmodified ver
sion of the new kind of higher-order phase-integral approxi
mations also appears implicitly in a paper by Bertocchi, Fu
bini, and Furlan,9 but the possibility of using these approx
imations for solving connection problems is neither indicat
ed nor made use of by these authors. The unmodified higher
order phase-integral approximations are actually obtained if 
the expansion of a(x,A ) on p. 604 in Ref. 9 is truncated and 
inserted into (2.11) in Ref. 9, but instead of using these ap
proximations in their reasoning the authors of Ref. 9 use the 
higher-order JWKB-approximations, which are obtained 
when theexpansionsfora(x,A )andb (x,A )onp. 604 in Ref. 9 
are truncated and inserted into (2.5) with (2.6) and (2.9) in 
Ref. 9. That there is actually an essential difference between 
the two types of approximations (cf. pp. 453-54 in Ref. 5) 
has not been observed in the treatment in Ref. 9. 

The higher-order phase-integral approximations have 
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certain very important properties which make them much 
more convenient and useful than the higher-order JWKB
approximations.5 As already mentioned above, the higher
order phase-integral approximations have much simpler 
form than the corresponding higher-order JWKB-approxi
mations. In a classically allowed region the higher-order 
phase-integral approximations have the same phase as the 
corresponding higher-order JWKB-approximations but dif
fer in amplitude from the latter approximations; cf. pp. 453-
54 in Ref. 5. Furthermore, in a classically allowed region the 
higher-order phase-integral approximations display the 
same relation between phase and amplitude as does the exact 
wavefunction (cf. pp. 1612-13 in Ref. 10, p. 1124 in Ref. 11, 
and p. 545 in Ref. 1) and the first-order JWKB-approxima
tion. This relation between phase and amplitude grants to 
the higher-order phase-integral approximations the impor
tant property of having a Wronskian that is exactly constant. 
The higher-order JWKB-approximations, however, do not 
have this property of the exact solutions, in consequence of 
deviations from the above-mentioned relation between 
phase and amplitude. As described on p. 456 in Ref. 5, the 
greatest advantage of using the higher-order phase-integral 
approximations instead of the higher-order JWKB-approxi
mations lies in the fact that for the former approximations 
the connection problems, i.e., the Stokes phenomenon 
("shifting of the coefficients"), can be handled efficiently 
and rigorously by an available method, while there exists no 
such method for the higher-order JWKB-approximations 
because of their complicated analytical form. The method to 
be used was worked out for the first-order JWKB-approxi
mati On by N. Froman and P. O. Froman,4 and the way to 
generalize several of the results derived in Ref. 4 for the first
order JWKB-approximation to apply as well to the higher
order phase-integral approximations was devised by N. Fro
man. 1 Thus, the approach in Ref. 4 combined with the use of 
the arbitrary-order phase-integral approximations (Ref. 1, 
Ref. 2, pp. 126-31 in Ref. 3), yields a rigorous phase-integral 
method which permits exhaustive analysis and treatment of 
physical problems. 

In several publications 1-5.12-43 this phase-integral meth
od has been developed and used for the treatment of various 
physical problems. In these publications the authors have, 
however, only briefly entered upon the difficulties and com
plications which would in general appear if one instead tried 
to treat the same problems by means of the higher-order 
JWKB-approximations. 

In a paper by Garola44 the intention is "to discuss the 
general problem of the approximations of higher order in the 
WKB method, extending suitably Kemble's procedure." It 
had, however, escaped Garola's attention-which is not sur
prising in view of the evermore growing flow of scientific 
information-that the corresponding problem for the above
mentioned higher-order phase-integral approximations I 
had already been treated. The existence of Garola's investi
gation makes it possible to discuss in a concrete and detailed 
way a treatment performed by means of the higher-order 
JWKB-approximations,44 for the purpose of making, at 
some crucial points, illuminating comparisons with a treat
ment performed by means of the higher-order phase-integral 
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approximations. Our analysis of Garola's paper, which will 
be given in the next section, demonstrates the need for mak
ing a clear distinction between the higher-order JWKB-ap
proximations and the higher-order phase-integral approxi
mations, and the great advantage of the latter 
approximations. 

3. COMMENTS ON GAROLA'S PAPER 

In this section we shall make some comments on Garo
la's paper44 and especially point out some equations which 
are approximate in his treatment but become either exact or 
considerably simplified in a treatment by means of the high
er-order phase-integral approximations. We shall use the 
same notations as Garola,44 and, when referring to certain 
equations, we always mean equations in Garola's paper, un
less otherwise stated. We shall restrict ourselves to consider
ing the principal features of Garola's paper and, in general, 
not bother about the rather large number of mistakes and 
misprints in the equations. 

Garola's starting point is Kemble's45.46 system of first
order differential equations for the JWKB-coefficients, ex
tended to apply to the use of the higher-order JWKB-ap
proximations. Following Kemble's approach for treating the 
first-order JWKB-approximation, Garola derives corre
sponding results pertaining to the higher-order JWKB-ap
proximations. We remark that what we call the first-order 
JWKB-approximation is called the zeroth-order approxi
mation by Garola; cf. p. 243 in Ref. 44. 

In Sec. I on pp. 244--50 Garola starts the handling of the 
higher-order JWKB-approximations along the lines devised 
by Kemble.45 .46 According to Eqs. (1.2), (1.3), and (1.5), the 
solution tP is a linear combination of the functions 
exp! f[ ± Aa(5) - b (5 )] dt I. From the second one of Eqs. 
(1.6) it follows that exp! - fb (5) dt I = const/va, but 
Garola does not make full use of this relation. If one does so, 
one obtains tP as a linear combination of the functions 
exp{ ± A fa(5) dt I IVa. If, in these functions, one substi
tutes for a an expansion in terms ofinverse powers of A 2 (the 
first one of Eqs. (1.7) and truncates this series after A ~ 2n , 

one obtains what we refer to as the unmodified phase-inte
gral approximation of order 2n + 1. We remark that if the 
expression given in the second ofEqs. (1.6) is substituted for 
b in the first one of Eqs. (1.6) one obtains an equation from 
which the coefficients in the expansion of a, i.e., the first one 
of Eqs. (1.7), can be calculated. This equation is the same as 
Eq. (3.6) in Ref. 4 except for the notation. Garola, however, 
utilizes the higher-order JWKB-approximations. If one 
uses, instead, the higher-order phase-integral approxima
tions, one has the exact relationg2 =~; Ig] [cf. the second 
Eq.(1.6)],i.e.,exp!-fg2dtl =const/ygl·Henceoneob
tains instead of Garola's formulas (1.11) the formulas 

Fu = exp[ + A fgl dt I/v'~ 
and 

Fv = exp! - A fgl dt IN;; , 
where 
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In Eqs. (1.12) and (1.13) the expression (Ug1g2 - Ag;) is 
then exactly equal to zero, and hence (1.16) is not an ap
proximate but an exact equation. Thus, using the formula 
g2 = ~; /gl' one can, without introducing any approxima
tions, write Eq. (1.16) in the form (1.17) with Q given, not by 
(US), but by 

_ ~ = (_ iACP )2 _ ( _ iAg 1)2 

(AgI)2 ( - iAg I )2 

+ ( - iAg I ) -3/2 :x: ( - iAg1) -112 . 

Comparing this formula with formula (3.5a) in Ref. 4, we see 
that if Garola had used the higher-order phase-integral ap
proximations instead of the higher-order JWKB-approxi
mations, his quantity - Q /(Ag I? would have been the same 
as € in Ref. 4. Furthermore, the Wronskian (1.22) would 
have been exactly constant (= -U) and Garola's approxi
mate Eqs. (1.24) and (1.25) would (except for the notation) 
have been the same as the exact Eqs. (3.11) in Ref. 4. The 
transformation (1.26) which Garola uses for treating his 
Eqs. (1.24) and (1.25) is unnecessary and only complicates 
the treatment. It is preferable to solve the system of differen
tial equations (1.24) and (1.25) in a quite straightforward 
way and obtain the solution in exact form in terms of conver
gent series. The result is given by Eqs. (3.26) and (3.22a-d) in 
Ref. 4. 

In Sec. 2 on pp. 250-61 Garola continues the handling 
of the higher-order JWKB-approximations by means of 
Kemble's45,46 method. If, instead of the higher-order 
JWKB-approximations, we use the higher-order phase-inte
gral approximations, for which the relation 2glg2 - g; = 0 
is exactly valid, the exact Eq. (2.1) fordAu/dx and the analo
gous equation fordAv/dx become identical to Eq. (1.24) and 
Eq. (1.25), respectively, without the introduction of any ap
proximation. What has been said previously concerning the 
use of the transformation (1.26) also applies to the use of the 
transformation (2.2). Rigorous estimates corresponding to 
the estimates (2.1S) and (2.23), which Garola obtains when 
lexp!A fg l dt J I is monotonically increasing as one moves 
from Xo to XI along a path r, can easily be obtained from 
Eqs. (3.26) and (4.3a-d) in Ref. 4. The same assertion is true 
for the estimates (2.29) and (2.30), which Garola obtains 
when lexp!A fg l dt J I decreases monotonically as one moves 
from X 2 to X3 along a path A. We also remark that the condi
tion (V.:1 /2)(E2/ E 3) = 1 + 0 (V.:1) at the bottom of p. 256 in 
Garola's paper is not very realistic, since in general E2/E3 is 
very large compared to unity, and V.:1 , although small, is not 
so very small compared to unity. When lexp!A fg l dt J I is 
first monotonically increasing and then monotonically de
creasing along the path considered, Garola obtains the esti
mates (2.32) and (2.33). These estimates are useful essential
ly only under the condition that VA E /2 is not large com
pared to unity, which condition one must impose in order to 
be able to conclude from (2.32) and (2.33) that Au and Au 
have approximately the same values at the end point of the 
path as at its initial point. However, the condition just men
tioned seems to be fulfilled only in very special cases, and it is 
probably difficult to find a realistic case of physical interest 
where it is actually fulfilled. For the treatment of typical 
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physical problems, in which there appears a path on which 
I exp! A fg I dt J I has a maximum, one needs estimates which 
are more refined than (2.32) and (2.33). For the phase-inte
gral approximations of arbitrary order (Ref. 1, pp. 452-60 in 
Ref. 5, Ref. 2, and pp. 126-31 in Ref. 3) such estimates can be 
obtained by means of the methods developed by N. Froman 
and P. O. Froman.4 Immediately after his Eq. (2.33) Garola 
says: "The procedures we have used so far can be easily gen
eralized to demonstrate formulas analogous to (2.32) and 
(2.33) when we have along A many maxima and minima of 
lexp! U f~gl dt J I"· It is, however, too optimistic to think 
that it is easy to obtain useful estimates of the behavior of Au 
and Au in such general cases. The simplest case of such a kind 
appears perhaps in the case of barrier transmission when the 
energy of the particle is close to the energy corresponding to 
the top of the barrier, but even in this case the procedure to 
be used is somewhat complicated; cf. pp. 46-51 in Ref, 4 and 
pp. 616-S in Ref. 15. Limiting properties of Au and Au as 
Ixl-oo, considered by Garola on pp. 259-60, have been rig
orously discussed in Chapters 4 (pp. 27-29) and 10 (pp. 104-
5) of Ref. 4. The treatment on pp. 104-5 in Ref. 4 can easily 
be generalized to apply to such a general path in the complex 
plane as Garola considers. When this is done, one obtains 
(from Eqs. (IO.Sa,b) and (4.3a-d) in Ref.4) estimates which 
correspond to a refinement of Garola's Eqs. (2.3S) and 
(2.39). On p. 260 Garola says "we could extend our inequal
ities to A-paths along which lexp!U f~gl dt J I is not mono
tonically decreasing when coming from infinity". Certainly 
such general estimates can be derived and in essentially the 
same way as Eqs. (2.32) and (2.33) are derived from the 
estimates (2.1S), (2.23) and (2.29), (2.30) pertaining to the 
simple paths along which lexp! U f~gl dt J I changes mono
tonically when x moves from one end point to the other. 
These general estimates, however, are not as useful as might 
be thought, not only because of the roughness of the esti
mates, but basically for the reason that the estimated quanti
ties simply are not small in realistic situations. Even for the 
relatively simple case of a path A joining in the complex 
plane two real points t and rJ, lying on opposite sides of a 
system of two well separated potential barriers, it can be 
shown by means of methods developed in Ref. 4 and esti
mates given in Ref. 16 that, in general, neither of the quanti
ties IAu( t) - Au(rJ)1 and IAu( 0 - Au(rJ)l, which Garola 
intends to estimate, is small. If one wants to keep track of the 
sometimes drastically changing values of Au and Au (Stokes 
phenomenon) along a path of non mono tonicity, it is there
fore not enough to have estimates of the kind considered by 
Garola. The inability of such estimates to account for 
changes inAu andA" along a path of non mono tonicity, to
gether with Garola's erroneous belief in the smallness of his 
estimated quantities for more complicated paths of nonmon
otonicity as well, explains why Garola's attempt to treat cer
tain problems concerning a system of several potential bar
riers as well as a system of several potential wells is not 
successful and why his results actually are limited to a single 
potential barrier and a single potential well, respectively. We 
want to point out that the method in Ref. 4, when applied to 
the handling of the phase-integral approximations of arbi
trary order (Ref. 1, pp. 452-60 in Ref. 5, Ref. 2, and pp. 126-
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31 in Ref. 3), provides us with an effective means to treat 
these problems. 

In Sec. 3, pp. 261-5, Garolacontinues the discussion of 
the connection problem for the higher-order JWKB-ap
proximations, specializing to the case when the function 
A 2f/J 2 in Eq. (1.1) is real on the real axis. If one uses, instead, 
the higher-order phase-integral approximations, Garola's 
Eqs. (3.5) and (3.6) are replaced by the previously mentioned 
exact relation exp! - Sg2 ds ) = const/v g\. Garola's Eqs. 
(3.8) correspond to Eq. (3.26) in Ref.4, and the matrix !g) in 
Garola's Eq. (3.9) corresponds to the matrix F in Ref. 4, for 
which there are the explicit formulas (3.17) and (3.22a~) in 
Ref. 4. When one uses the higher-order phase-integral ap
proximations, Garola's Eq. (3.15) is replaced by the much 
simpler relation det!g) = 1. Thus Garola's Eq. (3.17), 
which is approximate since he USes the higher-order JWKB
approximations, becomes exact if one uses instead the high
er-order phase-integral approximations. On pp. 17-8 in Ref. 
4 there is a very simple prooffor this exact relation, which is 
given as Eq. (3.19). Since the function A 2f/J 2 in Garola's Eq. 
(1.1) is assumed to be real on the real axis, one can choose '" 
to be real on the real axis (Garola's Eqs. (3.18) and (3.19», 
thus imposing a condition upon the matrix ! g), as Garola 
also mentions on p. 265. The resulting conditions on this 
matrix !g), i.e., on the matrix F in Ref. 4, are called symme
try relations in Ref. 4 and are given there explicitly in very 
general form in Eqs. (5.7a,b), (5.8a~) and (5.9a,b). 

Section 4 on p. 266 is an introduction to the treatment of 
the radial wave equation. In (4.1) Garola gives the equation 
which results when one transforms the original radial wave 
equation by a Langer transformation. On pp. 126-31 in Ref. 
3 it is shown that one need not perform such a transforma
tion explicitly in every application but can, instead, directly 
use final expressions for modified phase-integral 
approximations. 

In Sec. 5, on pp. 266-71, Garola treats a radial scatter
ing problem. A formula identical (apart from the notation) 
to Garola's Eq. (5.14), when corrected for misprints, can be 
obtained directly by the use of modified higher-order phase
integral approximations (Ref. 2, pp. 126-31 in Ref. 3) to
gether with the results in Chapter 4 of Ref. 4 and the connec
tion formula (21) in Ref. 5. As on pp. 269-71 in Garola's 
paper, one can then obtain formulas identical (apart from 
the notation) to Garola's Eqs. (5.17) and (5.20), when cor
rected for misprints. In Eqs. (5.21) and (5.22) Garola gives 
approximate expressions for theg-matrix. Equation (5.22) is 
in agreement with the estimates on pp. 41-2 in Ref. 4 in 
connection with Fig. 6.3 in Ref. 4, if these estimates are gen
eralized to the phase-integral approximations of arbitrary 
order, and ifthe point x" in Ref. 4 is assumed to be a simple 
zero of Q 2(Z) instead of a simple zero of q2(Z), and if the 
resulting estimates are changed to correspond to Garola's 
choice of phase for - iAf/J. Estimates corresponding to Gar
ola's Eq. (5.21) do not appear in Ref. 4, since there was no 
need for such estimates there. 

In Sec. 6 on pp. 271-5 Garola treats a radial bound
state problem. The quantization condition (6.8), valid for a 
single-well potential, can be simplified into (cf. pp. 719-20 in 
Ref. 47, pp. 186-7 in Ref. 48, and pp. 98-9 in Ref. 26) 
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1 f ( - lAg I) dx = (n + ~)1T . 

This is also the form in which the quantization condition is 
directly obtained when one uses the higher-order phase-inte
gral approximations (cf. Ref. 1) instead of the higher-order 
JWKB-approximations, as can easily be verified by using the 
,exact relation g2 =~; /gl in Garola's Eq. (6.8). In connec
tion with Garola's attempt on p. 274 to generalize (6.8) to the 
case of a system of potential wells, we remark that the quan
tization condition (6.8) cannot be valid for a multi-well po
tential. It is, for example, easily seen that from Garola's gen
eralization of (6.8) one does not obtain any quantization 
condition for a symmetric double-oscillator. Garola's gener
alization, on p. 274, of the quantization condition (6.8) is 
thus erroneous. Bound states have, on the other hand, been 
treated correctly by means of phase-integral approximations 
of arbitrary order and with the possibility of error estimates 
for a single-well potential in Ref. 1, for a double-well poten
tial in Refs. 14, 17, and 20, and for a more general system of 
potential wells in Ref. 19. 

In Sec. 7, on pp. 275-80, Garola considers sub-barrier 
penetration through potential barriers. Eqs. (7.8), (7.23), 
and (7.24) become simplified when one replaces the higher
order JWKB-approximations by the higher-order phase-in
tegral approximations, since g; - 2 g Ig2 then becomes ex
actly equal to zero. The right-hand members of Eqs. (7.10), 
(7.11), (7.18), and (7.24) should be multiplied by the factor 
± 1, where the upper sign pertains to the case of an odd 

number of barriers and the lower sign to the case of an even 
number. With this correction introduced, Eqs. (7.11) corre
spond (except for the choice of sign for - iAf/J) to the sym
metry relations (22a,b) in Ref. 15 and (14a,b) in Ref. 16. 
Garola's Eq. (7.14), which is valid only for the case of a 
single potential barrier, corresponds to the estimate (6.31) in 
Ref. 4, the difference in appearance being due to the differ
ence in sign for - iAf/J in Garola's paper and Q in Ref. 4. 
Garola's Eqs. (7.19), (7.27), (7.28), (7.30), and (7.31) are 
based on his Eq. (7.14) and are thus valid only for the case of 
a single potential barrier. When deriving (7.28) and (7.31), 
Garola puts exp! R S~(g; - 2glg2)/gl ds J = 1. This rela
tion, which is approximate in Garola's treatment by means 
of the higher-order JWKB-approximations, becomes exact 
when one uses instead the higher-order phase-integral ap
proximations. Garola's intention to treat transmission 
through a system of n potential barriers (cf. p. 275 in Garo
la's paper) is too optimistic, and his treatment is, in fact, 
restricted to a single potential barrier. We find strong sup
port for this opinion by comparing Garola's final formula 
(7.28) for the transmission coefficient, on the one hand with 
the formula (80b) in Ref. 15 for the transmission coefficient 
of a single potential barrier and, on the other hand with for
mula (41) in Ref. 16 for the transmission coefficient of a 
system of two potential barriers. Detailed, general treat
ments of transmission problems by means of phase-integral 
approximations of arbitrary order have been given in Ref. 15 
for a single potential barrier, in Ref. 16 for a system of two 
well separated potential barriers, in Ref. 43 for a system of an 
arbitrary number of well separated potential barriers, and in 
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Ref. 39 for a periodic potential consisting of an infinite num
ber of well separated simple barriers. 
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Some methods are introduced and tested for approximating s-wave Schrodinger wavefunctions at 
the origin, and for examining their dependence on reduced mass of the bound system. Methods 
are discussed both for nonsingular and singular potentials. The approximations, previously tested 
for power-law potentials, are found to be exact for the Hulthen potential and excellent for a wide 
range of parameters in Coulomb + linear potentials: VCr) = - Air + Dr. General theorems for 
mass dependences are reviewed and extended; these theorems apply to potentials with a definite 
sign of d 2 V I d,z. Some specific instances in which d 2 V I d,z does not have a unique sign and the 
theorems do not hold are also discussed. 

I. INTRODUCTION 

Recent attempts to interpret the mass spectra and lep
tonic-decay widths of the heavy mesons (t/J and Y families) 
by treating these particles as bound states of a quark and an 
antiquark have met with considerable success. 1-3 These posi
tronium-like models make use of nonrelativistic quantum 
mechanics (Schrodinger's equation) and a central potential 
V (r). Since the leptonic-decay width of an s-wave state is 
proportional to 1 tJI (0) 12

, the square of the wavefunction at 
the origin, it is of interest to determine how 1 tJI (OW varies as 
a function of the reduced mass J.1 and parameters in the po
tential. The variation with J.1 is of particular importance, 
since there is some evidence4 for universality of the inter
quark potential. By solving this problem we may hope to 
extrapolate present experimental information to systems of 
heavier quarks. 

We have investigated a variety of monotonically in
creasing potentials in the semiclassical approximation to 
gain some insight into the behavior of 1 tJI (0) 12 as a function of 
J.1. As a corollary to these efforts, we have obtained several 
other results: 

(i) An expression for 1 tJI (0) 12 has been obtained for po
tentials with a singularity of the form r - S near r = 0.5 This 
expression is very accurate for power-law potentials, and is 
exact for both the Coulomb and Hulthen potentials. 

(ii) The quantization condition and wavefunction nor
malization are obtained semi classically for an arbitrary po
tential of the form 

VCr) = - Air + Br. (1) 

As this potential is the basis of much successful quarkonium 
phenomenology,6.7.1 our results may be of some use as a 
ready reference. We find our approximations to be particu
larly good when the Coulomb term dominates. This is ex
pected to be the situation for very heavy quarks. 

Since8 

(2) 

the quantity 1 tJI (0) 121 J.1 will be of particular interest to us. 
Many of the potentials used to describe the t/J and Y families 
haved 2V Idr 2.;;0: They become steeper near the origin. Na-

ively one would expect 1 tJI(0)1 2/p to increase for such poten
tials as J.1 is raised, since shorter Compton wavelengths 
should lead to wavefunctions that sample Vat shorter dis
tances. This expectation is borne out in the semiclassical lim
it. The degree to which it is true when one cannot neglect the 
quantum-mechanical oscillations of the wavefunction is still 
an open question, but certain results already have been ob
tained for nodeless wavefunctions or special potentials. 9 

In Sec. II we shall present semiclassical results for 
wavefunction normalization in nonsingular potentials. 
These results are extended to the case of a singularity at the 
origin in Sec. III, where a modification to the quantization 
condition is also presented. The results are illustrated for 
power-law potentials in Sec. IV, for the Hulthen potential in 
Sec. V, and for the Coulomb-plus-linear potential (1) in Sec. 
VI. We return to the problem of mass dependence in Sec. 
VII, quoting a result of Martin in the classical limit. Section 
VIII is devoted to a number of simple examples of mass 
dependences. Section IX contains our conclusions. 

II. SEMICLASSICAL APPROXIMATION FOR 
NONSINGULAR POTENTIALS 

For motion with angular momentum 1= 0 in a central
ly symmetric field, the reduced Schrodinger equation is 

d2U~) + 2J.1
2 

[E _ V(r)]u(r) = O. (3) 
dr - fz 

The full wavefunction is 

(4) 

and 

u(O) = o. (5) 

The semiclassical approximation to u(r) for a nonsingu
lar potential may be written 

u(r) = N 1 2 sin(..!.. r p(r')dr'), 
[per)] / fz Jo (6) 

where 

per) = V 2J.1[E - VCr)] (7) 

is the classical momentum. Then 
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I tJI(OW = [u'(0)F/417 = V 2/-lE N 2/41T'1i 2. (8) 

The constant N is determined by normalizing the radial 
wavefunction: 

1= dr[u(r)f=- _r_. 1'" N21" d 
o 2 0 per) 

(9) 

(The integral has been taken only out to the turning point, 
and the average of the sin2 factor has been approximated by 
p We then find 

I tJI(OW = /-l!1~2 (" dr 
Jo [E - VCr)] 1/2 . 

(10) 

Recalling Eq. (2) and the subsequent discussion, we 
shall be interested in the sign of 

~ [ltJI(OWI/-l] = aE ~ [itJI(OWI/-l]. (11) 
a/-l a/-l aE 

We use a well-known theorem 10.11 on the expectation value 
of the derivative of the Hamiltonian H with respect to a pa
rameter A, 

(
aH) aE 
aA = aA ' (12) 

which gives 

aE = _ (1') <0. 

a/-l /-l 
(13) 

Here Tis the kinetic-energy operator, whose expectation 
value is non-negative. Hence the problem reduces to that of 
finding a (I tJI (OW 1/-l)/aE, which may easily be done with the 
help of Eq. (10). We shall consider several simple examples 
in Sec. VIII. 

III. SINGULAR POTENTIALS 

Let us begin by considering a simple class of potentials 
V(r) = -AirS, A>O, 0<s<2. (14) 

We restrict attention to s < 2, since for s > 2 a particle "falls" 
to the origin; in some sense these potentials must be consid
ered unphysical. 11 For the potentials (14), the preceding dis
cussion is inapplicable, since the condition V (0) = 0 is not 
satisfied. Moreover, the condition for applicability of the 
semiclassical approximation is 12 

/-lfliF l![p(r)j3 « 1, (15) 

where F = - dV Idr is the force acting on the particle. In 

the present case this becomes (with p::::: V 2/-l1 V I 
::::: V 2/-lA Ir' ): 

(16) 

so that the semiclassical approximation will not hold for 
small r. We can, however, determine the semiclassical 
I tJI (0) 12 by finding the exact solution near r = 0 and match
ing it to the semiclassical solution valid for large r.13 To ob
tain this exact solution, we neglect E in Schrodinger's equa
tion (3): 

d2~ + 2/-l ~ u = O. (17) 
dr - fl2 r' 

By means of the substitutions 
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u(r) = zq p(z), 

q=1/(2 -s), 

r= [1iz12q(2/-lA )1/2] 2q
, 

(18) 

(19) 

(20) 

Eq. (17) is brought to the form of Bessel's equation, 

p"(z) + ~p'(Z)+(I- ::}(Z)=O. (21) 

The solution regular at z = 0 is 

p(z) = CJq (z) (22) 

or 

u(r) = C~Jq(z). (23) 

This solution is applicable for IE I « I V I or 

r«(A liE I) 115. (24) 

The large-r solution is 

u(r) = N I 2 cos("!" (' p(r')dr' + ¢ ). (25) 
[ p(r)] I fI Jo 

To determine the constant C in terms of N, which is 
given by the normalization condition (9), we demand that 
the solutions (23) and (25) be the same in the intermediate 
region: 

(26) 

This region must exist for sufficiently small IE I. With the 
asymptotic form of the Bessel function, 

( 
2 )112 ( ql7 17) Jq (z)::::: l7Z cos z - 2 - "4' (27) 

the solution (18) becomes 

u(r) = C~ -112( ~ YI\OS(Z - q; - :). (28) 

This is to be compared with Eq. (25), which can be written as 

u(r)=N(~)l/4 cos(2V2/-lA,z-s +¢), (29) 
2/-lA (2 - s)fI 

and we find that 

Next we use the first term of the series expansion of the 
Bessel function 

(30) 

~ 
Jq(z)= -2q I (31) 

q. 

in order to evaluate I tJI (OW = (u'(O)j2 1417. The final result, 
analogous to Eq. (10) for nonsingular potentials, is 

ItJI(OW=q'q(2J-tA )qV2/-l/2 [F(Q)]2 {" dr . 
fl2 fI Jo [E-V(r)p/2 

(32) 

An equivalent expression is 

N
2qSq (2/-lA)q 

ItJI(OW = 4f1[FCq)]2 7 . (33) 

The results (32) and (33) may now be extended to apply 
to any potential that goes as r - 5 (0 < s < 2) near r = 0, as 

Peter Moxhay and Jonathan L. Rosner 1689 



                                                                                                                                    

long as a suitable intermediate region exists in which both 
the solutions (23) and (25) are approximately valid. Exam
ples are the Huithen potential (Sec. V) and the Coulomb
plus-linear potential (Sec. VI), both of which behave as ,-1 
near the origin. 

We may obtain a generalization of the Bohr-Sommer
feld quantization condition. For nonsingular potentials this 
1S 

(34) 

For singular potentials, by matching the solutions (23) and 
(25) in the region (26) and taking account of (27), we find 

f' dr[2f-L(E - V(r»] 1(2 = (n - ! + !q)1rli 

( 
l-s ) 

= n - 2(2 _ s) 1rli. (35) 

Specifically, the integral in (35) should be proportional to n 
for potentials with a Coulomb singularity at the origin. 

IV. POWER-LAW POTENTIALS 

We shall be content with a few illustrations here. Gen
eral expressions 1 are quoted at the end of this section. 

For a nonsingular potential 

V (r) = ..trv (0 < v < (0), 

the behavior 

II/I(OW-E 1-l/v 

(36) 

(37) 

is easily seen by rewriting the integral in Eq. (10) in the form 
of a variable r'=rl E v. For v = 1, 11/1 (OW is independent of 
E. The semiclassical result 

11/1 (OW = ~. 3!!:... (38) 
41T 'il 2 

is also the exact one, as may be seen from Eq. (2). 
For singular potentials of the form (14), the result 

11/1 (OW - E 1/2 + lis (39) 

follows from Eq. (32). Thus, for a Coulomb potential, 
11/1 (0) 12 - E 3(2 - n-3

• The exact coefficient is obtained from 
Eq. (32) in this case. 

In Table I we present results for 11/1 (OW and En for 
nonsingular [Eq. (36)] and singular [Eq. (14)] power-law po
tentials, according to Eqs. (10), (32), (34), and (35). These 
results have also been quoted in Ref. 1, which may be con
sulted for further illustrations of their accuracy. 

T ABLE I. Summary of semiclassical results for power-law potentials. 

V. THE HULTHEN POTENTIAL 

The s-wave Schrodinger equation may be solved exactly 
(cf. Ref. 14) for the Hulthen potential 

VCr) = - Voe - ria 1(1 - e - ria). (40) 

Here we shall set a = 2f-L1'il 2 = 1. We shall show that Eqs. 
(32) and (35) give the exact results. 

With 

a 2= - E, 13 2== Vo, r= V a 2 + 13 2 , 

the solutions are 

u(r) = Ne - ar(1 - e - , 

X 2F1(2a + 1 + n,l- n; 2a + 1; e-" 

with eigenvalue condition 

13 2 _ n2 

a=r-n= '----
2n 

The normalization condition 

100 

[u(r)]2 dr = 1 

implies 

N 2 = r(2a + n)F(2a + n + 1)(a + n) 
r(2a)F(2a + 1) [r(n + 1) F 

We seek 

N 2 

I 1/1 (oW = - [2Fl(2a + 1 + n, 1 - n; 2a + 1; 1)]2 
41T 

(41) 

(42) 

(43) 

(44) 

(45) 

= N
2 
(r(n + 1)F(2a + 1»)2 (46) 

41T r(2a + n) 

or 

I 1/1 (OW = a(a + n)(2a + n) . (47) 
21T 

The semiclassical result, according to (32), is 

II/I(OW - Vo / (" dr (48) 
sc - 2 Jo [E+ Voe- r/(l-e-,]i(2 

With the substitutions 

(1 - e - ,-I = w2 + E + 1, E== - E IVo, (49) 

this becomes an elementary integral, whose value is 

Nonsingular 
VCr) = }.r' 

Singular 

1\fI(OW 

1690 

E I II>}. Ih{iF(1/2 + I/v) 

1T"/211 2F(1 + I/v) 

[}. 2(~)"(2VV-; F(312 + 1/v) (n _l»)'Y] 1/(2 + 'I 

2ft F(I/v) 
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V(r) = -Ar-' 

IE 1112+II>A2('-I)I~1_,)(2ft)(4 -'112(2 -.'1 F(1/s) 
"'i2 2(17)1/2[F(I/(2 -S»)l'F(I/S+ 112) 

2 11 _., 2v 17 F(1/s) l-s 
{ 

2 [~/- ] -l,}I/(2') 
A L,J F(l/s -1/2) (n - 2(2 - s) 
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In the last step we have made use ofEqs. (41) and (43): 

a = y' E Va , n = y' Va (y' E + 1 - y'~) (51) 

The quantization condition (35) may be evaluated by 
means of a similar substitution: 

nsc 1r = f' dr[ Vae - r /(1 - e - ') + E ] 1/2 

= 1r y'Va (y' E + 1 - y'~\ 
which indeed is the exact result (51). 

VI. COULOMB-PLUS-LINEAR POTENTIAL 

(52) 

(53) 

In this section we evaluate the semiclassical expressions 
for wavefunction normalizations and quantization condi
tion for the Coulomb-plus-linear potential (1). We shall 
again set 2p = 1i 2 = 1. 

It becomes convenient to define the variable 

(54) 

In the limit of a very Coulombic potential (E_ - 00), 
the variable 5 tends to -1, while for highly excited levels 
(E_oo), whenever B = 0 we have 5-1. The quantities of 
interest (32) and (35) are then 

I «P(0) I;c = A: (!)1I2jg(5), (55) 

4v2A 3/4 

nsc 1r = 3B lt4 [( 5), (56) 

g( 5)=E C ; 5) - 1; 5 K C ; 5) , (57) 

0% 

~O 

_I L-____ ~ ______ ~ ____ ~ ____ ~ 

I 2 3 4 5 
n 

FIG. I. Contours of Itft(O)I~e - I tft(OW]/1 tft(OW as functions of 

5' =E E 2 + 4AB and n for a Coulomb + linear potential 
VCr) = - A Ir + Br, where Itft(O)I~e is computed using the semiclassical 
formula (55). Shaded region denotes 5> no-I(n) [Eq. (62)], for which the 
present approximation is unjustified. 
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c;O 

-I 
2 3 4 5 

n 
FIG. 2. Contours ofnse - n as functions of Sand n fora Coulomb + linear 
potential, where nse is computed using the semiclassical formula (56). 
Shaded region denotes S> no-len). 

[(5)=[ 1; 5 KC ~ 5) + sEC ~ 5) ]/(1 - S2?14, 

(58) 

where 

[

/2 

E(m)= 0 (1 - m sin2
0)lt2 dO (59) 

and 

r1T
/2 

K(m)= Jo (1 - m sin2
0)-1/2 dO (60) 

9 (!) 0.5 

o 
! 

FIG. 3. Plot of the functiong( 5) [Eq. (57)] used in computing Itft(O)lic for 
the Coulomb + linear potential via Eq. (55). 
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5r-----.-----.------.----~ 

4 

3 

2 

O ........ -----'-------...L.------'------~ 
-I o , 

FIG. 4. Plot of the functionf( 5) [Eq. (58)] used in computing nsc for the 
Coulomb + linear potential via Eq. (56). 

are elliptic integrals as defined and tabulated in Ref. 15. The 
subscript SC denotes the semiclassical approximation. 

The expressions (55) and (56) approach the exact (Cou
lomb) values as s-+ -1. They deteriorate in the limit S-+I, 
since use has been made offormulas (32) and (35), which are 
appropriate only for singular potentials. In the limit S -+1, no 
suitable matching region (26) exists. [For S = I we should 
have used instead Eqs. (10) and (34).] The two limits in (26) 
coalesce when 

E= 4A 2, 

s = (1 + B 14A 3t 1/2, 

or, with the help of (56), 

n - n (1:)= ~/( £") Yt 
- 0 ~ - 31T =- (I-S2)1!4 

(61) 

(62) 

The approximations (55) and (56) are expected to be good 
only for S < no- I (n). Here they are indeed excellent. Figures 
I and 2 show contours of errors in IIJI (0) 12 and n as function 
of nand S. The shaded region corresponds to S > no- I (n), for 
which no suitable matching region (26) exists. 

For convenience we plot the functiong( 5) and/( S) in 
Figs. 3 and 4. GivenA,B, and n, one may read offSfrom Eq. 
(59) and Fig. 4, thereby determining E through Eq. (54). 

VII. CLASSICAL MASS DEPENDENCE 

Here we investigate the behavior of IIJI (0) 121 J-l as a func
tion of J-l, using the semiclassical approximations that have 
been shown to be quite good in the preceding sections. In this 
section we note theorems that are slight extensions of those 
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quoted previouslyl.16; the next section is devoted to some 
simple examples. 

For nonsingular potentials we may always take 
V(O) = O. We shall show for such potentials that if V'er) > 0, 

J (IIJI(OW) (E V"VdV 
sgn JJ-l J-l = - sgn Jo (V')2[ I _ (V /E)] 1/2 . 

(63) 

In particular, if V" always ;;;.0 (.;;;;0), then IIJI(OW /J-l 
~ (dV Idr) always decreases (increases) with increasing J-l. 
This corresponds to the intuitive expectation that wave func
tions for larger J-l sample shorter distances in the potential. 

To demonstrate Eq. (63) we write Eq. (10) as 

IIJI (OW E 1/2 
J-l = 1Tfz 2D ' (64) 

where 

('" dr 
D_ Jo [E- V(r)] 1/2 . 

(65) 

According to the discussion in Sec. II, 

(66) 

For V'er) > 0, we may change variables in (65), obtaining I. 16 

D= IE dV 

V(o) V'CE - V)1/2 

= 2YE- V(O) -2 (E dV V"YE=V" (67) 
V/(O) JV(O) (V'? 

If V (0) = 0, the first term does not contribute to 
J (D IE 1/2)1 JE, so that 

J(D IE 1/2) I (E V" V dV 

JE = - ?Jo (V')2[1_(VIE)]1/2' (68) 

verifying Eq. (63). 
For singular potentials, we can only prove an inequality 

in one direction: 
If V II < 0 and if V ~ - r - S as r-+O, 0 < s < 2, then 

J(IIJI(OWIJ-lq
+ 1/2 )IJJ-l>0, q 1/(2-s). (69) 

By examining Eq. (32), we see that 

I IJI(OWIJ-l q + 112 = const/D, (70) 

so J(IIJI(OWIJ-l q+ 112)1JJ-l >0 if JD-I/JJ-l >0, or if JD IJE 
> o. The first term of(67) may be seen to vanish if interpret
ed in the limit r-+O, and 

JD JE V" 
- = - dV ~o for V" <0. 
JE _ 00 (V'?(E - V)1/2 p 

(71) 

Since many potentials of interest for charmonium [in
cluding Eq. (I)] have V II < 0 and are singular at r = 0, Eq. 
(69) says that IIJI (0) 12 should increase at least as rapidly as J-l. 
This is the assumption on the basis of which some bounds in 
Ref. 17 were established, permitting the conclusion 1.17 to be 
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drawn that the charge of the quarks in the ris leQ I = 1. For 
potentials with a Coulomb singularity (s = 1, q = 1) at 
r = 0, and with V /I < 0, we find that I If! (0) 12 should increase 
at least as rapidly as p3/2. 

VIII. ILLUSTRATIONS FOR NON-POWER-LAW 
POTENTIALS 
A. VCr) = - Volcosh2ar 

This potential has a point of inflection at V = -1 VO' 
so the theorems of the preceding section do not apply. For 
this potential, Eq. (10) gives 

IIf!~OW = ~~22 Y IE l(Vo - IE I) , (72) 

which is an increasing (decreasing) function of E for 
E < - V 012 (> - Vo/2). The critical energy lies above the 
inflection point -2 V 013 and thus the sign of 
a [I If! (0) 121 p]l ap cannot be directly associated with the value 
of V /I at the classical turning point, but must depend on the 
shape of the potential throughout the classical accessible re
gion. This is further illustrated by the following example. 

B. Nested square wells 

In this case (Fig. 5) application ofEq. (10) leads to the 
expressions (E E I Vo,/3 -===b I a): 

I If! (OW = ~ h (E) (73) 
P 1Tfz 2a ' 

where 

, E> 1. 

(74) 

(75) 

The function h (E) has the form shown in Fig. 6, which shows 

+00 

+ 
V 

Vo f- - - - - - - - ---------, 

I , , , 
I 
I 

o "'----------'- - - - - - - - _J 
o a b 

r~ 

FIG. 5. A system of nested square wells: V = 0 for O<;;n;;a. V = Va for 
a < I"<;;h, V = 00 for 1"> b. 
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5~--~--~-----r----'--~ 

4 

3 

h {E} 

2 

(0 
E 

FIG. 6. The dimensionless function h (E) [Eqs (73)-(75)] describing 11/'(0)1' 
in the potential of Fig. 5. Here we have taken b /0 = 2. 

that I If! (0) 121 p is monotonically increasing with E except for 
ajump. Such behavior is easily understood using the picture 
of a particle undergoing finite motion in a potential well in 
classical mechanics. When the particle has just enough ener
gy to surmount the step in the nested square wells, it moves 
extremely slowly in the region a < r < b, and thus spends al
most all of its time away from the origin (i.e., away from the 
region r<a). 

The analogy between I If! (0) 12 and the classical probabil
ity density at the origin can be made more explicit. The clas
sical probability density is just proportional to the inverse of 
the particle velocity: 

vCr) = (2[E - V (r)]lp J 1/2. (76) 

Therefore the classical probability that the particle is at the 
origin [in the purely one-dimensional problem with 
V( - r) = VCr)] is: 

P(O) - (2YE (" dr )-1 
- Jo [E - V (r) ]1;2 ' 

(77) 

where the classical turning point ro is the root of the equation 
V(ro) = E. The integral is related to the classical period for 
one-dimensional motion in a symmetric potential: 

(" dr 
T = 4 Jo v(r)' (78) 

Comparing Eq. (77) with the formula (10) for I If! (OW, 
we find 

11f!(0)12 = 2E P(O). 
P trfz2 

(79) 

IX. CONCLUSIONS 

We have been concerned in this paper with the behavior 
of the square of the s-wave wavefunction at r = 0 as a func
tion of reduced mass p in nonrelativistic bound systems. 
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This problem is of renewed interest because of its applicabil
ity to the physics of heavy quarks. 

The investigation has been carried out in a semiclassical 
context. We have presented distinct approximations valid 
for potentials that are finite at r = 0 and for potentials behav
ing there as r - 5, 0 < s < 2. The approximations have been 
previously shown I to be very good for power-law potentials. 
We have illustrated their accuracy for two more potentials 
behaving as,-I at r = O. The approximations have been 
shown to be exact for the Hultben potential, and very good 
for Coulomb-plus-linear potentials as long as the effects of 
the Coulomb singularity are non-negligible. (This corre
sponds to the parameter 5 in Sec. VI being sufficiently below 
1.) 

Two classes of semiclassical results have been obtained 
for the behavior of II[! (0) 121 fl as a function of fl. For nonsin
gular potentials, J (II[! (0)1 2 Ifl)IJfl > 0 ( < 0) if V" < 0 (> 0). 
For potentials behaving as r - 5 at the origin, 
J (I I[! (OW Ifl q + 1/2)IJfl > 0 [q 1/(2 - s)] if V" < O. If the 
short-distance singularity of V is Coulombic, II[! (0) 12 grows 
with fl at least as rapidly as fl3/2. Since leptonic widths of 
vector mesons of mass M behave as II[! (0) 121M 2, and M - fl 
(if we neglect binding effects), one expect these leptonic 
widths to decrease no more rapidly than fl- 1/2

• 18 

We have illustrated the mass dependence of II[! (0) 12 
when V" does not have a definite sign by two examples. 
When V(r) = - Vo/cosh2ar, I I[! (OWlfl decreases with in
creasing,(l for - Vo < E < - V 012, and it increases with in
creasing fl for - V 012 < E < O. There is a correlation with 
the shape of the potential here but it is not directly associated 
with the value of V" at the classical turning point. When V (r) 
is a double (nested) well, we have arrived at a more classical 
understanding of why II[! (0) 121 fl need not be monotonic in E: 
The particle can get "trapped" in the outer reaches of the 
potential if it moves very slowly there. 

We recognize that some of our approximations are jus
tified only by their apparent accuracy; in particular, we are 
suprised by the quality of the approximations in Figs. 1 and 
2. A more rigorous discussion, and an extension of the theo
rems of Sec. VII, might form a fruitful area for further work. 
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Central and L 2-dependent potentials, acting among spinless particles, are constructed from the 
knowledge of the phase shifts for all angular momenta at two different fixed values of energy. It is 
shown that the information on phase shifts at two fixed energies does not lead to a unique set of 
central and L 2 -dependent potentials and they will depend on an infinite number of parameters. 

I. INTRODUCTION 

In this work we are interested in constructing the cen
tral and L 2-dependent potentials from the knowledge of 
phase shifts for all angular momenta at two different fixed 
values of energy. Such a study has not only direct physical 
significance but also gives us a better understanding of what 
kind of information on the interaction we can obtain from 
scattering experiments. 

An important tool in the construction of central poten
tials from phase shifts at a fixed energy is the Reggel-New
ton2 equation. Generalization of this equation for the case 
where an L 2-dependent potential is also present was found 
by the present author in a previous work.3 In that work the 
problem of constructing the central potential from the phase 
shifts at a fixed energy was solved when the interaction also 
contained a known L 2-dependent potential. This work is 
then an extension of our previous results which enables one 
to construct not only the central potential but also the L 2_ 

dependent potential from the knowledge of phase shifts for 
all angular momenta at two different values of energy. 

The procedure is as follows: In Sec. 2 we first review the 
relevant parts of our previous results, but they are presented 
in a way that is more convenient for application to the pre
sent problem. Then using this modified version of that work, 
we arrive at two auxiliary central potentials which are relat
ed to the desired central and L 2-dependent potentials. The 
rest of that section is then devoted to finding the desired 
potentials from these auxiliary potentials. In Sec. 3 we have 
summarized the construction procedure. 

The conclusion of this paper is as follows: Provided that 
I) A. = 0(,1 -3) for large values of A. and a weak condition is 
satisfied by the auxiliary potentials, then a set of central and 
L 2 -dependent potentials can be found which give the desired 
phase shifts. This set is not unique and it depends on an 
infinite number of parameters. 

2. THE PROCEDURE 

The radial SchrOdinger equation for scattering of spin
less particles by central and L 2 -dependent potentials has the 
following form: 

')Supported in part by the Shiraz University Research Council, Shiraz, 
Iran. 

r 2[~ + k 2 - VI(r) - A. 2 Vir) ]tPA. (r) = (A. 2 - DtPA. (r), 
dr2 

(2.1) 

where V2(r) is associated with the radial-dependent part of 
theL 2-dependent potential, Veer) = (VI + V2/4) is the cen
tral potential, and A. = I + !. 

In this work we assume that4
: 

0<1 + r 2 Vir) < 00, for r>O, 

1'" I [1 + r 2 V (r) p/
2 - 1 I dr 2 < 00, 

o r 
(2.2) 

r 2V2(r)EC 2, for r>O. 

With the above conditions satisfied the following functions 
can be defiend: 

1'" [1 + s2Vis)] 1/2 -1 
e(r) = ds , 

r S 

R (r) = re - 8(r), F(r) = [:r R (r)] -112, 

f(R,R ') = L UA. (kR )dA. UA. (kR '). 
A.En 

(2.3) 

Where the constants d A. are the potential coefficients, the set 
n = {!, q ... J, and uA. (kR) = G1TkR )1/2JA. (kR ). Next, the 
Regge-Newton equation and an auxiliary wave function are 
defined in terms of the new variable R: 

K (R,R ') = f(R,R ') - i R 

ds s-2K (R,s)f(s,R '), (2.4) 

ifJA.(R)=uA.(kR)- i R 

ds s-2K (R,s)uA. (ks). (2.5) 

Then, the wave function ifJ A. satisfies the following Schro
dinger equation5

.
6

: 

R2[d~22 +k 2 _ W(R) ]ifJA.(R) = (A. 2-DifJA.(R), 

(2.6) 

where 

W(R)= -2R-1 d~ [R-IK(R,R)]. (2.7) 

The regular solution toEq. (2. l)is connected toifJA. (R )bythe 
following relation: 

tP A. (r) = F (r)ifJ A. (re - 8(r»), (2.8) 
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(2.9) 

N= _ ~[(dR)-1 d2~]2 + ~(dR)-1 d 3
R . 

4 dr dr- 2 dr dr 3 

Since (R /r) = F(r) = 1, forlargevalues ofr, it then fol
lows from Eq. (2.8) that: 

lim t/J).(r) = lim ¢).(R) 
r- .. oc R '''00 

= A). sin [ kr - ~1T(A - D + 8). (k ) ]. (2.10) 

Following Newtons's method and taking the limit of Eq. 
(2.5) for large values of R, one arrives at a relation connect
ing the phase shifts with the potential coefficients: 

(2.11) 

Therefore the problem of constructing the central and L 2_ 

dependent potentials reduces to the problem of finding the 
potential coefficients d). from Eq. (2.11). This problem has 
been studied in detail by Newton2 and Sabatier.8

,9 They have 
shown that d). for physical values of angular momenta can 
be constructed from the phase shifts. But even for the case 
where we choose d). = 0 for nonphysical values of A, Eq. 
(2.11) still does not lead to a unique solution and d). will 
depend on one arbitrary parameter. 

From the above consideration, it follows that if the 
phase shifts are given for all angular momenta, then a rela
tion between the central and L 2 -dependent potentials can be 
found [Eq. (2.9)]. Therefore, if a suitable central- or L 2_de_ 
pendent potential is also given, then Eq. (2.9), together with 
Eq. (2.3), in general will give us the other unknown poten
tial. But since in a scattering experiment usually only the 
phase shifts can be deduced, it is more desirable to construct 
a method for finding both the central and L 2_ dependent 
potentials from the scattering information. Therefore, re
quiring the knowledge of all phase shifts for two different 
values of energy is the most feasible way for constructing 
both the central and L 2-dependent potentials from the scat
tering data. So, in this work we assume that the phase shifts 
8). (k I) and 8). (k2) are given for all values of A at two different 
values of energy, k i and k ~. Then we would like to con
struct a central potential and an L 2-dependent potential in 
such a way that the associated phase shifts at the two values 
of energy, k i and k ~, are the same as what we have been 
given by the scattering experiment. The first step in the con
struction procedure is clear. For each set of phase shifts, we 
find the associated auxiliary central potential W (R ) [Eq. 
(2.9)]. Having found WI(R )and Wz(R), the auxiliary central 
potentials associated with 0). (k I) and 0). (k2 ) respectively, we 
then note that the central and L 2-dependent potentials will 
satisfy the following relations: 
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WI(R) = R -2 [Ve(r) + k i (R 2 - 1) + N ], 

W2(R) = R -2 [Ve(r) + k~(R 2 -1) + N]. 
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(2.12) 

(2.13) 

Subtracting Eq. (2.13) from Eq. (2.12) we arrive at an ordi
nary differential equation for the variable R (r): 

R (r) = G [R (r)], (2.14) 

where 

G[R] = 11- (ki - qtl[ WI(R) - W2(R») )-1/2. 

Looking into the definition of R, consistency of method re
quires the following relations to be valid: 

G [x] is positive and continuous for x;;. 0, 

lim G [x) = 1, 

lim (R /r) = 1, (2.15) 
r • oc 

R (0) = O. 

Using the Cauchy-Peano existence theorem, 10 we note 
that ifG [x] satisfies Eq. (2.15), then Eq. (2.14) has a solution 
for all finite values of r for which R (0) = O. Furthermore, if 
G [x] satisfies a Lipschitz condition for all nonnegative real 
values of x, then the solution is unique. A solution to Eq. 
(2.14), satisfying the initial condition thatR (0) = 0, can easi
ly be found by quadrature: 

r=g(R)= .r dx/G[x). (2.16) 

Since G [x] satisfied Eq. (2.15), it follows that g is a one-to
one function, II and it has a unique inverse which is of class 
C I for r;;'O. Hence R can be uniquely expressed as a function 
of r. Futhermore, it is easy to show that this solution will also 
have the property that limr_~= [R (r)/r] = 1. Therefore, R 
will have all the desired properties, and the L 2-dependent 
potential can be found by the following relation: 

r 2Vz(r) = (rR /R)2_1. (2.17) 

Having found Vir), then the central potential can be 
found from Eq. (2.12) or Eq. (2.13). By construction, this set 
of central and L 2-dependent potentials will be associated 
with the desired phase shifts at the two different values of 
energy. 

The only point which needs to be considered is under 
what conditions on the phase shifts the function G [R ] will 
satisfy Eq. (2.15). It is shown by Sabatier 12 that if the phase 
shifts 8). = 0 (A -3) as A_ 00 , and also if the phase shifts do 
not belong to the exceptional set [which make the Fredholm 
determinants of Eq. (2.5) become zero], then the potential 
W(R) is such that ZW(Z) is a meromorphic function of Z 
with no poles on the nonnegative part of the real axis and 
W(R) = OCR -3/2)asR_00.Fromthesepropertiesitfollows 
that the condition G> 0 cannot be satisfied unless 
W(R) = [WI(R) - Wz(R )]isfiniteatR = O.Bymakinguse 
of the non unique nature of WI and W2 we can always choose 
one of the arbitrary parameters in such a way that W (0) is 
finite. It is interesting to note that with this condition satis
fied, W (Z) is a merom orphic function of Z and bounded for 
all values of R ;;.0. Therefore, in general, G [R ] will satisfy Eq. 
(2.15). Of course, if we do not choose the arbitrary param
eters in W correctly, then the zeros of the denominator of G 
could be on the positive real axis and then Eq. (2.15) would 
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not be satisfied. But if the phase shifts are associated with an 
L 2-dependent potential which is in the class considered in 
this work, then, by choosing the arbitrary parameters appro
priately, we can make W (R ) satisfy the following inequality: 

0<1 - [WI(R) - Wz(R )]!(k i - k D < 00, 

for R;;;.O. (2.18) 

With the above condition satisfied, G will be bounded and 
will also satisfy a Lipschitz condition. Therefore, the solu
tion to Eq. (2.14) will be unique and can be found from Eq. 
(2.16). 

3. SUMMARY 

The procedure for constructing the central and L 2_de_ 
pendent potentials from the knowledge of phase shifts for all 
angular momenta at two different values of energy is as fol
lows. For each set of phase shifts, we are to treat them as if we 
were solving a purely central potential. Using the method of 
Newton2 and Sabatier,8.9 the potential coefficients associat
ed with each set of phase shifts are found [Eq. (2.11)]. Then, 
from Eq. (2.4) and Eq. (2.7) the associated auxiliary central 
potentials WI and W2 are found. These potentials are not 
unique and depend on an infinite number of parameters. 
They are to be chosen in such a way that Eq. (2.18) is satis-
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fied. Then Eq. (2.14) can be solved for R (r). Having found 
R (r), the L 2-dependent potential is found from Eq. (2.17). 
The central potential is then calculated from Eq. (2.12). By 
construction, the found set of central and L 2-dependent po
tentials is associated with the desired phase shifts at the two 
different values of energy. 
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Assuming that a scattering amplitude, given as a function of the energy and the directions of the 
incident and scattered particles, is associated with a local potential without spherical symmetry 
via the Schrodinger equation in three space dimensions, this potential is uniquely reconstructed 
by two methods. One is based on a generalization of the Marchenko equation; the other, on a 
generalization of the Gel'fand-Levitan equation. 

1. INTRODUCTION 

The three-dimensional inverse scattering problem for 
the Schrodinger equation with a local potential without 
spherical symmetry has been attacked several times over the 
last twenty-five years, but with only partial success. The two 
methods that led to beautiful results in one dimension and in 
the spherically symmetric case in three dimensions (which 
after separation of variables becomes one-dimensional, but 
on a half-line), that is, the Gel'fand-Levitan and the Mar
chenko methods, resisted generalization to higher dimen
sions. The "triangularity" of the integral kernels that playa 
crucial role in these procedures, was hard to generalize. 

The first attempt at a solution of this problem was made 
by Kay and Moses. I They worked in a framework that ad
mitted potentials which were local in the radial distance 
from the origin but nonlocal, i.e., not multiplicative opera
tors, in the angles of rotation about the center. However, for 
a given scattering amplitude that is known to be associated 
with a local potential, this method was never shown to be 
able to reconstruct it. Later in the sixties, Faddeev intro
duced2 a new Green's function for the three-dimensional 
Schrodinger equation specifically with the inverse scattering 
problem in mind, and both he3 and independently 1,4 used 
his Green's function for this purpose. This method, however, 
is cumbersome and left some still unanswered questions con
cerning the possibility of exceptional points. Another at
tempt, which is restricted to weak potentials, is the general
ization of an old method by Jost and Kohn to three 
dimensions by Prosser. 5 

The two methods presented in this paper are generaliza
tions of those based on the Marchenko and the Gel'fand
Levitan equations in the radial (or one-dimensional half
line) case. An outline of the first was initially presented in 
Ref. 6. As a preliminary step, both were then applied to the 
(full-line) one-dimensional case in Ref. 7. 

Perhaps the crucial step that was necessary to make the 
methods to be presented here possible was to divorce the 
dependence of the wave function on the magnitude of the 
momentum of a particle from that on its direction. In this 
paper the momentum direction will always be denoted by 8, 
a unit vector in R3

, or a point on S 2; the wave number, or the 
square root of the energy, will be denoted by k. Whereas in 
one dimension the spectrum has the multiplicity two, in all 

higher dimensions it has infinite multiplicity. Correspond
ingly, the solutions of the Schrodinger equation were com
bined in Ref. 7 in two-component vectors, and the S matrix 
in a 2 X 2 matrix; in three dimensions the wave functions are 
vectors in L 2(S 2) and the S matrix is an operator there. Un
doubtedly the present methods can be generalized to any 
number of dimensions, though this will still require some 
nontrivial high-energy estimates. 

The inverse-scattering problem has three separate as
pects. One is the reconstruction of an underlying potential 
that is known to be associated with a given scattering ampli
tude; the second is the uniqueness of this solution; and the 
third is the characterization of the class of scattering ampli
tudes associated with local potentials (in a given class), or the 
question of the existence of an underlying local potential. In 
contrast to the one-dimensional case, the characterization or 
existence problem is well known to be difficult in three di
mensions. As one easily learns by counting the number of 
parameters on which a scattering amplitUde (five) and a po
tential (three) depend, the existence of an underlying local 
potential produces strong restrictions on the possible scat
tering amplitudes. The present paper has nothing to say 
about this aspect of the problemS; it deals with the recon
struction and uniqueness problems only. 

If the characterization problem in higher dimensions is 
more difficult than in one dimension, the uniqueness prob
lem is simpler. It is well known that at high energies the 
scattering amplitude approaches the Fourier transform of 
the potential. While at any fixed high energy, this leads to a 
.knowledge of the Fourier transform at only one point in one 
dimension, it leads to the entire Fourier transform in three. 
Therefore, in three dimensions a knowledge of the whole 
scattering amplitude, as a function of the energy and the 
angles, uniquely determines the underlying potential if it ex
ists. Though it is not new, this important statement is formu
lated as Lemma 3.1 in Sec. 3. As a result of this Lemma one 
might be tempted to regard the inverse problem as solved by 
the inverse Fourier transform of the scattering amplitUde at 
large energy. Unfortunately, this solution is not practical 
and there is still a point in searching for other solutions. It 
does mean, however, that the lack of uniqueness that is asso
ciated with the bound states in one dimension does not arise 
in three dimensions. 
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The fundamental reason for this significant difference 
between one and higher dimensions is the existence of con
tinuous transformations that connect the various elements 
of the S matrix. It is shown explicitly in Sec. 5 how the infini
tesimal rotation generators lead to the determination of the 
analog of the constants that are associated with each of the 
bound states in one dimension, which we call their "charac
ters" here. 

In Sec. 2 we derive and discuss the needed properties of 
the wave function and we prove three lemmas that state con
ditions on which the wave function minus the free exponen
tial, and the Fredholm determinant of the scattering integral 
equation minus one, are square integrable as functions of k. 

Section 3 deals with the scattering amplitudeA k and the 
S matrix Sk' Lemma 3.2 gives conditions under which, first 
appearances to the contrary, Sk - 1, or kAk' are square inte
grable, and in what sense. A simple by-product concerns the 
high-energy behavior of the average total cross section. 
Lemma 3.3 gives conditions under which the forward scat
tering amplitude minus its Born approximation is square 
integrable and has a meromorphic extension into the upper 
half-plane. 

In Sec. 4 we derive and discuss a Marchenko-like equa
tion, its solution, and its connection with the potential 
(Theorem 4.1). This is the equation first announced, in case 
there are no bound states, in Ref. 6. It has the remarkable 
property that, even if there are bound states, these need not 
be known or constructed. The analogous equation in one 
dimension does not have a unique solution, whereas in three 
dimensions Lemma 3.1 assures uniqueness. 

We note that Eq. (3.22) shows that there is one param
eter, the "volume" of the potential, that is needed in the 
construction and has to be obtained from the high-energy 
data. This formula, though not new, is derived in Appendix 
5. 

Section 5 deals with the bound states, their "charac
ters," their multiplicities, and how to determine them from 
the scattering amplitude. 

In Sec. 6 we pose a Hilbert problem whose solution is a 
generalization of the Jost function. If this Hilbert problem 
has a solution it is solved by a Marchenko-Iike equation. 
There is an interesting, and possibly significant, connection 
between this Hilbert problem for a translated potential, and 
the Hilbert problem discussed in Sec. 4, as was first pointed 
out for one dimension in Ref. 9. 

The Schrodinger equation being an ordinary differen
tial equation in one dimension, a "regular solution" that is 
an entire analytic function of k can be defined by boundary 
conditions at a point. There is no analog to this procedure in 
higher dimensions, where the SchrOdinger equation is a par
tial differential equation. However, if a solution to the Hil
bert problem of Sec. 6 exists, then the Jost function leads to a 
regular solution of the Schr6dinger equation. This is shown 
in Sec. 7, and a Povsner-Levitan representation is derived 
for it. Thus we obtain the celebrated "triangular kernel," 
and a convenient alternative by an inverse Radon transform. 
We note that while the lemmas of Sec. 2 and 3 lead to all the 
other needed Fourier transforms by convergence in the 
mean, the auxiliary alternative here used for convenience 
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may be a distribution. We also express the spectral function 
in terms of the Jost function. 

In Sec. 8 we finally derive, in the standard manner from 
the completeness relation, a generalization of the Gel'fand
Levitan equation and we discuss the inversion procedure 
based on it. Its main result is stated as Theorem 8.1. 

There are four Appendixes that contain the proofs of 
lemmas that would have been to cumbersome to prove in the 
main body of the paper. 

As for notation, I want to emphasize that () denotes a 
unit vector in R3. No special notation, such as bold face, will 
be used for points in R3. We also use the notation x for the 
unit vector xllxl. In general, the notation is made as similar 
as possible to that in Ref. 7. 

Finally, let us summarize the various conditions on the 
potential we shall use, though I have no doubt that it is possi
ble to relax them. 

The general conditions assumed will be the same as in 
Ref. 10, namely those stated in (2.1). Lemma 2.1 and later 
lemmas and theorems require, in addition, the existence of a 
monotonely decreasing function MEL I(O,oo)nL 2(0,00) such 
that for some Xo and all x 

I Vex + xo)I';;;M(lxl)· 

Lemma 2.1 requires that for some I> ° 
J d 3y V2(X + y)(1 + (). y) - 1< C, 

for all x and (). Lemma 3.2 assumes that there exists another 
monotonely decreasing function M' such that 

LX' dt(1 + t)M'(t)< 00 

and 

for some Xo and all x. All of these conditions are certainly 
satisfied if, for some C, a > 0, and E> 0, 

I V(x)! <C(a + !XJ)-3-. 

and 

IVV! <C(a + !X!)-2-., 

but a singularity at some point is not ruled out. 
In order to be able to determine the multiplicities as 

well as the "characters" of the bound states from the deriva
tives of the forward scattering amplitude the existence of a 
sufficient number of absolute moments of the potential is 
needed in addition. 

2. THE SCHRODINGER EQUATION 

We start with the direct scattering problem. In order to 
be able to utilize the results obtained in Ref. 10 we shall 
generally assume that the potential satisfies the same condi
tions stated there: There exist two positive constants a and C 
such that for all YER 

f
d 3X IV(X)!2+ fd 3X I V (x) I ( Ixl + Iyl +a)2<c. 

Ix-yl 
(2.1) 
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This condition implies that VEL I(R3)nL 2(R3)nR, where R is 
the Rollnik class defined by II V IIR < 00, and 

IIVII~ = Jd 3Xd 3y I V(x)V(y) I 
Ix-yl2 

is the Rollnik norm. For specific results stated in the form of 
lemmas and theorems we shall require stronger conditions 
that will be explicitly stated. A summary of these conditions 
was given in the Introduction. 

The solution tPk(B, x) of the Schrodinger equation 

- .:ltPk (B, x) + V (X)tPk (B, x) = k 2tPk (B, x) (2.2) 

is defined by the integral equation 

where I I 

tP~ (B, x) = eik(}.x, 

G~(x,y)= _eiklx-yl/41Tlx_yl. 

We shall suppress the dependence on the unit vector B that 
indicates the direction of the momentum, and regard tPk(X) 
as a vector inL 2(S 2). Multiplication of(2.3) by I V 11/2 results 
in the equation 

Sk(X) = S~(x) + J d 3y Kk(x, y)Sk(y), (2.4) 

where 

Sk(X) = I V (x) I 1/2 tPk(X), S~(x) = I V (x) I 1/2 tP~(x), 
(2.5) 

Kk(x,y) = I V(X)11/2G~(X,y)V1/2(y), (2.6) 

V 1/2(X) = I Vex) 11/2 vex), vex) = V (x)/ I V (x) I. 

If VER, Kk (x, y) is an L 2-kernel and (2.4) is a Fredholm 
equation. For each fixed B and each real k #0 Eq. (2.4) is 
known 10 to have a unique solution in L 2(R3 I8i S 2). Further
more, for almost all x and all B this solution is the continuous 
(except at k = 0 if that is an exceptional point lO

) boundary 
value of an analytic function of k that is merom orphic in the 
upper half-plane. It then follows that the same is true of 
tPk (B,x) for each Band x. Furthermore, since by Schwarz's 
inequality 

ItPk(B,X)-e
ike

.
x

I
2
<J d

3
y i:~~i2 f d 3

z 1 sk(B,z) 1
2

, 

tPk (B, x) is uniformly bounded for each real k #0 because of 
(2.1). 

We will need information about tPk for large k. As a 
preliminary we have 

Lemma 2.1: If V satisfies (2.1) and there exists an Xo and 
a monotone function 12 M (t)EL I(O,oo)nL 2(0,00) such that 

M(t l )<M(t2) ift l >t2, 

and for all xER3 

I V (x + x o) I <M ( I x I), 

then for each x and YER3 

Ik(x,y) = f d 3z G~(x,z)V(z) G~(z,y) 
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is uniformly bounded as a function of k, - 00 < k < 00, 

lim Ik(x,y) = 0 
k __ ± 00 

uniformly in x andy, and 3C < 00 such that for all x and 
YER3 

J: 00 dk I/k (x,y)1
2
<C. 

We shall prove this lemma in Appendix 1. 
If Kk(x,y) is regarded as the kernel of an operator Kk 

on L 2(R3
) then the kernel of K ~ is 

Kk(X,y) = I V(X)11/2Ik(X,y)VI/2(y). 

We then have the 
Corollary: For almost all x andy, K i (x, y) is uniformly 

bounded for all k, 

kl~~ 00 K ~ (x, y) = 0, f: 00 dk IK i (x, y) 12 < 00, 

and 

J: 00 dk IIKi II~ < 00. 

Here 11·112 denotes the Hilbert-Schmidt norm. 
We also note that it is known 13 that if VER, then l4 

lim 11K !Kk 112 = O. 
k __ ± 00 

(2.7) 

These results imply corresponding results for the com
plete Green's function defined by the resolvent equation 

Gk =G~ +G~VGk 

in operator form. Defining 

Kk = I V 11/2 Gk V
lt2 , 

we have 

Kk = (ll-Kk)-IKk · 

(2.8) 

(2.9) 

It is known that if V satisfies (2.1), then (ll - K k) -I is a 
bounded operator for each real k # o. Equation (2.7) implies 
that, for each ko> 0, it is uniformly bounded for all real 
Ik 1>lkol, and 

lim IIKk 112 = O. 
k • ± 00 

Let us write 

Ki = IV11/2ikV1/2, 

so that 

(2.10) 

i k =Ik +2G~ Vlk +2Ik +2/k V I/2(ll-Kk)-11 V 11/2 Ik 

+lkVl/2(1-Kk)-2IVI1/2/k' 

It is easily seen from this, by Schwarz's inequality, the uni
form boundedness of(ll - K k ) -I, and Lemma 2.1, that we 
have 

Lemma 2.2: On the same hypotheses as in Lemma 2.1, 
for each x and YER3 the function i k (x, y) is bounded for all 
real k #0, 

lim ik(x,y) = 0 
k __ ± IX) 
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uniformly inx andy, and for each ko > ° 3Csuch that for all 
x andYEJR3 

( dk lik(x,y)1 2<C. 
J1k I "k" 

It has the immediate 
Corollary: For all x and y and k> 0, K ~ (x, y) is 

bounded, 

lim K~(x,y)=O, 
k_ ± 00 

for all ko> ° 
( dk IKk(x,y) 12 < 00, 

J1k I" k" 

and 

( dk IIKkll~ < 00. 

J1k I >k" 

Let us now define the function 

Yk(B, x) = tPk(B, x)e - ike.x. (2.11) 

Clearly Y k shares the analytic properties of tP k' We need to 
examine its behavior for large Ik I in some detail. For that 
purpose ~e shall mean by i the vector in L 2(S 2) that equals 1 
for all B: 1 (B) = 1. 

Defining 

hk (x) = IV (x) 11/2 [Yk (x) - i], (2.12) 

we have the integral equation 

hk(x) = J d 3y %k(x,y)1 V(y)11/2 

+ J d 3y %k (x, y)hk(y), 

where the kernel %k(X,y) depends on B, 

%k(X,y) 

(2.13) 

= _ exp{ik[lx-yl-B.(x-y)]J lV(x)11;2 V I/2(y). 
41Tlx-yl 

For real k, we have from (2.7) 

lim II%k%kI12 = ° (2.14) 
k_± oc 

if % k (x, y) is considered as the kernel of an operator % k on 
L 2(JR3). The same is easily seen to hold as Rek_ + 00 for 
any fixed Imk> 0, as well as for Imk_ 00 by Lebesgue's 
dominated convergence theorem. Therefore, for each fixed B 
and Imk>O 

lim II%k II = 0, (2.15) 
Ik I~'oo 

where 11·11 denotes the operator norm on L 2(JR3). It then fol
lows from (2.13) that similarly for each Band Imk>O 

lim IIhk(B")1I = 0, 
Ik I-~'" 

(2.16) 

where Ilh (B,·) II is thenormofh (B, x)onL 2(JR3). We return to 
Yk(X) by means of the relation 
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Yk(B,x)-1 

- (l/417)a k (B, x) 

_ J d 3y exp[ik [Ix - y I - B·(x - y)]J V
I/2

(y)h k(B,y) 

41Tlx - yl ' 
(2.17) 

where 

a k(B,X)=Jd 3y V(y) exp{ik[lx-yl-B-(x-Y)ll. 
Ix-yl 

An easy result obtained form (2.16) is 

Lemma 2.3: If V satisfies (2.1), then for ° < arg k < 1T 
and each BES 2 and xEJR3 

lim Yk(B, x) = 1. 
I k ~oc 

Proof Equation (2.16) together with (2.1) immediately 
shows that the second term on the right-hand side of (2.17) 
tends to zero. That a k tends to zero follows from (2.1) and 
the dominated convergence theorem. 

On the real axis we need a stronger statement that per
mits a Fourier transform to be defined. Appendix 2 contains 
a proof of 

Lemma 2.4: Suppose that V satisfies (2.1) and 31> 0, 
C I < 00, such that for all BES 2 and xEJR3 

J d 3y V2(X + y)(1 + B·Y) - 1< CI , 

(wherey = Y/I Y I) and, furthermore, k = ° is not an excep
tional point of(2.2). Then 3C2 < 00 such that for each BES 2 

andxEJR3 

J:oo dk IYk(B,x)-11
2
<C2 · 

We remark that if k = ° is an exceptional point, 10 then 
the same holds for the integral over the real axis with an 
arbitrarily small interval around k = ° removed. 

We next define the function 

(2.18) 

where det2 is the modified Fredholm determinane s of (2.4). 
It is known 10 that if the potential satisfies (2.1), then D (k) is 
the continuous boundary value of an analytic function regu
lar in the upper half-plane Imk> 0. If - K~, n = 1, ... ,nmax 

[which is finite if V satisfies (2.1)] are the bound-state eigen
values of(2.2), then D (k) has zeros at k = iKn whose multi
plicities equal the multiplicities of the corresponding eigen
values, and nowhere else in Imk>O, except possibly at k = 0. 
If k = ° is an exceptional point, the nature of the zero of D (k ) 
at k = ° is described in detail in Ref. 10. For Imk>O we also 
have 10 

lim D(k) = 1. (2.19) 
I k I ·+00 

Again we need more on the real axis, and we prove in Appen
dix 3 

Lemma 2.5: If V satisfies the hypotheses of Lemma 2.1, 
then 

J: 00 dk I D (k) - 1 12 < 00. 

We may now define another solution of (2.2) 
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Xk(8, x) = th(8, x)D(k). (2.20) 

For each 8 and x it is the continuous boundary value of an 
analytic function of k that is holomorphic in the upper half
plane. The same holds for 

13k (8, x) = Xk(8, x)e- ik8·x = rk(8, x)D(k). (2.21) 

What is more, we have 
Lemma 2.6: If Vsatisfies (2.1), then for each 8ES 2 and 

xElR3 and 0 < arg k < 1T 

lim 13k (8, x) = 1. 
Ik 1 'X 

If V satisfies the hypotheses of Lemma 2.4 then 3C < 00 such 
that for all 8ES 2 and xElR3 

fX
oc 

dk l13k(8,x)-112<C. 

The prooffollows immediately from Lemmas 2.3, 2.4, 
and 2.5, and the continuity of 13k' 

Equation (2.3) shows that tPk has the symmetry proper
ty (for real k) 

tPt{x) = tP _ k (x). (2.22) 

Similarly, 

D (k)* = D ( - k) 

and 

rt(x) = r - k (x), 

13 t(x) = 13 _ k (x), 

as well as 

x t{x) = X - ,(x). 

(2.23) 

(2.24) 

(2.24') 

(2.22') 

3. THE SCATTERING AMPLITUDE AND THE S MATRIX 

The scattering amplitude is defined as 

A k (8,8') = -(l/41T) f d3XtP~(8,x)*V(X)tPk(8',x). 
(3.1) 

We shall regard it as the integral kernel of an operator on 
L 2(S2), 

Ak = - (l/41T) f d 3x tP~(x)*V(X)tPk(X) 

-(l/41T) f d3XS~(X)*V(X)Sk(X) 
= - (l/41T)(Bk + Ck ), (3.1') 

where 

Bk = f d3XS~(X)*v(xg~(x), 
Ck = f d 3x d 3y S~(x)*V(X)Kk(X,ygk(Y) 

= f d3xd3YS~(X)*v(x)ik(X,y)S~(Y). 

(3.2) 

(3.3) 

One easily sees that Ak satisfies the reciprocity theorem 

Ak(8,8') =Ak( - 8', - 8), (3.4) 

which we may write in the operator form 
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(3.4') 

where Ak is the operator whose kernel is Ak(8 ',8) if that of 
Ak is Ak (8,8 '), and Q is the operator defined by 

(QA )(8,8') = A ( - 8,8 '). (3.5) 

It also follows from (2.22) that Ak satisfies 

(3.6) 
where A t is the operator whose kernel is the complex conju
gate of that of A k • 

Since tPk (x) is continuous as a function of k, except pos
sibly at k = 0, and it is uniformly (in x) bounded for each 8 
and k #0, it follows from (3.1) and (2.1) thatA k is acontinu
ous function of k for each 8 and 8 " except possibly at k = O. 

It follows directly from (3.3) and (2.10) that 

lim Ck (8,8') = 0 (3.7) 
k .... ± 00 

uniformly in 8 and 8'. Now we may parametrize the depen
dence of Ak on the two unit vectors 8 and 8' (four variables) 
by using the vector 

r= k(8- 8') 

and the unit vector 

iT = (8 + 8')[2(1 + 8.8')] -112, 

which is orthogonal to r, writing 

Ak(8,8') = sfk(r,iT). 

Then (3.7) implies the well-known fact that as k- ± 00 

sf k(r,fT) = - (l/41T) f d 3X ei7'X V(x) + 0(1). (3.8) 

Note that Irl2 = 2k 2(1 - 8·8 ')<;4k 2, so that at a fixed value 
of k thevectorris restricted to lie within a ball of radius 21k I. 
As I k 1-00, however, this restriction becomes weaker and 
weaker and disappears. As a result, the leading term in (3.8) 
may take on all values of the Fourier transform of V. Since 
the Fourier transform uniquely determines a function al
most everywhere, the implication is a uniqueness that we 
shall state in the form of 

Lemma 3.1: Let V' I I and V,21ER, and letA ~1)(8,8') and 
A f)(8,8') be the scattering amplitudes associated with 
them, respectively. If A ~1)(O,8') = A ~2)(8,O') for all k, 0, and 
0', then V' I I(X) = V,21(X) almost everywhere. 

In other words, the scattering amplitude, known as a 
function of all k, 8, and 8', uniquely determines the potential. 
This result is not new, but it is worth recording because of its 
later implications. 

We also obtain directly from (2.10) and (3.3) that 

lim k liCk liz = O. (3.9) 
k-. ± 00 

Consequently, one easily finds that 

lim k zllAk II~ = ~ V~ , 
k~± oc 

(3.10) 

where V~ = Sd 3x d 3y V(x)V(y)lx - yl-2. We note that 
(3.10) is the physically interesting statement that for large 
energies E = k 2, the average total scattering cross section 
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U E = (11417) J dB dB' IAk (B,B ') 12 = (1I417)IIAk II~ 
(3.11) 

goes as l6 

uE = (1I817)V~E -I + o(E -I). (3.12) 

Nevertheless, we have the following 
Lemma 3.2: Let V satisfy the hypotheses of Lemma 2.1 

as well as (2.1). Furthermore, assume that 3M'(t) that is 
monotonely decreasing, 

100 

dt (l + t)M'(t)< 00, 

and 3xo such that for each x 

I VV(x + xo)1 ..;M'(/xj). 

Then for each ko 3C < 00 such that for all/a 2(S2) 

J: 00 dk k 211Ak 1112..;c 11/112. 

This lemma is proved in Appendix 4. 
In view of (3.7) and (3.12), the result stated in this 

lemma is at first sight somewhat surprising. It is also likely to 
be the strongest general result of its kind that can be ob
tained. 17 On the other hand, its hypotheses can no doubt be 
weakened. 

If I is choosen to be a characteristic function of a small 
angular region of solid angle 11 centered at B then one might 
expect the result of Lemma 3.2 to read 

J: 00 dk k 2(h (B )..;C 111, 

where 

(Tk(B) = f dB' IAk(B',B)I Z 

is the total cross section for scattering from the direction B. 
This inequality, however, can be obtained only by assuming 
that for all energies the amplitude A k (B ',B) is essentially 
constant over the region 11, and in view of the existence of a 
sharp diffraction peak in the forward direction at high ener
gies, such an assumption cannot be regarded as reliable. 

For the forward scattering amplitude we have 
Lemma 3.3: Suppose that the potential satisfies the hy

potheses of Lemma (2.1). Then for each B the forward scat
tering amplitude Ak (B,B) has an analytic continuation into 
the upper half-plane, Imk> 0, that is a meromorphic func
tion of k there, with simple poles at iKn if the bound state 
eigenvalues are -,r", and such that 

lim Ak(B,B) = - (1141T)V, 
Ik 1-00 

where 

(3.13) 

If k = 0 is not an exceptional point of the second kind, then 
A k (B,B ) is continuous on the real axis and 
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Proof The first part of this lemma is well known. Let us 
write Ak (B,B) in the form 

Ak(B,B) = - (1141T) J d 3x V(x)Yk(B, x) 

= - (l/41T)[ V + J d 3X V 1/2 (x) hk (B, x) J. 
(3.14) 

If V satisfies (2.1), then, for each B, .5V k is an L 2(R3)-opera
tor-valued analytic function of k that is holomorphic in the 
upper half-plane and continuous on the real axis; hence it 
follows from (2.13) that hk is, for each B, and L 2-vector
valued analytic function that is merom orphic in the upper 
half-plane and continuous on the real axis, except possibly at 
k = O. Because of (2.1) the same analyticity consequently 
holds for Ak (B,B). ThatA k (B,B) is continuous at k = 0 even 
if k = 0 is an exceptional point of the first kind, so long as it is 
not one ofthe second kind, was proved in Ref. 10. 

Since Yk (B, x) is uniformly bounded for all/k I >ko > Oit 
follows from (2.1) and (2.12) that IIhk(B")II < 00 for each B. 
Therefore (2.1), (2.13), the corollary to Lemma 2.1, and the 
fact that.5V k differs from Kk by a unitary transformation, 
imply that 

J: 00 dk IIhk (B,.) liz < 00. 

The square integrability stated in the lemma then follows 
from (3.14) and (2.1) by Schwarz's inequality. This proves 
the lemma. 

The S matrix 18 is defined as the operator on L 2(S 2) 

Sk = 1- (kI21Tl)Ak . (3.15) 

In order to conform to the notation of Ref. 7 we shall allow 
operators on L 2(S 2) to act to the left, in the sense that 
I/IS = 1/1' is the operator version of the integral 
transformation 

J dB' l{!(B ')S (B ',B) = I/I'(B), 

orI/lS=SI/I. 
If the "incoming wave" solution 1/11: (x) of (2.2) is de

fined by the integral equation 

I/Ik- (x) = I/I~(x) + J d 3y G O
_ k(X,y)V(y)l/Ik- (y), 

(2.3') 

then Skmaps I/Ik- onto I/Ik in the sense 

I/Ik(X) = I/Ik-(X)Sk' (3.16) 

It is well known that on the condition (2.1) Sk is unitary, 19 

SkSt = StSk = 1. 

Because of (3.4) and (3.6) we have 

Sk = QSkQ 

and 

Therefore (3.17) may be written 

SkQS_kQ= 1. 
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Comparison of (2.3) with (2.3') shows that 

if!k (8, x) = if! k( - 8, x) 

or 

if!k- (x) = if! _ k (x)Q. 

Therefore (3.16) may be written 

if!k = if! - kQSk 

or 

(3.20) 

(3.20') 

(3.16') 

(3.16") 

Since for each real k '1-0 the kernelA k (8,8') oftheoper
ator Ak exists for all 8 and 8' andS 2 is compact, the operator 

)14k is in the Hilbert-Schmidt class and has a finite trace. 
Therefore the Fredholm determinant of the operator Sk is 
well defined and a continuous function of k 

detSk = det(l - ~Ak)' 
2m 

(3.21) 

It is well known that detSk is connected with theD (k) by the 
equation 

Rk D(-k)/D(k)=detSk exp[i(k/21T)Vj, (3.22) 

the exponential factor having the effect of reconciling (3.7) 
with (2.19). [Vis defined by (3.13).] We derive (3.22) formal
ly in Appendix 5. We remark that in view of (3.1 5) we have 
the 

Corollary to Lemma 3.2: For allfa 2(S2) 

fX~ dk Il(Sk - 1)fIl 2 <C Ilf112. 

One may therefore regard gk ==(Sk - I)f as a vector
valued function of k that is square integrable. Therefore it 
has a Fourier transform that converges in the mean to a 
vector-valued function h, and h is a linear functional off 
Consequently, it defines an operator W such that 

J" C/O dk eika(Sk - I)f = W(a)f 

and 

fOO oc da II W(a)fI1
2 

= 21T f~ 00 dk II(Sk - l)f11
2 

is the corresponding Parseval relation. 

4. A MARCHENKO EQUATION 

The main result of this section is contained in 
Theorem 4.1: Suppose that V (x) satisfies the hypotheses 

of Lemma 3.2 and that Sk (8,8') is the corresponding S ma
trix. Let ®k be the operator on L 2(S2) whose kernel is 

®k(8,8') = eik(},xSk(8,8 ')e - ik(},·x (4.1) 

and let G (a) be the operator 

G (a) = (l/21T) 1°C dk Q (®tRk - I)eika, (4.2) 

where Rk is defined by (3.22). Then V(x) has the 
representation 

V(x) = - 28·"11/(8, x,O), (4.3) 

where 1/(8, x,a) is the only solution of the integral equation 
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1/(a) = iG(a) + (00 d{J1/({J)G(a+{J) 
Jo 

(4.4) 

for which the right-hand side of(4.3) is independent of8 and 
satisfies the hypotheses of Lemma 3.2. 

Proof Lemma 2.6 implies th&t the Fourier transform of 
{J" - 1 exists in the mean 

(4.5) 

and, because of the analyticity of {Jk' it vanishes for a < ° 
{Jk = 1 + (OC da 1/(a)eik". (4.6) 

Jo 
Let us write (3.16") in the form 

{J-k =(JkQ®tRk · 

Therefore, for a > ° 
1/(a) = (l/21T) foc oo dk ({J _ k - l)eika 

= (l/21T) roo oc dk{JkQ(®tR k - I)eika 

+ (l/21T) foo oc dk ({Jk Q - l)eika, 

(4.7) 

and the last integral vanishes because of the analyticity of (J k 

and Lemma 2.6. As a result, 

1/(a) = (l/21T) f: 00 dk{JkQ(®tR k _I)eika (4.8) 

for a > 0. Lemmas 2.5 and 3.2, and the boundedness of (Jk 
andD (k), imply that for each x the integrand of this Fourier 
integral is a square integrable vector-valued function of k; 
therefore the integral converges in the mean to the vector
valued function 1/(a). 

By the convolution theorem, the Fourier transform of 
the product ({Jk - i)[Q(®tRk - I)] equals the convolu
tion of the Fourier transforms of the two terms. Therefore, 
by (4.6), we get (4.4) for a>O. 

The Schrodinger equation (2.2) for (Jk reads 

(4.9) 

Ifwe insert the Fourier transform (4.6) in this equation we 
obtain, after an integration by parts, that 1/(a) must satisfy20 

the partial differential equation (we now write out the 8 and 
x dependence) 

(4.10) 

for a > 0, and the boundary condition (4.3). The require
ment that (4.3) has to be independent of 8, in spite of the 
appearance of the right-hand side, is the analog of the "mir
acle" of Ref. 7. 

Since 1/(a) of(4.5) solves (4.4), we know that a solution 
of the integral equation exists. If it is not the only solution, 
then Lemma 3.1 ensures that no other solution can lead to a 
V (x) in (4.3) that is independent of 8 and satisfies the hypoth
eses of Lemma 3.2. This completes the proof. 

Using (4.5) in (4.3), we obtain the following representa
tion for the potential 
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V(x) = -(I/Jr)O-V f:oo dk[D(k)th(8,x)e- ike,x-l]. 
(4.11) 

Equation (4.4) is a generalized Marchenko equation for 
TJ(a). Written out more explicitly for the function 

17(f), x,a) = TJ(f), x,a - x·f), (4.12) 

it reads for a">f)·x, 

17(8, x,a) = f d8 'H (f) ',8,a + x·8') + f d8' 

xi:, d/3 17(f)', x, /3)H (f) ',8,a + /3), (4.4') 

where 

H(f)',8,a) = (1I21T") f:oo dkeika [ (Rk -1)8(-8',8) 

+ ~RkAt(-8',8)]. (4.2') 
2m 

Because of Lemma 2.5 and 3.2, these Fourier integrals con
verge in the mean (in the sense of the remark after the corol
lary to Lemma 3.2). In terms of 17 Eqs. (4.10) and (4.3) take 
on the form 

(.1 - :~2 )17(8, x,a) = V(x)17(f), x,a), 

Vex) = -2f)·V17(f), x ,f)·x). 

(4.10') 

(4.3') 

We note that Eq. (4.4) leads to a solution of the follow
ing Hilbert problem: To find a function/3k that satisfies 
(4.7), is analytic in the upper half-plane, and tends to i there. 
While we cannot conclude from the uniqueness of V (x) that 
this Hilbert problem has a unique solution, Lemma 6.2, be
low, will establish a connection between it and the existence 
of a solution to another Hilbert problem (6.2). 

The reconstruction of the potential now proceeds by 
first constructing the function Rk from (3.22). This requires 
that Vbe extracted from the high-energy data. Then the 
function H of (4,2') or G of (4.2) is calculated and the Fred
holm equation (4.4') or (4.4) is solved; Vex) is obtained from 
(4.3') or (4.3). 

This completes the reconstruction procedure via a Mar
chenko-like equation. We note that this procedure does not 
require a knowledge of the bound states at any stage of the 
construction. 

5. THE BOUND STATES21 

TheL 2-eigenvalues of(2.2) are well known 10 to be con
fined to k 2<;0 if V satisfies (2.1). The number k 2 = _ K2, 

K">O, is an eigenvalue if and only if D UK) = O. For K > 0, the 
multiplicity of the zero of D (k ) at iK equals the degeneracy of 
the eigenvalue. For K = 0 there are three possibilities, de
pending upon whether the origin is an exceptional point of 
the first kind or the second kind, or both. These are discussed 
in detail in Ref. 10. 

Ifwe define 

(5.1) 

then, by (2.23) and (3.22), 
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8 k = - argD(k) - (k/41T")V. (5.2) 

Equation (3.22) and the analyticity of D (k), together with 
(2.19), then lead to the Levinson theorem 10 

Dk=o - lim [Dk + (k/41T)V] = 1T(n + ~q), (5.3) 
k- oo 

where n is the number of linearly independent L 2-eigenvec
tors of (2.2), q = 1 if k = 0 is an exceptional point of the 
second kind, and q = 0 otherwise. 

In the spherically symmetric case and a fixed angular 
momentum, the Levinson theorem constitutes the only gen
eral connection between the bound states and the scattering 
data. In the present case, as in the (full-line) one-dimensional 
case, the bound-state eigenvalues can be determined from 
the forward scattering. What is more, in contrast to the one
dimensional case, their "character" (in the sense to be ex
plained below) can also be determined from the S-matrix. 

Suppose that - K2 < 0 is an eigenvalue of multiplicity N 
and that u~(x), b = 1, ... ,N, are a set of corresponding ortho
normal eigenfunctions 

f d 3x u~(x)*u~'(x) = 8w . (5.4) 

The asymptotic form ofu~(x) forlarge Ixl can be obtained by 
assuming an asymptotic expansion 

u~(x)eKIXI =!(lxl)Y~(x) + "', 
where y~(x)~O. The differential equation (2.2) leads to the 
result that! = const lxi-I, and we may normalize Y~(X) so 
that 

u~(x)= -(e-Klxl/41Tlxl)y~(x)+o(e-KIXllxl-'). 

(5.5) 

The homogeneous form of (2.3) shows that 

y~(f) = f d 3X Vex) eKe.xu~(x). (5.6) 

Because the asymptotic expansion implies that y~(f) can
not vanish identically as a function of 8, it follows that if two 
of the functions y~ with the same value of K are linearly 
dependent, then so must be the corresponding functions u~, 
Since linear independence of two y~ 's obviously implies lin
ear independence of the corresponding u~ 's, the functions 
y~, b = 1, ... ,N, uniquely characterize the N bound-state ei
genfunctions u~, 

The resolvent (k 2 +.J - V)-I, whose kernel is the 
Green's function Gk (x, y), has a simple pole at k = iK and the 
principal part of the Green's function there is 

G ( ) 
!.;= 1 u~(x)u~(y)* 

k x,y = +.... (5.7) 
2iK(k - iK) 

Consequently, the principal part of tPk (x) there is 

N 

tPk(f),X) = [1I2iK(k-iK)] I Y~(-f)*u~(x)+ ... 
b=1 

and that of the forward scattering amplitude 

A k (f),8 ) = RK(8)/(k - iK) +"', 
where 
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N 

R,,(O) = (i/81TK) L Y~(O)Y~( - 0)*. (5.10) 
b=1 

If k = 0 is not an exceptional point of the second kind, 
the positions of the poles of Ak(O,O) in the upper half-plane, 
and hence the negative eigenvalues, may be determined by 
Fourier transformation 

J~ 00 dk eikt [Ak(O,O) + (1!41T) V ] = 21Ti ~ e - K"tRK,,(O) 

(5.11) 

for t> O. Lemma 3.3 implies this result and the fact that the 
integral on the left converges in the mean for each 0. The 
value of V, defined by (3.13) has to be considered as a param
eter to be determined from A k (0,0). Alternatively, we have 
for t>O 

J~oo dkeiktJAk(O,O)/Jk= -21Tt ~e-K"tR,,(O). 
(5.12) 

In order to obtain the functions Y~ from the residues 
R

K
, one may use Faddeev's method and introduce the differ

ential rotation operator 

(5.13) 

where 'YJ is a unit vector in the direction of the axis of rota
tion, V () is the gradient operator with respect to 0, and (abc) 
is the triple vector product. When M acts on any function 
f(a.O) of the scalar product a·O it becomes 

M~f(a.O) =f'(a.O)(aO'YJ), 

f' denoting the derivative off If V decreases sufficiently 
rapidly at \4- 00 , then 

(M ~)mAk (0,0 ')\e' = e==A ~m)(o,O) (5:14) 

is an analytic function of k that is meromorphic in the upper 
half-plane, with simple poles at k = iK, where its residues are 

N 

R ~m)(o) = (i/81TK) L y~(m)(o)y~( - 0)*, (5.15) 
b=1 

with 

y~(m)(o) = (MZ)my~(o). (5.16) 

Setting 

R ~O) = R
K

, y~(O) = y~, 

and considering Y ~ (m) as a matrix 

g.r;b=y~(m), b = 1, ... ,N, M = O, ... ,N -1, 

we have 
N-l 

(i/81TK)Y~( - 0)* = L (g.r K- 1 )bm R ~m), 
m=O 

and hence we obtain a system of N ordinary differential 
equations of order 2N - 1 

N N-l 
R~m)= I I y~(m)(g.rK-I)bnR~nl, m=N, ... ,2N-l, 

b=ln=O 

(5.17) 

for the N functions y~, b = 1, ... ,N, considered as functions 
of the azimuthal angle a of rotation about the axis 'YJ, in 
which the angle of inclination with respect to 'YJ appears as a 
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parameter. If det( g.r;b)=O identically in 0, then the func
tions y~ form N solutions of an ordinary linear differential 
equation of order N - 1, and hence they must be linearly 
dependent as functions of a. If this were true for all choices 
of 'YJ, the Y ~ would be linearly dependent as functions of 0 on 
the unit sphere, which we know to be incorrect. Therefore, if 
det( g.r ;b)=O for one choice of 'YJ, then a different choice of 'YJ 
will make det( g.r ;b)=kO. The system (5.17) can thus be inte
grated, and the functions Y~(O), b = I, ... ,N, may be ex
pressed in terms of N (2N - 1) arbitrary functions of the an
gle of inclination with respect to 'YJ [subject to the N 
constraints (5.15)J. These may be taken to be the values and 
the 2N - 2 first derivatives with respect to a of the N func
tions y: on half of the great circle through 'YJ and orthogonal 
to 'YJ'1'YJ. The procedure must now be repeated with operators 
M~', and the unknown functions are thereby determined. 

In this manner it is possible, in principle, to determine 
the functions Y~(O), b = 1, ... ,N, from the residues RK(O). 
Since, a priori, the multiplicity N is unknown, it has to be 
determined at the same time, with (5.15) and the require

ment that y~ be unchanged by any 21T-rotation serving as 
consistency checks. 

Let us now anticipate from Secs. 6 and 7 that the solu
tion ifJk (x) of (2.2) is an entire function of k and related to 
tPk(X) by the Jost function Jk 

ifJk(X) = tPk(X)Jk' (7.1) 

whereJk is an analytic operator [onL 2(S2)J valued function 
regular in the upper half-plane. Its Fredholm determinant is 
well defined and 

detJiK = 0 

for all eigenvalues - K2, and nowhere else. The nullspace of 
Ji.- is N-dimensional. Therefore there exist N linearly inde
pendent vectors X~, b = 1, ... ,N, such that 

JiI(X~ = O. 

J k being analytic, we have near k = iK 

JkX~ = (k - iKVi"X~ + "', 
where jil( = JJk/Jk at k = iK. 

(5.18) 

Now it follows from (5.8) and (5.18) that ifJi"X~ is an 
eigenfunction and we may choose X ~ to be such that 

Furthermore, we get from (7.1) and (5.8) 

lim tPk (X)JkX: = u~(x) 
k-.iK 

= (l/2iK) L (Y~'*Qji.X~)U~'(x). 
b' 

(5.19) 

The linear independence of the function u~(x) implies that 
therefore 

(5.20) 

Consequently, once the functions y~ have been obtained 
from the forward scattering amplitude, and J k is known, 
then the functions X ~ are uniquely determined by the re
quirement that, together with the set (l/2iK)Y~*QjiK' they 
form a bi-orthonormal system. 
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The functions X ~ are such that the projection onto the 
eigenspace at - Ji2 is given by 

N L u~(x)u~(y)* 
b=1 

= f dOdO' ¢JiK(O,x)MK(O,O')¢JiAO',y)* 

= ¢JiK (x)MK¢JiK (y)*, 

where 
N 

MK(O,O') = L X~(O)X~(O')*. 
b=1 

Let us also form the function 

Ilk = IT (1 +Bn 2iK~ ), 
n = I k - IKn 

(5.21) 

(5.22) 

(5.23) 

where the Bn are orthogonal projections that are uniquely 
determined by the requirements 

Y~ .. II _ iK .. = 0, 

which may also be written 

Since 

B~ =Bn =B:, 

we have 

Ilk = II! = II,: I. 

We also note that 

I (k + iKn) detII k = II .' 
n= I k -IKn 

6. THE JOST FUNCTION 

(5.24) 

(5.25) 

(5.26) 

Let us pose the following Hilbert problem: Find an op
erator-valued function Jk that is the boundary value of an 
analytic function of k, holomorphic in the upper half-plane, 
such that for Imk> 0 

lim J k = 1 (6.1) 
Ik 1-00 

in some appropriate sense, while on the real axis it is continu
ous and J k - 1 is strongly square integrable as defined by 
the corollary to Lemma 3.2. Furthermore, we require that 
(detJd/Dk be continuous on the real axis, regular in the 
upper half-plane, and without zeros for Imk;;.O. Finally, Jk 
is to be such that for all real k 

(6.2) 

where Sk is given. We shall call such a function a I-solution 
of the Hilbert problem (6.2). 

Ifwe define 

(6.3) 

then J~ed is the I-solution of the reduced Hilbert problem 

J'-:..dk = Qsr,:dJ~edQ, (6.2),ed 

in which 

(6.4) 
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and 

I (k + iK )N .. Dred(k) =D(k) II . n • 

n=1 k-IKn 

(6.5) 

Because of (5.25), S ~ed is unitary. [It does not, however, nec
essarily satisfy the reciprocity theorem (3.18).] Since 

I (k - iK )N .. detS ~ed = II . n detSk , 

n = I k + IKn 

(6.6) 

S ~ed satisfies the Levinson theorem appropriate to no nega
tive eigenvalues. The function D red(k ) shares the analytic 
properties of D (k ) and has no zero for Imk > 0; hence detJ ~ed 
has no zeros there. Once the reduced Hilbert problem 
(6.2) red has been solved, the bound states are reintroduced 
via (6.3). We shall therefore assume for the remainder of this 
section that there are no bound states, but we shall drop the 
cumbersome superscript "red." 

If Jk is a solution of (6.2), then (3.19) and the unitarity 
of Sk imply that it satisfies the relations 

J_k=Jt, 

JkJkQ=Q(JkJk)*' 

(6.7) 

(6.8) 

Suppose now that a I-solution of(6.2) exists. This solu
tion must then be unique. If there were two solutions, J~I) 
and J~2), then (6.2) would imply that 

J(I};IJ('!}k = QJ~I)-IJ~2)Q, 

from which it would follow that J~I) - I J ~2) is an entire func
tion of k. What is more, because of(6.1) it would tend to 1 as 
Ik 1-00 everywhere, except possibly on the real axis. But the 
continuity of J k- I, together with the strong square integrabi
lity of J k - 1, would imply that J~I) -I Jf) - 1 is strongly 
square integrable. Hence we may conclude, by means of a 
generalization of Liouville's theorem thatJ~l) = J~2). Conse
quently, if(6.2) has a I-solution, it cannot have a O-solution 
(i.e., one with same analyticity properties, but which ap
proaches 0 and Ik 1-00 for Imk > 0 and which is strongly 
square integrable on the real axis). 21a 

To construct a I-solution of(6.2) we proceed as in Sec. 
4. If a I-solution exists, its analyticity implies that the Four
ier transform of Jk - 1 (which strongly converges in the 
mean) has support only on the positive half-axis: 

J k = 1 + fC da L (a)eika, (6.9) 

where for a > 0 

L (a) = (l/21T) f: 00 dk (Jk - l)e - ,ku 

= (l/21T) f: 00 dk (J _ k - l)e
ika 

= (l/21T)[ f~ 00 dk Q(Sk - l)JkQe
iku 

+ f~ 00 dk Q(Jk - I)Qe
ika

]. 

The last integral vanishes, and we have for a > 0 

L (a) = (l/217)Q f: 00 dk (Sk - l)Jk eikuQ. 
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(All of these Fourier integrals converge in the strong sense in 
the mean.) Finally, we use the convolution theorem to obtain 

L (a) = G (a)Q + L" df3 G (a + f3)L (f3)Q, (6.12) 

where 

G (a) = (l121T)Q f~ 00 dk (Sk - lL)eika . (6.13) 

Thus the Fourier transform of J k - lL must satisfy the Mar
chenko-like equation (6.12). We note that for eachfEL 2(S 2), 
the integral in (6.13), with its integrand acting off, converges 
in the mean to the vector G (a}f, which has finite norm. 

Suppose a 1-s01ution of (6.2) exists and that the homo
geneous version (6.12) D of (6.12) has an L 2-s01ution L D(a). 
Then its Fourier transform (over a> 0) leads, as in (6.9) to a 
function 

(6.14) 

that is analytic in the upper half-plane, and tends to zero as 
Ik 1-00. Furthermore, the function 

F~ =J"_k - QSJ~Q 

is the boundary value of a function that is analytic in the 
upper half-plane and vanishes there as Ik 1-00, because 

L D(a) = (l/21T) f: oc dk J"- k
eika 

= (l/21T) J~ 00 dk QSJ~Qkeika 
vanishes for a < O. If P is an operator that anticommutes 
with Q, i.e., whose kernel is such thae2 

P( - B,B') = - P(B, - B'), 

then one easily sees that 

(r_kP) = QSt(F~P)Q, 

so that F ~ P is a O-solution of the accompanying problem 
(6.2)* in which Skis replaced by S t. However, if Jk is a 1-
solution of (6.2), then 

i-=~ = QStik-1Q, 

and therefore, i k-
1 is a I-solution of(6.2)*. Consequently, if 

(6.2) has a I-solution then (6.2)* also has one, and hence 
(6.2)* cannot have a O-solution. If follows that Fk = 0, and 
thus J; is a O-solution of (6.2). But that implies J~ = O. We 
conclude that if (6.2) has a I-solution (6.12) D cannot have a 
nontrivial L 2-s01ution. 

Suppose next that (6. 12) has anL 2-solutionL (a). Then 
it defines a function Jk , by (6.9), that is analytic in the upper 
half-plane and which is such that J k - lL is strongly square 
integrable. Furthermore, since 

21TL (a) = Joc 00 dk (J _ k - lL)eika 

= f~ 00 dk(QSJkQ - lL)e
ika

, 

the function 

Fk =J_ k - QSJkQ 
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has all the properties of F~ discussed above. Therefore, ei
ther Fk = 0, in which caseJk is the I-solution of(6.2), or else 
FkP is a O-solution of (6.2)*. If the latter is the case then 
neither (6.2)* nor (6.2) can have a I-solution. But if (6.2)* 
has a O-solution, it must be associated, as in (6.14), with an 
L 2-solution of(6.12)* D, the homogeneous form of(6.12), in 
which Skis replaced by St. We therefore conclude 

Lemma 6.1: Suppose that Sk is unitary, that it satisfies 
the Levinson theorem 

log detSk ~ 0 = lim 10gdetSk , 
k .00 

and that S k - lL is strongly square integrable as a function of 
k. Then (6.2) has a I-solution if and only if (6.12)* D has no 
nontrivial L 2-s01ution and (6.12) has a unique L 2-s01ution. 
The latter is associated with the I-solution of (6.2) by (6.9). 

We now want to establish a remarkable connection be
tween the Hilbert problem (6.2) and that discussed in Sec .. 4. 
First of all, we note that the potential 

VY(x) = Vex + y), 

whose center is shifted by y, leads to the solution 

¢t(B,x) = e - ike Y
tPk (B,x + y), (6.15) 

and hence to the scattering amplitude 

(6.16) 

Therefore the S-matrix associated with a potential that has 
been translated by x is equal to the function defined in (4.1) 

S~ = ®k(X). 

The associated equation for the Jost function is 

l"'_ k = QS~J~Q = Q®J~Q, 

which implies that 22a 

(l"'_k)-l = Q(J~tl@)!Q. 

(6.17) 

(6.18) 

(6.19) 

Therefore if Sk is the fullSmatrix rather than a reduced one, 
so that it obeys the reciprocity law (3.18), then 

(6.20) 

Comparison with (4.7) shows that the vector i(J ~tlD (k) 
satisfies the same equation as 13k and has the same properties. 
So the Hilbert problem of Sec. 4 is directly connected to the 
one for the Jost function associated with a potential that is 
translated by x.1t is worth emphasizing that this is so despite 
the fact that the x-dependence off3k has an entirely different 
origin; 13k (x) is a solution of the differential equation (4.9). 

We may use the connection between the two Hilbert 
problems as a handle on the uniqueness question in Sec. 4 as 
follows. 

Suppose that (6.2) has a I-solution. Then the equation 

r _ k = rkQ®tR k 

has the I-solution 

r k = (J1)- I D(k). 

(6.21) 

It follows that this solution is unique and (6.21) cannot have 
a O-solution. On the other hand, assume that (4.7) has a 
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O-solution 5k(B,x). We may consider 5k(B ',x) as the kernel 
5 k (B,B ' ,x) of an operator 5 k that is independent of B. Then 
5k is a O-solution of(6.21). Therefore we conclude 

Lemma 6.2: If the Hilbert problem (6.2) has a I-solu
tion then the solution of the Hilbert problem (4.7) is unique. 

7. THE REGULAR SOLUTION 

In one dimension it is possible to define a "regular" 
solution that is an entire analytic function of k by means of a 
boundary condition at a finite point. This method does not 
work for the partial differential equation (2.2). However, 
suppose that a I-solution J k of (6.2) exists. Then it follows 
from (3. 16a) that the vector-valued function 

ifJk(X) = t/lk(X)Jk (7.1) 

is a solution of (2.2) with the property 

(7.2) 

Therefore, for all x and almost all B, ifJk(B,x) is an entire 
analytic function of k of exponential order B·x. Further
more, because of Lemma 2.4 and the properties of Jk , 

ifJk(B,x) - exp(ikB.x)is square integrable as a function of k 
for all x and almost all B. It follows from the Paley-Wiener 
theorem23 that ifJk (B,x) has a Povsner-Levitan 
representation 

ifJk (B,x) = eik(}.x - J~·:.x da h (x,B,a)eika. (7.3) 

Use of this representation in the Schr6dinger equation and 
integration by parts leads to the conclusion that h (x,B,a) 
must be a solution of the partial differential equation24 

(::2 + Vex) -..1 )h (x,B,a) = 0 (7.4) 

and satisfy the boundary conditions 

-2e·Vh (x,e,e.x) = Vex), 

e·Vh (x,e, - e·x) = o. 
We also note that (7.2) and (7.3) lead to the symmetry 
requirement 

h (x, - e, - a) = - h (x,e,a) 

Let us then write (7.3) in the form 

(7.5) 

(7.6) 

(7.7) 

f
ll1,x l 

ifJk(e,x) = eikl1.x 
- sgn(e·x) da h (x,e,a)eika. 

- jI1-x l 
(7.3') 

On the other hand, ifJk (B,x) may also be regarded as a 
function of the vector ke = p in R3 and we may take the 
three-dimensional Fourier transform of ifJk(e,X) - eip.x 

ifJk (e,x) = eikl1.x 
- J d 3y eikl1'Yh (x, y), (7.8) 

though h (x, y) may be a distribution. Comparison of (7.8) 
with (7.3') shows that sgn(()-x)h (x,e,a) is the Radon trans
form of h (x, y) 

sgn(()-x)h (x,e,a) = f d 3y o(a - B.y)h (x, y). 

The support of h (x,e,a) as a function of a being confined to 
[ - e·x,e·x], that of h (x, y) as a function of y must be con-
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tained in the ball Iyl..: Ixi-
Equation (7.8) may be written in the form 

ifJk(e,X) = f d3yw(x,y)t/l~(e,y), 
where 

w(x, y) = 03(X - y) - h (x, y), 

or in operator notation, 

w = 1- h. 
If we write the inverse in the form 

w- I = 1 + f, 
then the kernel of i satisfies the integral equation 

i(x,y)=h(x,y)+ r d 3zh(x,z)i(z,y), 
Jlzl<lxl 

(7.8') 

(7.9) 

(7.9') 

(7.10) 

which has the Volterra property in the magnitude Ix I. There
fore the support of i (x, y), regarded as a function of y, is 
contained in the balllyl..:lxI- Consequently, for 14>lyl, 

(w t - I -w)(x,y)=h(x,y). (7.11) 
Note that (7.3) holds for complex values of k as well as 

for real, and so does (7.8). Therefore (7.8') is valid for the 
bound state functions ifJiK (e, y) as well, even though the func
tion t/l7K (e, y) = e - KI1·y tends to infinity as e·y- - 00. Since 
h (x, y) has compact support as a function of y, there are no 
convergence problems in (7.8). 

Consider now the well-known completeness relation 
for t/lk(X), say, in the form of the Parseval relation. For any 
fEL 2(R3) 

f d 3X I f(x) 12 

= (l/21T)3 f'" dk k 2 J de 1 J d 3X t/lk (e,x)*f(x) 12 

+ I 1 J d
3
x U~,,(X)*f(X)12. (7.12) 

n.b 

We may write the integral on the right-hand side 

f" dkk
2 

J d 3xd
3
yf*(x)f(y)t/lk(X)t/l!(y), 

in which the inner product in L 2(s 2) is understood 

t/lk (x)t/l!{y) = J de t/lk (e,X)t/lk (e, y)* 

= ifJk(X)(JkJk)-lifJ I(Y). 

Furthermore, by (5.21), the sum on the right-hand side of 
(7.12) may be written 

I I J d 3X d 3y f*(x)f(y)u~" (x)u~" (y)* 
n b 

= ~ f d 3
xd

3
yf*(x)f(y)<PiK,,(x)MK ,,<PiK .. (Y)*' 

where MK is defined by (5.22). 
Thus the Parse val relation may be expressed in the form 

J d 3
x I f(x)1

2 

= J d 3
xd 3yf*(x)f(y) J ifJk(x)dpE <p!(y), 
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where E = k 2 and the spectral functionpE is given by 

t
l/217Y~k(JPk)-I, E>O, 

dpEldE= I (7.13) L M".,8(E + i?,,), E <0. 
=1 

The completeness relation for <P k may also be written in 
the shorthand symbolic form 

f <Pk dPE <p! = 8, (7.14) 

and the corresponding one for ¢~ reads 

f ¢~ dp~ ¢~t = 8, 

where 

dp~/dE= {0(1121T)3!k for E>O, 
for E<O. 

In this language (7.8) has the form 

<Pk = O)¢~, 

(7.15) 

(7.16) 

(7.8") 

where 0) is an operator whose kernel is O)(x, y) and which is 
independent of O. 

8. A GEL'FAND-LEVITAN EQUATION 

We present the main result of this section in the form of 
Theorem 8.1: Suppose that V (x) satisfies the hypotheses 

of Lemma 3.2 and thatp E is the corresponding spectral func
tion, represented as in (7.13), where M"" (0',0) is defined by 
(5.22), and we define Mk (0 ',e) to be the kernel of the 
operator 

Mk = (JPd- 1 -ll = QM -kQ (8.1) 

on L 2(S2). Let JI(O',O,a) be defined by 

JI(e',O,a) 

= (l/21T) f:oo dkMk(0',-0)eika_4~ 

X L Kn-
2 [M",,(O ',O)e - K"a + M K,,( - 0', - O)eK"al 

(8.2) 

Then Vex) has the representation (7.5), where h (x,O,a) is a 
solution of the integral equation 
sgn(O·x)h (x,O,a) 

= f dO' JI(O ',O,a + 0 '·x) - f de' 

- f dO' f~OltJX.lxl d!3sgn(O'·x)h(x,e',!3) 

X JI(O ',O,a + {3). (8.3) 

The corresponding solution of the Schrodinger equation is 
given by (7.3). 

Proof: Using (7 .8b) and the fact that 0) is independent of 
0, we may write (7.14) in the form 

O)t - I = 0) f ¢~ dPE ¢~t, 
and (7.15) as 

0) = 0) f ¢~dp~ ¢~t. 
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Substracting these two equations one finds 

O)t-l -0)=0) f ¢~d(PE-P~)¢~t. 

If this equation is written out for the corresponding kernels 
and (7.11) is used, one obtains for Ix I;;;. Iy I 

h (x, y) = ho(x, y) - r d 3Z h (x,z)ho(z, y), (8.4) 
)IZI<IXI 

where 

or, more explicitly, 

ho(z,y) = (21T)-3 L'" dkk 2 f dOdO'eik(O"Z-(}'Y)Mk(O',O) 

+ ntlf dOdO'e-" .. (o'.z+(J'Y)MK,,(e',O) 

_ (l/8~) fdO a
2

2 
{_I foo dk 

aa 21T - 00 

X f dO' eikCO',z-a)Mk(O',O) 

-4~ f dO'~Kn-2[M,,"<0,,0)e-K .. (O'.z+al 

+M" .. (O',_O)e-K .. (O'.Z-Ul]} . 
u= (J.y 

The inverse of the Radon transform25 being 

j(y) = -(l/8~)fdO a
2

2 /(0,a)i ' 
aa u=O.y 

we recognize the bracket as the Radon transform 

hoCz,O,a) = (217}' f: 00 dk f dO' Mk(O', - O)eik(O'Z +- a) 

- (21T)2 f dO' ~ Kn-
2 [MK .. (0 ',O)e - ""a 

+ M" .. (O', _ O)eK .. a]e -.· .. 8·.z, 

and (8.4) leads to 

sgn(x.O)h (x,O,a) 

i 3 y 

= ho(x,e,a) - d z h (x,z)hoCz,O,a). 
Izi < Ixl 

But since 

(8.6) 

r d 3Z h (x,z)eik(J"z = fe .. x d{3 h (x,O', {3)e'kf3, 
)IZI < Ixl - 8'.", 

this becomes a three-dimensional analog of the Gel'fand
Levitan equation, (8.3). This completes the proof. 

Using (8.2) in (8.3), we obtain 

sgn(O·x)h (x,8,a) 

= (1121T) I d8'I:oo dk<Pk(8',x)Mk(0',-0)eika 

-4~ I Kn-2u~,,<x) 
n,b 

X [e -- K .. ax~" (0)* + e""a x~..< - 8)*]. 

By (7.5), therefore, the potential has the representation 
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V (x) = -20.v{sgn(0.x)[(1I21T) f dO' 

X f~oo dkrPk(0',x)Mk(O',-0)eik8.x 

-4r I Kn-2u~,,(x) 
n.b 

X [e - .. "/i'xX!,, (0)* + eK"e.xx~,,( - 0)* ]]}. (8.7) 

Again one encounters the "miracle" that, the appearance of 
the right-hand side not withstanding, this must be indepen
dent ofO. 

One proves the uniqueness of a solution ofEq. (8.4), and 
hence of (8.3), in the standard way. Suppose 

_ {J;-(y) Iyl,;;;; lxi, 
s(y) = ~o 

Iyl> lxi, 

is an L 2-solution of the homogeneous form of (8.4) 

s(y) = - f d 3z5(z)ho(z,y). 

Then 

f d 3y Is(y)12 = - f d 3y d 3z 5(z)ho(z, y)s *(y). 

Inserting the form (8.5) of ho and using the completeness 
(7.14), one obtains 

fOOt 
Sk dpE 5 k = 0, 

where 

tk(O) = r d3ys(y)eikfJ.Y 
JIYI<IXI 

and 

L(o)= r d 3ys(y)e-r<fJ·Y. 
JIYI<lxl 

dpE/dE being positive definite, it follows that tk (0) = 0, 
and hence 5 (y) = 0. 26 

The reconstruction of the underlying potential via the 
Gel'fand-Levitan equation now proceeds as follows. As a 
first step, it is necessary to find the bound-state energies, 
degeneracies, and characters (i.e., the functions Y!) from 
the forward scattering amplitude by the method of Sec. 5. 
Next the projections Bn are constructed via (5.24), the func
tions fi k by (5.23), and the reduced S-matrix by (6.4). After 
calculating G (a) by (6.13) one must now solve the Hilbert 
problem (6.2),ed by means of(6.12). If(6.12)* 0 has only the 
trivial solution and (6.12) has a unique L 2-solution then it 
yields the I-solution of(6.2) red by(6.9). The full Jost function 
Jk is then obtained from (6.3), and the functions X~ are 
calculated from (5.20). One then has all the ingredients need
ed for the calculation of the kernel JI(O ',O,a) by (8.2), with 
(8.1) and (5.22). The final step is to solve the Gel'fand-Levi
tan equation (8.3). The potential is then obtained from (7.5), 
and the wavefunction from (7.3). If a Jost function exists 
then it is obtained in this way, (8.3) is known to have a solu
tion and the potential is uniquely reconstructed. 
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While this method is considerably more involved than 
that of Sec. 4, it does have the advantage that the region of 
integration in (8.3) isfinite. The structure of(6.12) is similar 
to that of (4.4), but in the Marchenko method (4.4) has to be 
solved for each x, whereas (6.12) needs to be solved only 
once. In constrast to the method of Sec. 4, the Gel'fand
Levitan method requires a knowledge of the bound states, of 
their eigenvalues, their degeneracies, and their "characters." 
However, whereas in one dimension the "characters" are 
independent data, in three dimensions they are implied by 
the scattering amplitude. 

APPENDIX 1 

Proof of Lemma 2.1: 

f 

eik(lx-zl + Iy-zll 

(41T?lk(x,y) = d 3z V(z) I 
Ix -zl y-zl 

Since by Schwarz's inequality 

(f d 3 I V(z) I )2 
z Ix-zlly-zl 

,;;;; fd3Z lV(z) I fd3t I V(t)1 , 
Ix-zl 2 ly-tl 2 

the integrand of lk is in L 1(&3) if V satisfies (2.1). It follows 
that Ik (x, y) is uniformly bounded for all k, x, andy, and, by 
the same argument as in Simon,13 p. 23, that by the Rie
mann-Lebesgue lemma 

lim Ik(x,y)=O 
k_± 00 

uniformly in x andy. The square integrability, however, re
quires stronger assumptions. 

Shifting variables and setting YJ = y - x, we obtain 

(41T)2Ik (x, y) = fd 3Z V(z +x) e
ik1 

, 
IZ-YJllzl 

where t = r + Iri - YJI, r = Izl, i = z/Izl. Thus 

(41T)2h(X,y)=!f
OO 

dt/fdi t2_~22 v(x+ir)/2, 
1111 (t - YJ,z) 

where r = (t 2 - YJ2)/2(t - YJ·i). Now 
t 2 _ YJ2 

r> = W - IYJ I), 
2(t + IYJI) 

I x + ir I > I r - I x I I 

>!It-IYJI-2I x l1>!lt- 3 Ix l- 3 Iyl I, 
and 

f 
di t 2 - YJ2 = 41T' 

(t - YJ.zf ' 

consequently 

J dk Ilk 1
2 ';;;;!1T roc dt M2(t - 31x I - 31yl ),;;;;C < 00 JI111 

if V satisfies the hypotheses. 

APPENDIX 2 

Proof of Lemma 2.4: We use spherical polar coordinates 
for the integration and set r = Iyl. u = O·y, Vex + y) 
= U(y,r) = W(f,t). t = r(l + u), and E> 0. Then 
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aHO,x) = L"" dr r i dy Ueikt 
o u>E-l 

= L"" dtteikti dy(1+ut2W, 
o u>€-l 

SO that, twice using Schwarz's inequality, 

(21Tt
2 
f: '" dk laHO,x) 12 

= LOO dt t 2[ i #(1 + Ut2 W]2 
o u>€-l 

< 1>£-1 dy(1 + U)-2 L>£-1 #'(1 + U')-2 

X 100 

dttll W(Y,t)W(Y',t) I 

<[ 1>£-1 #(1 + ut
l (100 

dtt1wlY1zr 

= [1>£ _ 1 #(1 + Ut1/2( 100 

dr rU
1
y12r 

< L><-1 dy'(1 + u'y-l 

X 1><-1 dy(l + u)-' 100 

drrU
l 

for all I. If we choose I> 0 such that the hypotheses are satis
fied, then we may allow E to approach zero and we have 

f: x dk lak(O,x) 12<C < 00, 

where C is independent of x and O. 
Now from (2.17) 

IYk(O,x)-ll 

f lV(y) I 1/2 
«1!41T)lak(O,x) 1 + d 3y Ihk(O,y)l, 

41Tlx - yl 
and by Schwarz's inequality, 

f
dk(fd3y IVI1/2 Ihk

l)2 
Ix-yl 

= f d 3y d 3
Z 

I V(y)V(z) 11/1 
Ix-yllx-zl 

X f dk Ihk(O,y)hk(O,z) 1 

<{f d
3
y I~~~ll [f dk Ihk (O,Y)1

2rlf 
<fd 3y IV(y)1 fd3Z 

Ix-Yl l 

X fdk Ih k(O,z)1 2< C f dkllh k(O,.)11 2 

because of (2.1). Therefore, for all 0 and x 

We must now get an estimate for IIhk(O,.)II. From 
(2.13), 
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hk(x) = - (l/41T) f d 3Y(1_ Jf'kt 1(X,y)1 V(y)1 1/l 

Xak(y), 

so that 

Ilhk (O")112«l/41T)211(.H. - Jf'k)-iI1211 Vi/2ak(O,.)111. 

But if k = 0 is not a singular point, then 11(1 - Jf'd-1 11 is 
bounded for each real k, and by (2.7) it tends to one as 
k-+ ± 00. Consequently, by (2.1) 

f:", dk Ilhk(O,.)11 2 

<C f: '" dk II Vi/2ak(0,.)lll 

=C f d3XIVI f:oo dk lak(O,x)lz<oo. 

This completes the proof. 

APPENDIX 3 

Proof of Lemma 2.5. Define 

Then 

f: x dk 11"~2) 12 

<f d 3xd 3y I V(x)V(y) I roo", dklk(x,x)Ik(y,y) 

< {f d 3x I V (x) I [rOC 00 dk IIk(x,x)IZrT < 00 

by (2.1) and Lemma 2.1. By Schwarz's inequality 

11"~3)1 = I f d3Xd3YKk(y,X)K~(x,Y)1 

<[ f d 3xd 3y IKk(x,y) 12 f d 3zd 3t IK~(Z,t)12r2 

= [f d 3xd 3y I ~;X~(I~)I f d 3zd 3t IK Uz,t)!2r
Z

• 

Hence, by (2.1) and the corollary of Lemma 2.1, 

f dk 11"~3) 12 < 00. 

Also, 

11"~4) I = Itr(K~KD I <tr(K~Kn 
and hence, by the corollary to Lemma 2.1, 

f dk 11"~4)12<C f dk 11"~4)1 < 00, 

since Lemma 2.1 and (2.1) imply that 1"~4) is uniformly 
bounded. 

Finally, for n > 4 

11"~")1 = Itr(KZ-4Kt)I<IIKZ-411 tr(K~K~t) 

<IIKk II" -4 tr(K~k ~t). 

But 

IIKk W<tr(KkKt)<C < 00, 

and therefore, for n>4 
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I dk 1 rt) 12 < 00. 

In fact, by (2.7) 3 ko such that for all n >4 and I k I > ko 

IT~n) 1 <C'C n tr(K~K~t), 

where C < 1. It follows that for sufficiently large ko the series 

logD(k) = - ! (1/n)~n) 
2 

converges absolutely for all k>ko, and 

f dk IlogD (k) 12 
J1k I >ko 

<C'[ ! J.. ( f dk IT~n) 12)112]2 
2 n J1kl>ko 

<C'( ~ ~ cny < 00. 

Since, furthermore, (2.19) implies that 3 C such that for 
k>ko 

I D (k) - 11 <C IlogD (k) I, 

it follows that 

f dk I D (k) - 112 < 00. 

J1k I >ko 

But since D (k ) is continuous, we also have 

fOko dk ID(k) _112 < 00. 

The lemma follows. 

APPENDIX 4 

Proof of Lemma 3.2: Employing spherical polar coordi
nates, writing u = Y·B, and integrating by parts 

I dy V(x + y)eikl.l.y 

121T II = d¢ du V(x + y)eik Iylu 
o -I 

1 121T II a =-.- d¢ duV(x+y)_eiklylu 
Ik Iyl 0 -I au 

= 21ri [eiklyIV(x-Blyl)-eiklyIV(x+Blyl)] 
klyl 

+ _1_ d¢ dueiklYlu_ V(x+y) . 121T II a 
k Iyl 0 -I au 

= 21Ti [e-iklyIV(x_B lyl)-eikIYIV(x+B Iyl)] 
klyl 

+ ~ I dY V'(x,y,B)eikl.l,y=(l/k)Vk(x,lyl,B), 

with 

Therefore 

1 Vk(x,lyl,B)1 

«21Tllyl)[ I V(x - B lyi)1 + I V(x + B lyl)l] 
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+ I dyIVV(x+y)1 

«41Tllyl)M(1 Ixl - Iyl I) + I dy M'(lx + yl) 

=V(x,lyi)· 

Now, with Bk defined by (3.2) and shifting variables of 
integration, 

(B1Bk)(B,B') 

= (41Tlk) I d 3X d 3y V(x)V(y) 
Ix-yl 

xsin(k Ix - yl)eik(y.I.I' -x·l.I) 

= (41Tlk2) J d 3x f" d Iyl Iyl 

xsin(k Iy I )eikx.(I.I' -1.I)i\(x, Iy I,B ')V(x). 

Consequently, 

k2I1BkfI12=41T I d 3x 1'" d Iyllyl 

xsin(k lyIYk*(XYk(X,lyl)V(x), 

where 

lk(x) = I dBf(B)eikx,l.I, 

Jk(X, Iyl) = I dBf(B)eikx·I.IVk(x, Iyl ,B). 

Therefore, by Schwarz's inequality 

I: '" dk k211Bkfl12 

<41T I d
3
x W(x) I 1'" dtt [I:", dk ilk (x) 12 r2 

X [ I: '" dk 1 Jk (x,t) 12] 112. 

Now 

lk(x) = II du f21T d¢f(u,¢ )eikulxl, 
-I Jo 

I: '" dk 1 lk(X) 12 

= ~ du d¢f(B) 2 II 1121T 12 
Ixl -I 0 

< ~ {f1T d¢ [I~I dul f(B)1
2r2f 

< (21T)2 IdB If(B)1 2 = (21T? Ilf112; 
Ixl Ixl 

Jk =h l
) +h2) +Jp), 

J P) = ~;( e - ik Iyl I dB f(B )eikx·I.IV(x - B Iy I), 

Jp) = - ~;( eik 
Iyl I dBf(B)eikx·I.IV(x + B Iyl), 

Jp) = i I dB I dYf(B)V'(x,y,B)eikl.l.(X+Y). 
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By the same argument as above we obtain 

J: 00 dk IIp)12 

«21T)4Iyl-2Ixl-1 J dO 1/(0)121 Vex - 0 lyl)1 2 

«21T)4Iyl-2Ixl-11I/112M2(1 Ixl - Iyl I). 
The same inequality holds for 1 F). 

J~ 00 dk 1 1 P) 12 

JI 1 (2" J V' 12 
=21T -I du Jo difJ dyl Ix+yl1!2 

<21T{ f" difJ J dy [J~I du Ilx :;11/2IT
/2r 

< 161r' J dO J dy I I 12 I ~ : ~ I 
< 161r' J dy I V V (x + y) 12 

Ix+yl 
<161r'11/112 J dy [M'(lx + yl)]2 

Ix+yl 
<641T411/112[M'(1 Ixl - Iyl I)flyl-I 

by Schwarz's inequality and the hypotheses. Therefore 

[J~ 00 dk Ilk 1
2r2 

< itl [J~ 00 dk Ihol2r2 

<8rll/ll[lyl-Ilxl-I/2M(llxl-lyll) 
+ Ixl-I/2M'(1 Ixl - Iyl I)]. 

As a result we have 

J~oo dkk
2

11 Bk/l1
2 

< 641T4 II 1112 J d 3x Ixl-I/21 V (x) I 

X f" dtt[l x l-1!2r IM(ll x l-tl) 

+ Ixl-I/2M'(1 Ixl - t I)] 

< 641T4 II /112 J d 3xlxl- I !V(x)1 

X [100 

dt M (t) + 100 

dt tM'( I t - I x I I)] 

<C11/112 
if V satisfies the hypotheses. 

Next consider 

c' «() ()') = d 3X d 3y V(x)V(y) eJk(O .y- O·x) J 
eik Ix - yl . , 

k , Ix-yl 

J 
eiklyl 

= d 4xd 3y V(x)1Yi 

X V(x+y)eik!O-y+(O'-O).xl 

= k J d 3x f d Iyl Iyl Vex) 
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Xeik Iyl Vk(x, Iy I ,()eikx.«(}' - 0), 

from which we obtain 

k211Ck/l12 

= J d 3xd 3x' d Iyl d Iy'l Iyl Iy'l V(x)V(x')eik(lyl-ly'l) 

X J d()" Vk (x, Iy I ,() ") Vr(x', Iy' I ,() "Vk (xV k*(X'). 

Therefore 

J: 00 dk k 211C k 1112 

<41T J d 3xd 3x' 100 

dttdt' t'l V(x)V(x') I 

X I V(x,t)V(x',t')1 J dk I lk(xVk(X') I 

< 161r'11/112[ J d 3X LX> dt t !V (x) I I V(x,t) I r Ix 1-1/2 

<Cl1/1I2 
if Vsatisfies the hypotheses. (This is where MEL I is needed.) 
The third term we need is 

Dk«(),()') = J d 3x d3yVI/2(X)Kk(X,y) 

X I V 11!2( y)eik ( y·O' - x'(}), 

where Kk(x, y) is the kernel of the operator 

Kk = (l-Kd-IK~. 

Now we have 

IIDk II~ = trD !Dk 

= (41T)2k-2 J d 3xd 3x' d 3yd3y' V I/2(X)V I/2(X') 

X I V 11/2(y) I V 11/2(y') sin(k I x -, x' I) 
Ix-x I 

X sin(k Iy - y' I) K (x y)K (x' y') 
I ' I k' k , , y-y 

so that for every ko > 0 

i dk IIDk II~k 2 

Ik I>k, 

«41T)2 J d 3xd 3x'd 3yd3y' 

I V Ilt2(y) I V 11/2(y') 
X Iy-y'l 

I V II/Z(X) I V 11/2( x') 

Ix-x'i 

X ( dk IKk(x,y)Kk (x', y') I· 
Jlk I >k, 

Since (2.1) implies that for every x the function 
I V 11/2(Y)lx - yl-I maybe regarded as a vector inL 2(R3

) as a 
function of y, with a norm that is uniformly bounded with 
respect to x, we have 

{ dkIIDkll~k2<C{ dkllKkllz. 
Jlk I>k, Jlk I>k, 

But since 11(1 - Kk tIll is bounded for allik I >ko and tends 
to 1 as Ik 1-00, by (2.7), for all k>ko 
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IIKkI12<CIIKiIl2<CIIKill~ <c' < 00 

by the corollary to Lemma 2.1. As a result 

r dkk 2
11Dk/1l2 

Jlk I>k, 

,r dkk 211Dk11211/112, r dkk2l1Dkll~1I/1I2 
Jlkl>k, Jlkl>k, 

,CII/1l2
• 

It was proved in Ref. 10 that under the hypothesis (2.1) on 
the potential, the Green's function Gk is 0 (11k) at k = 0 if 
there is an exceptional point of the second kind at k = O. 
Hence in that case also, Ak = 0 (11k). The integral over 
k 211Dk 1112 may therefore be extended to zero 

f: 00 dk k21IDkII12,CII/I12. 

We now assemble our results 

-41TAk =Bk + C~ +Dk' 

APPENDIX 5 

We shall give here a brief, formal proof of (3.22). We 
have 

But 

D *(k) = det2(1 - G~t V) 

= det2! (I - G~ V) 
X [1- (1- G2 V)-1(G2t - G2)Vll· 

'k f G2(y,x)* - G2(x,y) = ;r d() f/12«(),x)f/1~«(),y)* 

and hence 

H(x,y) = [(1- G2 V)-I(G2t - G~)](x,y) 

= ;~ f d() f/1k«(),x)1/fk«(),y)*· 

Now we easily see from (3.1) that 

tr(HVY = (~)n trA ~, 
2m 

where the trace on the left means trO = S d 3X 0 (x,x), and 
the trace on the right, trP = S d()P«(),(). Therefore, by(3.15) 

"det(1 - HV) = det(l- ~Ak) = detS'k' 
2m 

We now use 

det2[(l- A )(1 - B)] 

= det2(l - A) det(1 - B )etr[(l - A)B J 

and 

tr[(l - A )B] 

= ;~ f d() f d 3
x f/12«(),x)f/12«(),x)*V(x). 
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ik -
=-V. 

21T 

Therefore (3.22) follows. 
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The Gel'fand-Levitan equation can give simple examples of non-self-adjoint 
operators with complete eigenfunctions and spectral representations. I. 
Ghosts and resonances 

B. DeFacio a) 

Ames Laboratory-USDOE and Department of Mathematics, Iowa State University, Ames, Iowa 50011 

H. E. Moses 
Center for Atmospheric Research, University of Lowel/, Lowell. Massachusetts 01854 

(Received 27 December 1979; accepted for publication 20 March 1980) 

It is shown that the Gel'fand-Levitan equation for the radial and one-dimensional Schrodinger 
equations yield complex and singular potentials which support complete sets of eigenfunctions. 
Explicit examples are given involving complex point eigenvalues and/or complex or negative 
normalization for the corresponding eigenfunctions. Ghosts and other resonance phenomena 
thus appear as special cases of this more general inverse spectral theory. It is hoped that these 
explicit examples for simple situations will clarify ideas relating to non-self-adjoint operators 
occurring in field theory, scattering theory, and the use of inverse spectral transforms to solve 
certain classes of nonlinear equations. The treatment given here indicates that the Gel'fand
Levitan equation is a powerful tool in constructing operators with spectral decompositions, even 
when the operator is not self-adjoint. 

1_INTRODUCTION 

In recent years there has been a considerable amount of 
work on the properties of non-self-adjoint operators. 1-8 One 
central problem for non-self-adjoint operators, which re
mains open, is the construction of a spectral theory. This 
not-yet-discovered spectral theory must be applicable to a 
broad class of non-self-adjoint operators and should be a 
generalization ofthe reduction of matrices to Jordan form by 
a similarity transformation. Much of this non-self-adjoint 
work has been carried out in the Soviet union and many of 
these references are available in the monographs by Gohberg 
and Krein,l·2 Gohberg and Feldman,3 and Ramm.4 Also, 
additional discussions and more references are available in 
the books by Dunford and Schwartz,5.6 Sz-Nagy and Fois,7 
and Reed and Simon.8 

The spectral theory of self-adjoint operators was syn
thesized and extended in the work of von Neumann9 and 
Stone. 10 J. von Neumann II used these ideas to give a math
ematically correct formulation of quantum mechanics. The 
central role of self-adjoint operators in quantum mechanics 
can be seen from Sec. VIII. 11 of Reed and Simon, 12 which is 
entitled "Three Mathematical Problems in Quantum Me
chanics." These problems are 

(1) self-adjointness of formally symmetric operators on 
dense domains, 

(2) spectral analysis, including position and multiplicity 
of the point eigenvalues, and 

(3) scattering theory, the large time-parameter asymto
tics. Some of the important physical properties which are 
guaranteed for all self:adjoint operators include 

")Permanent address: Department of Physics, University of Missouri-Co
lumbia, Columbia, Missouri 65211. 

(i) real eigenvalues, 
(ii) orthogonal eigenvectors for nondegenerate eigen

values, and 
(iii) complete sets of eigenvectors. 

However, there are physically interesting objects in quan
tum mechanics, resonant states, which have complex energy 
eigenvalues. The physical picture of resonances is that they 
arise from perturbations of spectra through "Fermi's second 
golden rule." Friedrichs l3 initiated a careful mathematical 
study of these questions and Keldysl4 proved completeness 
for general non-self-adjoint operators. Livcik 15 studied the 
dispersion theoretic structure of non-self-adjoint operators 
and Schwartz l6 showed that the perturbation expansions to 
certain wave operators for non-self-adjoint Hamiltonians 
converge. Howlands17 has extended Friedrichs' method to 
include models with behavior closely related to the autoion
ization phenomenon. Herbst and Simon 18 have presented 
some remarkable examples of the perturbation of spectra 
and Avron, Herbst, and Simon l9 have developed a spectral 
theory for self-adjoint Schrodinger operators in magnetic 
fields. Saenz and Zachary20 proved the equality of S-matri
ces for single channel scattering whenever their Hamilto
nians were unitarily equivalent, and by treating time reversal 
in variance, also treated those cases in which an anti-unitary 
map exists between "equivalent" Hamiltonians. Barut et 
al. 21 have studied a more general non-self-adjoint theory of 
resonances due to magnetic interactions. Their study is 
based on the demonstration by Barut and Kraus21 that two
spin-lI2 particles have deep narrow effective potentials, 
which binds narrow resonances just like the surprising ¢/ J 
particles. Thus, Ref. 21 provides a non-self-adjoint general
ization of the work of Simon et al., 18,19 although the full 
spectral theory has not yet been developed. Finally, Weber 
and Hammer22 have given a contour integration formulation 
of completeness for symmetric (Hermitian) operators, 
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which are not necessarily self-adjoint, on some Hilbert 
space. Their construction also seems to be valid in a Banach 
space. Since their approach requires all of the bound states 
and continuum states as input, to determine a set of expan
sion coefficients, it is complementary to our study, in some 
sense. 

The papers by Ljance23 are the most similar in approach 
to this paper. He uses the Marchenko equation24 of inverse 
scattering theory to generate a non-self-adjoint spectral the
ory, whereas we use the Gel'fand-Levitan2S-28 inverse scat
tering equation. Ljance gave no specific examples of his the
ory, where, in contrast, we give both a radial and a one
dimensional example. Also, the Gel'fand-Levitan equation 
can handle any finite number of bound states whereas the 
Marchenko equation usually doesn't have point eigenvalues. 

Most of these discussions are highly abstract. Examples 
of the non-self-adjoint operators and their spectra are sel
dom given, with the important exception of the paper by 
Zakharov and Shabat,29 who introduced a system of two 
one-dimensional equations which solve a nonlinear equation 
by an inverse spectral transform technique. They gave the 
explicit non-self-adjoint operators in spectral representa
tions which solved their nonlinear equations. Among the 
nonlinear inverse problems for which one would like to have 
a Gel'fand-Levitan algorithm, there are some which are in
trinsically non-self-adjoint, e.g., the nonlinear Schrodinger 
equation with the wrong sign of coupling constant. It is 
hoped that the present study will aid such studies by clarify
ing non-self-adjoint linear inverse problems. 

The object of the present paper is to give simple explicit 
examples of non-self-adjoint operators with spectral decom
positions. Our examples will be simpler and more systematic 
than those of Ref. 29 because the equations which we consid
er-the radial and one-dimensional Schrodinger equa
tions-are simpler than those in Ref. 29. We shall use the 
Gel'fand-Levitan25

-
28 equations of inverse spectral theory to 

obtain these examples. The fact that we can use the 
Gel'fand-Levitan equation to construct such non-self-ad
joint operators explicitly indicates a new kind of application 
of the inverse method. Much remains to be learned about the 
Gel'fand-Levitan equation and its relation to operators on a 
Hilbert space. We will present some simple examples which 
show that the Gel'fand-Levitan equation can be used to gen
erate a more general spectral theory than the self-adjoint 
spectral theory from which it was derived. 

In some of our examples the point eigenvalues are com
plex, in others the normalizations of the eigenfunctions asso
ciated with the point eigenvalues are complex (resonant 
states) or negative (ghosts). Ghosts occur in regularized field 
theory (Refs. 30 and 31, for example). A nonfield theory 
example will, hopefully, help to understand the role which 
they play. The non-self-adjoint inverse methods may prove 
useful for some important nonlinear problems. 

2. THE GEL'FAND-LEVITAN EQUATION FOR THE 
RADIAL SCHRODINGER EQUATION. THE EXAMPLES 

We consider a Hilbert space jy' = L 2 [ [0, 00 ],d Ii I of 
complex square integrable functions! (r ) with 0 < r < 00, the 
usual inner product 
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(f ,g) = fO f*(r )g(r ) dr, 

norm 

Ilfll = + V (f,J), 

where d Ii is Lebesgue measure. We will study operators H of 
the form 

H=Ho + V, 

(1) 

which operate on a dense domain f» H of $". This domain 
f» H consists of doubly differentiable functions which satisfy 

f(O) = O. 

Let us define "'0 (r I k ) by 

"'0 (rlk) = (2hr)1!2sinkr. (2) 

Clearly 

Ho"'o(r Ik) = k 2"'0(r Ik), (3) 

so that "'0 (r Ik) are eigenfunctions of Ho corresponding to 
the eigenvalue k 2 in the continuous spectrum. They satisfy 
the completeness and orthonormality relations 

L" "'o(r Ik )"'o(r 'Ik) dk = D(r - r '), 

(4) 

L" "'o(r Ik )"'o(r Ik') dr = D(k - k '), 

For any set of complex numbers! K; I, we introduce "pseu
do-eigenfunctions" "'o;(r) 

"'o;(r) = sinK;' (K; #0), 
= r (K; = 0). 

(5) 

They satisfy the formal eigenfunction equations for H o 

Ho"'o;{r) = E;"'o;(r), 
(6) 

Since these functions are not square integrable, they are not 
true eigenfunctions of Ho; they are simply calculational 
tools. 

To complete the spectral data, we introduce, for each i 
for which K; has been given, nonzero complex numbers C; 
and also prescribe a (generally complex) function w(k) for 
-oo<k<oo. 

is 
The Gel'fand-Levitan equation for the kernel K (r Ir') 

K(rlr')= -I}(rlr')-I K(rlr")I}(r"lr')dr", 

(7) 

where I} (r Ir') is defined by 

I} (r Ir') = L "'o(r Ik )[w(k) -l]"'o(r 'Ik) dk 

+ i "'o;(r )"'o;(r ') . 
; C; 

Finally, let us define t/J(r I k ) and "'; (r ) by 
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t/l(r Ik) = 1/I0<r Ik) + L K (r Ir ')1/Io(r 'Ik) dr', (9) 

1/I;(r) = 1/Io;(r) + J: K (r Ir ')1/Io;(r ') dr '. (10) 

Thus n (Olr ') = n (r 10) = {l (010) = O. As can be seen, this 
leads to the equations K (0 I r ') = K (r 10) = O. We shall now 
prove the following theorem. 

Theorem 1: If Eq. (7) has a unique solution for K (r Ir ') 
in Y, then 

Ht/I(r Ik) = k 2t/1(r Ik), 
(11) 

H1/I;(r) = E;1/I;(r), 

where the operator H is given by Eq. (1) and V (r ) is given by 

V(r)=2.:{..K(rlr). (12) 
dr 

Moreover, these eigenfunctions of H satisfy the complete
ness relation in.Y' 

f t/l(r Ik )w(k )t/I(r 'Ik) dk + ~ 1/I;(r ~;(r ') = 8(r - r '). 

(13) 
Discussion of the Theorem: The original Gel'fand-Levi

tan equation for the radial Schrodinger equation (Ref. 25) is 
a special case of our treatment in which the constants K; are 
real and the function w(k ) and constants C; are real and 
positive. In Ref. 25 interest is in self-adjoint operators H. 
Furthermore, if Eq. (7) has a solution, it is unique under the 
conditions of Ref. 25. In our generalization uniqueness must 
be assumed for the theorem to hold. 

Secondly, we note that the potential V (r ) and the wave
functions 1/I(r Ik) and 1/I;(r) are complex in general, in con
trast to the situation of Ref. 31, in which all these quantities 
are real. Thus the Hamiltonian H is not self-adjoint. Equa
tion (13) is still the spectral resolution of H and provides an 
expansion theorem as follows: Letf(r) be any complex 
function in the Hilbert space. Then, in the sense of conver
gence in the mean, 

f(r) = LX' 1/I(r Ik )w(k )a(k) dk + ~ IMr )(C; t1a;(k), 

(14) 

where in a distributional sense 

a(k) = 100 

1/I(r Ik )f(r) dr, 

(15) 

a; = f 1/I;(r )f(r) dr, 

with the integral signs meaning continuous linear function
als rather than integrals, in general. The space Y is dis
cussed in the Appendix. 

One might find Eq. (13) more appealing if one used the 
notion ofbiorthogonal functions. Thus we introduce func
tions x(r Ik) and X; (r) which are eigenfunctions of the ad
joint of H, which is its complex conjugate H *, and write the 
resolution of the identity Eq. (13) as 
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f t/l(r Ik )w(k )x*(r 'Ik) dk + ~ 1/I;(r ~r(r ') = 8(r - r '). 

(16) 

From Eq. (13) we have 

x(r Ik) = !/J*(r Ik), 

x;(r) = 1/Ir(r), 
(17) 

and hence the biorthogonal functions are indeed eigenfunc
tions of H*. 

The eigenfunctions !/J(r I k ) and 1/1; (r ) provide a spectral 
representation of the Hilbert space in the usual sense, i.e., if 
f(r) is represented by raCk ),a;] by means of the expansions 
Eqs. (14) and (15), then Hf(r) is represented by [k 2a(k), 
E;a;], as follows from the eigenfunction equations (11). 

Proof Our method is a generalization of a method used 
in Ref. 31 and 32. Recall that Eq. (9) gave 

Thus 

.:{..1/I(r Ik) = .:{..1/Io(r Ik) + K (r Ir)1/Io(r Ik) 
dr dr 

+ir ~K(rlr')1/Io(r'lk)dr'. 
o ar 

:; 1/I(r Ik) = :; 1/Io(r Ik) + [ :r K (r Ir) ]1/Io(r Ik) 

+K(r Ir).:{..1/Io(r Ik) 
dr 

+ [:r K(r Ir)]!/Jo(r Ik) 

+ J: :~ K (r Ir ')1/Io(r 'Ik) dr '. (18) 

In Eq. (18) and later we use the notation (a lar)K (r Ir) to 
mean (alar)K (r Ir ') with r' = r, and (alar ')K (r Ir) 
to mean (alar ')K(r Ir ') with r' = r. We now use 
(d 2Idr)1/Io(r Ik) = - k 21/10(r Ik) to obtain 

(:; + k 2
)1/I(r Ik) = [:rK(r Ir)]1/Io(r Ik) 

+ K(r Ir) .:{..1/Io(r Ik) + [~K(r Ir)]1/Io(r Ik) 
dr ar 

+ f :~K(rlr')1/Io(r'lk)dr' 
- i

r 
K (r Ir ')[ ~ 1/Io(r 'Ik)] dr '. (19) 

o dr'2 

We now consider the last term on the right of Eq. (19) and 
integrate by parts. It is here that we explicitly make use of the 
fact that K (r 10) 0 and 1/Io(Olk) = O. Thus 

r K (r Ir ')[ ~ 1/Io(r 'Ik )]dr' Jo dr'2 

= K (r 1 r ) [ :r 1/Io(r 1 k )] - J: [ ;" K (r I r ') ], 

[..!!..- !/Jo(r 'Ik)] dr' 
dr' 

= K(r Ir)[ :r !/Jo(r Ik)] - [ ;" K(r Ir)]1/Io(r Ik) 
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+ r[~K(rlr')]"'o(r'lk)dr" Jo ar'2 

On substituting Eq. (20) in Eq. (21), and noting that 

(20) 

~K(r Ir) + ~K(r Ir) = ~K(r Ir), (21) 
ar ar' dr 

we have 

(:; + k 2 )"'(r Ik) 

= VCr )"'o(r Ik) 

+ir{[aa?2_ a] } - K (r Ir') "'o(r 'Ik) dr'. (22) 
ar'2 

In Eq. (22), V (r) is given by Eq. (12). 
Our next objective is to find [(a2/a?) - (J2lar,2)] 

X K (r I r '), which appears in Eq. (22). It is at this point that 
the requirement that the GeI'fand-Levitan equation (7) have 
a unique solution is used. Since much of the derivation for 
the expression follows closely that for obtaining Eq. (22), we 
shall simply summarize the result. We want to obtain an 
integral equation for [(a2/a?) - (a2/ar,2)]K (r Ir '). In a 
manner similar to that for the derivation ofEq. (19), we 
obtain from Eq. (7) 

J2 a2 [d ] a?K(rlr')= a?l1(rlr')- drK(rlr) l1(rlr') 

- K (r I r ) ~ 11 (r I r ') 
ar 

- [ :r K (r Ir)]11 (r Ir') 

-ir 
~ K (r Ir ")11 (r" Ir') dr". (23) 

o a? 

To find (a2/ar,2)K (r Ir ') we apply the operator (a 2/ar,2) to 
both sides of the GeI'fand-Levitan equation (7), use the fact 
that 

a2 a2 

-11(r Ir') = ~11 (r Ir '), 
ar'2 a, 

(24) 

integrate by parts, and useK (r 10)=0,11 (Olr ')==0, to obtain 

a2 a2 

-K(rlr')= - ~11(rlr') 
ar,2 a, 

a 
- K (r I r ) - 11 (r I r ') 

ar 

+ [~K(rlr)]I1(rlr') 
ar' 

-ir 
[~K (r Ir ")]11 (r "Ir') dr". (25) 

o ar"2 

Hence, from Eqs. (23) and (24) we have the following inte
gral equation for [(a2/a?) - (a2/ar'2)]K (r Ir') 

[
a

2 
a2] -- - K(rlr') 

a? ar'2 

= - V (r )11 (r I r ') 

-f [ :~ - a~~2]K (r Ir ")11 (r "Ir') dr". (26) 

Let us defind F (r I r ') by 
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[ 
a2 a2 

], , 
- - - K(r Ir ) = V(r)F(r Ir ). 
a? ar,2 

(27) 

On substituting Eq. (27) in to Eq. (26) it is seen that F (r I r ') 
satisfies the Gel'fand-Levitan equation (7). Since the solu
tion of this equation is unique, 

F (r I r ') = K (r I r '), 
so that 

[
a

2 
a2] -- - K(rlr')= V(r)K(rlr'). 

a? ar,2 

(28) 

(29) 

Equation (29) is sometimes used as the starting point of the 
discussion of \he Gel'fand-Levitan equation for the self-ad
joint case. For the non-self-adjoint case this result follows 
from the uniqueness of the GeI'fand-Levitan equation. 

Using Eq. (29) in Eq. (22) and using Eq. (9), it follows 
that t/J(r Ik) satisfies the Schrodinger equation 

( :; + k 2 )t/J(r Ik) = VCr )t/J(r Ik). (30) 

The second ofEq. (11) for the eigenfunctions corresponding 
to the point eigenvalues is proved similarly. 

We shall now prove the completeness relation Eq. (16). 
In Eq. (7) we replace 11 (r "Ir) by its definition Eq. (8). 

Thus for r >r', on interchanging orders of integration and 
summation, 

(""oW) 
K(rlr')= -11(rlr')- Jo [w(k)-I]"'o(r'lk)dk 

X f K(r Ir")"'o(r"lk)dr" 

- f "'Oi(r ') r K (r Ir ")"'Oi(r") dr". (31) 
i Ci Jo 

But on using Eqs. (9) and (10) and then Eq. (8), we have 

K (r Ir') = f t/J(r Ik )[w(k) - 1 ] "'o(r 'Ik) dk 

+ .~ "';(r )"'o;(r ') 
£.- (r >r '). 

i Ci 

(32) 

Now in Eq. (32) use Eqs. (9) and (10), to replace "'o(r Ik) and 
"'Oi (r ') by t/J(r 'I k ) and "'i (r '), and integrals involving 
K (r Ir') and the unperturbed eigenfunctions. On using Eq. 
(32) after the substitutions have been made one has 

K(rlr')= - f t/J(r lk)[w(k)-I]"'o{r'lk)dk 

_ f "'i(r )"'i(r ') 
i Ci 

+ Sa" K(rlr")K(r'lr")dr" (r>r'). 

(33) 

We can find the expression for K (r 'Ir) for r '>rby reversing 
rand r ' in Eq. (33). On introducing the Heavyside function 
1/(x) defined by 1/(x) = 1 for x> 0 and 1/(x) = 0 for x < 0, the 
results can be combined by writing 

i= "'(r Ik )[w(k) -1 ]"'(r 'Ik) dk + * "'i(r ~i(r ') 
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= -1/(r-r') ir' K(rlr")K(r'lr")dr" 

- 1/(r ' - r ) f K (r I r ")K (r 'I r ") dr " 

-1/(r - r ')K (r Ir ') -1/(r' - r)K (r 'Ir). (34) 

Now from Eqs. (9) and (10) on interchanging orders of 
integration, 

L" ¢(r Ik)¢(r'lk)dk 

= L" ¢o(r Ik )¢o(r 'Ik) dk + f K (r Ir ") dr" 

xL" ¢o(r"Ik)¢o(r'Ik)dk + 1r' K(r'lr")dr" 

X L" ¢o(r Ik )¢O<r "Ik) dk + f K (r Ir ") dr" 

+ ® ir' K (r 'Ir "') dr i OO 

¢o(r "Ik )¢o(r '''Ik) dk. 

(35) 
We now use the completeness relations for the unperturbed 
eigenfunctions, which is the first ofEq. (4), to obtain 

i oo 

¢(r Ik )¢(r 'lk) dk 

= o(r - r ') 

+ 7J(r - r ')K (r I r ') + 1/(r ' - r )K (r 'I r ) 

+1/(r-r') ir' K(rlr")K(r'lr")dr" 

+ 1/(r' - r) f K (r Ir ")K (r 'Ir ") dr ". (36) 

On adding Eq. (36) to Eq. (34) we have the completeness 
relation Eq. (13). Thus the proof of the fundamental theorem 
has been proved for operators more general than self-adjoint 
ones. • 

We now come to the examples. They are, in fact, obtain-
able by analytic continuation of the results of Refs. 33 and 
34. Our proofs show that analytic continuations are valid. 

In the first example we take w(E) = 1, and assume a 
point eigenvalue such that K\ = O. Unlike the example of 
Ref. 32, however, we take the normalization constant 
C\ = C to be complex. From Eqs. (5) and (8) 

n (r Ir ') = rr'le. (37) 

On substituting into Eq. (7), one sees that K (r Ir ') can be 
written 

K (r I r ') = F (r )r " (38) 

which, on substituting into Eq. (7), leads to an equation for 
F(r) which has the unique solution 

F(r) = _ 3r 
r>+3C 

(39) 

Hence, the Gel'fand-Levitan kernel is unique and is given by 

K(rlr')= _ 3rr' (40) 
r>+3C 

Thus the scattering potential, which is now complex, is 

VCr) = 6r(r> -3C) (41) 
(r> + 3C)2 
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The eigenfunction corresponding to the point eigenvalue is 

r 
¢k)=3C---

r>+3C 
(42) 

The eigenfunctions ¢(r Ik) for the continuous spectrum are 

¢(r\k)=(2hr)IIZ[sinkr+ 3r (coSkr _ sinkr)]. 
r> +3C k rk 2 

(43) 

These eigenfunctions satisfy the completeness relations (13) 
for any complex value of e. If C is any complex number 
which is not negative and real, the eigenfunction ¢1(X) is 
quadratically integrable and has the norm C: 

i oo 

[¢I(r)]2dr= e. (44) 

If C is a positive real number, we have the usual situation for 
self-adjoint operators, i.e., for V(r) real. For complex C, 
however, we have obtained a spectral representation for a 
non-self-adjoint operator. In particular, the norm of the ei
genfunction ¢l is complex. We shall refer to such states as 
resonant states. If C approached a negative real value 
through a set of complex values, the norms of the sequence of 
eigenfunctions ¢l(r) would exist for C arbitrarily close to 
the negative value. When C is a negative real number, it is 
easy to see that the left-hand side ofEq. (44) diverges and the 
eigenfunction is not normalizable. Moreover, the potential 
has so severe a singularity that H is not a self-adjoint opera
tor. The continuous spectrum eigenfunctions ¢(r Ik) also 
have this singularity. Nevertheless, our proof shows that we 
still have a representation of the Hamiltonian and a corre
sponding expansion theorem. When C is negative, we shall 
call the eigenstate ¢l(r) corresponding to the point eigenval
ue a ghost. The notion of ghost states first appeared in field 
theory and this simple example relates it to non-self-adjoint 
operators. A different aspect of singular potentials was lu
cidly discussed by Aly and Miiller. 35 

A second example, which also may be considered as an 
analytic continuation of an example of Ref. 31, is given by 
the following: We take, as before, w(E) = 1. We assume that 
there is a single point eigenvalue E 1 = Ki where K 1 = K is any 
complex number. The corresponding normalization con
stant C1 = C is also any complex number. Under these 
circumstances, 

n (r I r ') = sin Kr sin Kr ' 
C 

(45) 

The corresponding Gel'fand-Levitan equation can again be 
solved uniquely by separation of variables. The potential is 

V (r ) = 2 sin Kr 
[C + ~r - (sin 2Kr)/2K)] 2 

X [sin Kr - 2K(C + ~r ) cos Kr]. (46) 

The eigenfunctions of the continuous spectrum are 

¢(r Ik) 

= (2I1r)1/2{sin kr 

_ sin Kr (K sin kr cos Kr - k sin Kr cos kr)} (47) 
[C + i(r - (sin 2Kr )/2K)](k 2 -~) , 

The eigenfunction corresponding to the point eigenvalue is 
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tPI(r) = C sin Kr 
C + !(r - (sin 2Kr)/2K) 

(48) 

For real values of K and complex values of C other than real 
negative values, the potential is everywhere finite and gener
ally complex. Furthermore, the eigenfunction tPI is quadrati
cally integrable with value C. For complex values of C this 
eigenfunction is a resonant state. As in the previous example, 
when C approaches the negative real axis the normalization 
remains finite and equal to C. However, when C is negative, 
the state no longer has a norm. Moreover, the potential has 
severe singularities. Nevertheless, the expansion theorem 
Eqs. (13) and (14) remain valid. 

For complex values of K and C more general statements 
about the singularities of V(x), tPI' and tPcan be made. How
ever, such statements seem too lengthy for the purposes of 
the present paper. In all cases Eqs. (13) and (14) hold. 

3. THE ONE-DIMENSIONAL SCHRODINGER 
EQUATION: AN EXAMPLE 

The Gel'fand-Levitan equation for the one-dimension
al problem ( - 00 < x < + (0) also provides non-self-adjoint 
operators with complete sets of eigenfunctions. 

Let us define tPo(xIE,a) and tPOi(X) by 

tPo(xIE,a) = [21k IP/2tPO(xlk), 

tPo(xlk) = (l/217y/2eikx, 

E = k 2, a = (k Ilk I), 

tPOi(X) = exp[Kix ]. 

(49) 

(50) 

The functions tPo(x I k ) are, once again, the eigenfunctions of 
Ho = d 21dx2 with the eigenvalues k 2 as given in the momen
tum representation. The eigenfunctions tPo(xIE,a) are the 
same eigenfunctions expressed in terms of the eigenvalue E 
and direction of momentum a = ± 1. They satisfy the orth
onormality and completeness relation 

f_+ 0000 ~(xIE,a)tPo(xIE ',a') dx = {j(E - E '){Ja.a·' 

L (00 tPo(xIE,a)tPr(x'IE,a) dE = {j(x - x'). (51) 
a Jo 

In Eq. (51) {ja.a· is a Kronecker delta. The functions tPOi(X) 
are formal eigenfunctions of Ho with the eigenvalues 
Ei = - (Ki )2, where Ki is a complex number. The values Ei 
will, of course, ultimately be identified as a point eigenvalue 
of a perturbed operator. 

Letusintroducefunctionswab(E)fora,b = ± 1 which 
are generally complex and complex constants Ci , Ki for 
i = 1, ... ,N. We also define 

JJ(xlx') = t; 1'0 tPo(xIE,a)[wab(E) 

- {ja.b ]~(x' IE,b) dE + L f/!Oi(X)tPOi(X') . 
i Ci 

(52) 
If K (x Ix') is the unique solution of the Gel'fand-Levi

tan equation 

K (xix') = - JJ (xix') - f: 00 K (xlz)JJ (zlx') dz, (53) 
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the following theorem holds. 
Theorem 2: The functions tP(xIE,a) defined by 

t/J(xIE,a) = tPo(xIE,a) + f: 00 K (xlx')tPo(x'IE,a) dx', 

(54) 

and the functions tP;(x) defined by 

tPi(X) = tPOi(X) + f: 00 K (xIX')tPOi(X') dx' (55) 

satisfy the eigenfunctions equations 

Ht/J(xIE,a)=[ - ::2 + V(x) ]t/J(xIE,a) 

= Et/J(xIE,a), 

HtPi(X) = Ei tPi (x), 

(Ei = - Ki 2
), 

with the potential V(x) being given by 

V(x) = 2 ~K(xlx). 
dx 

(56) 

(57) 

Moreover, these eigenfunctions of H satisfy the complete
ness relation in Y of 

t; Loo t/J(xIE,a)Wab(E)t/J(x'IE, - b) dE + ~ tPi(X~i(X') 
= {j(x - x'). (58) 

Proof This theorem is proved by modifying the corre
sponding prooffor the radial equation, Theorem I, in an 
obvious manner. 

Like the corresponding result for the radial equation, 
Eq. (58) is equivalent to an expansion theorem. Similarly, 
biorthogonal eigenfunctions may be introduced in a manner 
close to that for the radial equation. 

Perhaps the simplest example is the case for which 
wab(E) = {jab and for which there is only one point eigenval
ue for which K=K 1 has a positive real part. The correspond
ing normalization constant C is any nonzero complex num
ber. In the case that K is positive and real and Cis positive, we 
are led to the simplest of reflectionless potentials for a self
adjoint H. In face, the derivation for the potential and eigen
functions are identical, as are the expressions for them 

V(x) = - 2K2sech2K(x - xo), 

tPI(X) = !exp(Kxo)sechK(x - xo), (59) 

t/J(xIE,a) = [21k jp/2tP(xlk) [see Eq. (49)], 

where 

Xo = (l/2K)ln(2KC), (60) 

and 

t/J(xlk) = (l/21T) I 12eikx [ 1 _ K(!"<x - Xn)sec~(x - xo) ]. (61) 
K+lk 

For any value of C, other than negative real values, and for 
real K, there are no singularities in either the wave functions 
or the potential. Moreover, 

(62) 

Hence the eigenfunction tPl(X) is a resonant function. As in 
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the example for the radial equation, the eigenfunctions re
main square integrable as in Eq. (62) as C approaches the 
negative real axis. However, if we set C equal to a negative 
value and thus have a ghost, from the fact that 

sechK(x - x o) = i cschK(x - Yo), 
(63) 

Yo = (1!2K)ln(2KIC I), 

singularities do appear at x = Yo in the wavefunctions and 
potentials. In particular, ""I (x) is no longer square integrable, 
though the expansion theorem implied by the relation Eq. 
(59) is still valid and in a certain symbolic sense C is still the 
norm of ""I' For complex K with positive real part and for real 
positive C there are no singularities and the norm still has 
meaning. Such cases correspond to resonances. As in the 
radial equation, the general situation of complex K with a 
positive real part and complex C can also be studied. Though 
for the one-dimensional and radial equation cases we have 
discussed particularly simple examples, other explicit exam
ples coming from the Gel'fand-Levitan equation abound. 
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APPENDIX: THE SPACE Y 
As stated in Theorems I and 2, the Generalized 

Gel'fand-Levitan kernel K (x, y) exists as as operator on a 
space Y which we describe here. Unbounded self-adjoint 
operators, such as H, often do not have enough eigenvectors 
to span a Hilbert space K. 23.25.36 The unbounded operators 
of interest have a dense domain g; H eK and KeY, 
where JY'is spanned by the generalized eigenvectors of H, 
giving the inclusion 

(AI) 

Choose Y to be "near" JY' by constructing a maximal g; H • 

For example, Y often includes the plane waves of scattering 
theory as generalized eigenvectors. The space Y which K 
"lives in" is Y' ® Y', where Y' is a space related to, but not 
equal to, Y as follows. Let K' be a Hilbert space L2 (D, 00 ) 

for a non-self-adjoint operator.23 If H is a normal operator 
HH· = H· H or if H is a scalar spectral operator6 then the 
construction of the resolution of the identity is possible and 
then 

!iJHeK'eY' (A2) 

is the inclusion. One has a spectral theory in JY", and Y' 
which generalizes the self-adjoint spectral theory. This the
ory is discussed in detail in Refs. (1-8). 
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Our point is that an inverse spectral theory also works 
for generalized eigenvectors in Y' of (A2) whenever the 
Gel'fand-Levitan kernel K has a unique solution in 
y = Y' ® Y' even if H is non-self-adjoint. Furthermore, 
this inverse spectral theory may be more general than the 
normal operator or scalar spectral operator spectral theories 
since it is not based on commuting, unlike normal operators 
and, its complex poles need not be in a strip. 

Notes added in proof 
(1) Three references to non-self-adjoint operator theor

ies were missed in our introduction. Two of these are by 
Ramm37

.
38 and one by COZ. 39 The comments that Ramm38 

showed how to compute complex resonant poles using his 
earlier work37 and that he proved the convergence of his 
method, should appear right after mention of Howland's 
work in Ref. 18. 

(2) Two papers by R. G. Newton on inverse scattering 
theory, now Refs. 4D and 41, were inadvertently missed. Ref
erence 40 gives a new approach to one-dimensional inverse 
problems, and Ref. 41 proves existence and uniqueness for a 
class of three-dimensional inverse problems, including both 
Gel'fand-Levitan and Marchenko equations without spheri
cal symmetry. 

(3) Theorems 1 and 2 can be stated in stronger form. 
Since n (rlr') is jointly continuous in rand r' in all cases, the 
Gel'fand-Levitan kernel K (rlr') exists and is unique in Y by 
standard theorems on Volterra integral equations.4 Thus, 
our statement that, "if it exists ... " can be strengthened to a 
statement of existence and uniqueness of K (rlr') in Y pro
vided that n (rlr') is jointly continuous in rand r'. 

(4) We thank Professor A. G. Ramm of the University 
of Michigan's Mathematics Department for pointing out his 
Refs. 37 and 38 and for suggesting the strengthened form of 
our theorems. 

II. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non
self-adjoint Operators, Am. Math. Soc. Transl. Vol. 18 (Russian original 
1965) (Am. Math. Soc., Providence, Rhode Island, 1969). 

21. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Oper
ators in Hilbert Space, Am. Math. Soc. Transl. Vo!. 24, (Am. Math. Soc. 
Providence, Rhode Island, 1970). 

31. C. Gohberg and I. A. Feldman, Convolution Equations and Projective 
Methods for Their Solution, Am. Math. Soc. Trans!. Vo!. 40 (Am. Math. 
Soc., Providence, Rhode Island, 1974). 

4A. G. Ramm, Investigation of Some Classes of Integral Equations and 
Their Applications (Springer, New York, in press). 

'N. Dunford and J. T. Schwartz, Linear Operators, Vol. II (Wiley-Intersci
ence, New York, 1963); see especially Sec. XI. 6, 9, and 10. 

ON. Dunford and J. T. Schwartz, Linear Operators, Vol. III (Wiley-Inter
science, New York, 1971). 

7B. Sz-Nagy and C. Fois, Harmonic Analysis of Operators on Hilbert Space 
(North-Holland, Amsterdam, 1970). 

8M. Reed and B. Simon, Methods of Modern Mathematical Physics IV. 
Analysis of Operators (Academic, New York, 1978); See especially Sec. 
XIII. 16. 

9J. von Neumann, Math. Ann.t02, 49 (1929); Ann. Math. 33, 294 (1936). 
10M. Stone, Linear Transformations in Hilbert Spaces and Their Application 

to Analysis, Am. Math. Soc. Colloq. Pub. 15 (Am. Math. Soc., New York, 
1932). 

II J. von Neumann, Mathematical Foundations of Quantum Mechanics, 
translated by R. T. Beyer (Princeton U. P., Princeton, New Jersey, 1955). 

12M. Reed and B. Simon, Methods of Modern Mathematical Physics I, Func
tional Analysis (Academic, New York, 1972); see especially pp. 302 et seq. 

B. De Facio and H. E. Moses 1722 



                                                                                                                                    

13K. O. Friedrichs, Math. Ann. 115, 249 (1938); Commun. Pure App\. 
Math. I, 361 (1948). 

14M. V. Ke1dys, Dok!. Akad. Nauk SSSR 77,11 (1951); In Russian, Math. 
Rev. 12, 835 has an English summary. 

ISM. Livcik, Usp. Mat. Nauk 12 (1957); In Russian, a full English transla
tion appears in Amer. Math. Soc. Trans\. Ser. 2, vol. 16 (Am. Math. Soc., 
Providence, Rhode Island, 1960), p. 422. 

16J. T. Schwartz, Commun. Pure Appl. Math. 13,609 (1960). 
I7J. S. How1ands, Bull, Am. Math. Soc. 78, 380 (1972). 
181. W. Herbst and B. Simon, Phys. Lett. 78 B, 304 (1978). 
19J. Avron,I. Herbst, and B. Simon, Phys. Rev. Lett. 39,1068 (1977); J. 

Avron,I. Herbst, and B. Simon, Phys. Lett. A 62,214 (1977); and J. 
Avron, I. Herbst, and B. Simon, Ann. Phys. (N. Y.) 114, 431 (1978). 

2°A. W. Saenz and W. W. Zachary, J. Math. Phys. 17,409 (1976). 
21A. O. Barut and J. Kraus, Phys. Rev. D 16, 161 (1977); and A. O. Barut, 

M. Berrondo, and G. Garcia-Calderon, J. Math. Phys. 21, xxxx (1980). 
22T. A. Weber and C. L. Hammer, J. Math. Phys. 21, 24 (1980). 
23V. E. Ljance, Mat. Sb. 64,521 (1964) and 65, 47 (1964). In Russian; 

English translation available in Amer. Math. Soc. Transl. vo\. 60 (Am. 
Math. Soc., Providence, Rhode Island, 1967, p. 60.) 

24Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering 
Theory, translated from the Russian by B. D. Seckler (Gordon and 
Breach, New York, 1963). 

2'1. M. Ge1'fand and B. M. Levitan, Isv. Akad. Nauk SSSR Math. Series IS, 
309 (1951). In Russian; English translation available in Amer. Math. Soc. 

1723 J. Math. Phys., Vol. 21, No.7, July 1980 

Transl. Ser. 2, vol. 1 (Am. Math. Soc., Providence, Rhode Island, 1955), p. 
253. 

26R. G. Newton, Scattering Theory of Waves and Panicles (McGraw-Hill, 
New York, 1966). 

27K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering 
Theory (Springer, New York, 1977). 

28R. G. Newton in, Scattering Theory in Mathematical Physics, edited by J. 
A. LaVita and J.-P. Marchand (Reidel, Boston, 1974). 

29V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34,62 (1972). 
30K. Nagy and J. Rzewuski, Bull. Acad. Pol. Sci. Co. III 7, 93 (1958). 
3IN. Nakanishi, Phys. Rev. D 5,1968 (1972). 
32H. E. Moses and C. M. deRidder, MIT Lincoln Laboratory Technical 

Report No. 322, 1963 (unpublished). 
331. Kay and H. E. Moses, Nuovo Cimento 22,689 (1961). 
34H. E. Moses and S. F. Tuan, Nuovo Cimento 13, 197 (1959). 
"H. H. Aly and H. W. J. Muller, J. Math. Phys. 7, 1 (1965). 
36JU. M. Berezanskii, Expansions in Eigenfunctions of Self-adjoint Opera

tors, Vol. 17 Transl. Am. Math. Soc. (Am. Math. Soc. Providence, Rhode 
Island, 1968). 

37 A. G. Ramm, Dok\. 191, 50 (1970). 
38A. G. Ramm, Dok\. 204,1071 (1972). 
39M. Coz, University of Kentucky Preprint (to be published). 
,oR. G. Newton, J. Math. Phys. 21, 493 (1980). 
41R. G. Newton, J. Math. Phys. 21, 1698 (1980). 

B. OeFacio and H. E. Moses 1723 



                                                                                                                                    

The Jost solutions for Yukawa potentials 
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Using a suitable Laplace transformation of the regular solution and the expansion of its Laplace 
transform in partial fractions we found new explicit expressions for the Jost solutions of the 
radial SchrOdinger equation with complex wave numbers and angular momenta, in general, and 
for potentials of the exponential and, especially, Yukawa type, which were described by means of 
the Stiltjes integral with respect to a function p,(t) of bounded variation. Many other relations 
including those for the Jost functions were derived or rederived, which have their counterpart 
among relations for the Bessel functions. 

1. INTRODUCTION 

The physical theory of the nonrelativistic scattering of 
spinless particles by a central potential is a mathematically 
elaborated theory nowadays. This concerns not only the di
rect and inverse problems of the scattering theory but also 
problems arising from making the angular momentum as 
well as the energy of particles complex. The corresponding 
analytic continuation of the wave functions is governed by 
the Schrodinger equation, in which the interaction potential 
is usually taken real. In studying these problems a local po
tential of the Yukawa type that is given by a Stiltjes integral 
with respect to a function p(t) of bounded variation with a 
real "interaction" constant g 

V(r) = - ;f'dP(t)eXp(-tr) (0<1"1 <1"2<(0) (I) 

played the important role. It is simple and general enough 
and possesses some justification from the side of particle 
physics. The first property was fully made use of in the inves
tigation of the S waves for which there only exist relatively 
simple mathematical expressions or procedures. This is not 
the case for higher waves where such an approach is more 
complicated and does not lead to closed and explicit formu
lasY The reason consists in the presence of a centrifugal 
potential, which is zero for the S wave. 

We overcame this difficulty by using a suitable form of 
the Laplace transformation and derived explicit formulas for 
wave functions. They are solutions of the complicated recur
rence relations we have mentioned. At the same time we 
opened a way towards the analytic continuation of wave 
functions to complex values of angular momenta and simpli
fied the investigation of some questions, such as the conver
gence of Born series and the determination of their regions of 
analyticity and of their asymptotic behavior. 

Problems of scattering processes are solved on the back
ground and in the relation to the purely kinematic, forceless 
processes which are described by a different kind of Bessel 
function and by the Legendre polynomials. We therefore ex
pect that there is an analogy between the radial scattering 
wave functions and the Bessel functions. We succeeded, in
deed, in finding similar expressions and relations for them 
except the single but essential distinction given by the possi
ble occurence of the natural Yukawa cuts. This waS also the 

standpoint which determined the choice and the extent of 
the problems solved. On the other hand such a restriction 
was necessary because the subject had already been worked 
out in various aspects in the literature. As for the particular 
papers we refer to the monographs,I-4 where a complete in
formation is collected. We mention only an early paper', 
where some allied formulas can be found. 

As the potential (1) is spherically symmetric, the scat
tering matrix S is diagonal in the quantum numbers of angu
lar momentum and can be determined by solving the radial 
Schrodinger equation for partial waves. We made use of the 
exceptionality of the S waves in order to describe in more 
detail the approach, that is then applied to the case of general 
angular momenta. According to this approach, the Laplace 
transform of the radial wave functions with the integral an
gular momenta is expanded in partial fractions, which en
ables us to pass from the regular to the irregular (Jost) solu
tions and to continue them analytically to complex values of 
angular momenta. In the case oftheSwaves a slightly differ
ent class of potentials instead of (1) was used, i.e., potentials 
of the exponential type 

V(r) = -g F'dPe(t)exp(-tr) (0<1", <72 <00). (2) 

For some classes offunctions /let ) the potentials (1) and (2) 
can be identified. 

2. PRELIMINARIES 

A regular solution q;(A,k,r) of the radial Schrodinger 
equation 

- - + -=..± + VCr) - k 2 ¢(A,k,r) = 0 ( 
d2 A2 1 ) 

dr 2 r2 
(3) 

as a function of complex values of the angular momenta 
I = A, - ! and of the wave numbers k is defined for ReA >0 
by the boundary condition 

q;(A,k,r) = rA+ 112 

[:::::(kI2)-Ar(A + 1)rIl2JA(kr)] as r-o+. (4a) 

The corresponding irregular solution q;( - A"k,r) is uniquely 
determined as the analytic continuation of q;( A,k,r) only 
when it exists. Therefore, two other linearly independent ir
regular solutions of Eq. (3) are used, namely the Jost func-
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tionsf + (A,k,r) andf _ (A,k,r), which are defined by the 
boundary conditions 

f ± (A,k,r) = exp( + ikr) 

l-fo(A, ± k,r) 

==:exp [ -;( ;) (A + D]( ± kr1T/2y/2H~)( ± kr), 

- k = e - i1Tk, - 1T < argk < 1TJ as r~oo. (4b) 
Expressions written in the curly brackets ofEqs. (4) with the 
Bessel and Hankel functions (of the second kind) were added 
in order to show which of the kinematic solutions fulfill the 
conditions (4). Moreover, in the case (4b), along with a con
vention - k = e - iTTk, they make possible a unique determi
nation of the lost solutions based now on the analytic con
tinuation in the complex k plane. Here, we remark, that our 
lost functions are the traditional ones. I

•
3 They are used in 

order to make easier comparison of the obtained formulas. 
In the monographs,2,4 a slightly different definition of the 
lost functions is given. The regular solutions as well as the 
irregular ones can be derived by iterating the Fredholm inte
gral equations,1,3 which are equivalent to the differential 
equations (3) and to one of the boundary conditions (4). If 
the expressions in the brackets (4) are iterated, the well
known Born series for functions qJ( A,k,r) andf ± (A,k,r) are 
obtained. 

The forms (1) and (2) of the potential VCr) suggest the 
application of the Laplace transformation in finding the reg
ular solution. The difficulty with the centrifugal term in Eq. 
(3) prefers the following form of the Laplace transformation: 

w( A,k,s) = Sa'" dr rA - l/2e - srqJ (A,k,r) 

(Res> IImk I, ReA> 0), (Sa) 

A _ 112 1 IC 

+ ioo 
r qJ (A,k,r) = -. ds esr w( A,k,s)(c > IImk I), 

21Tl c-ioo 

(Sb) 
where, according to Eq. (4a), asymptotically w(A,k,s) 
- fO' dr r 2Ae - sr = S - 2A - Ir(U + 1) as S-oo. Applying 
the operation fO' dr rA + I12e - sroo • to Eq. (3) and making 
some elementary manipulations we transform Eq. (3) into a 
first-order differential equation for the function w( A,k,s) 
with one argument s shifted. It can easily be integrated. In 
view of the prescribed asymptotic behavior of w( A,k,s), we 
have 

w( A,k,s) = r(U + 1)(s2 + k 2) - A - 1/2 

- g(S2 + k 2) - A - 112 f, dz (Z2 + k 2)A - 112 

iT, d 
X dpe(t) ---(J)( A,k,z + t) 

T, dz 
(6) 

for the potential (2). Since the function w( A,k,s) is analytic 
in the half-plane Res> IImk I, we can take any point Coo 

= C + ooe"P with IqJl <!1T for the point coo' 
The performed transformations of the potential term in 

~. (3) are correct for ReA >0, if If 0' dr rVer) 1< 00 accord
mg to Eq. (4a). This condition defines the allowed classes of 
functionsp(t )in the potential (1) and (2). We remember that 
any function p(t ) of bounded variation can be written as a 
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difference of two (bounded) nondecreasing positive func
tions PI (t) and P2 (t ) [p(t ) = PI (t ) - P2 (t ) ]. Each of these 
functions determines by itself the Stiltjes integral with re
spect to the functionp(t). This is important to keep in mind, 
especially when 72 = 00 in Eqs. (1) and (2). Always denoting 
PI (t) + P2 (t ) by v(t) in what follows, we satisfy condition 
If 0' dr rVer) 1< 00 by demanding that 

(7a) 

wherep = - 1 for the potential (1) andp = - 2 for the 
potential (2). As f~: dv(t) e - tr = ( - d / dr) - P f~: dv(t) 
X tPe - trthesepotentials behave as r- 2 +E (€> 0) at r = 0 + . 

Equation (7a) is satisfied for any p < K, where K>O, by a class 
offunctionsp(t), which is characterized by such a maximum 
number K. In the case of the potential (1) then, it implies that 
rVer) and its first [K] derivatives are continuous for r>O. 

Subclasses offunctionsp(t) characterized by maximum 
nonnegative integers q<'K besides K fulfill the requirement 

0=Pp(72)= r' dp(t)t P for any integer O<,p<,q<,K. J, 
(7b) 

It implies for the potentials of the Yukawa type that rVer) 
and its first q derivatives are zero at r = 0 + . Concluding 
these consideration we emphasize that the introduction of 
classes K is useful and nontrivial only if the functions fL(t ) 
fully realize themselves in the whole interval [71,00), i.e., if 
72 = 00. 

In the intersection of the analyticity domains of all the 
functions considered the following well-known relation 1-4 

holds: 

qJ( A,k,r) = (l/2ik)[f + (A,k)f _ (A,k,r) 

- f _ (A,k)f + (A,k,r)]. (8) 

According to (8) the diagonal elementsS ( A,k ) ofthe scatter
ing matrix S are defined by the lost functionsf + (A,k) as 
follows: -

S(A,k) = [1+ (A,k)/ f- (A,k)] exp[i1T(A - !)] 

= exp[2i8( A,k )], (9) 

where the phase shifts 8 ( A,k ) are real for physical values of k 
and A. The behavior of the function S (A,k) plays an impor
tant role in the realization of the Sommerfeld-Watson trans
formation of the scattering amplitude, which eventually 
leads to the concept of the Regge poles. 

If we succeed in decomposing the Laplace transform 
w( A,k,s) in an analogous way to the relation (8) we obtain 
both the lost functions and the lost solutions. 

3. POTENTIALS OF THE EXPONENTIAL TYPE, A = J 
Ifwe put A = ! in Eq. (6), its second term on the right

hand side can be integrated and the whole equation can be 
solved by iterations. We get 

wG,k,s) = A -1(S,k)( 1 + >ttl ( - g)" f dpe(td· oo 

X f dpe(tn)A -I(S + vl!k)···A -I(S + vn,k»), 

(lOa) 
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where 

A (s,k ) = S2 + k 2, Vo = 0, 

As 

IA (s + vm,k) I-I < V,;; 2 for Res> IImk I 
and 

I f dpe(11 ) ... f dpe(ln) 

XA -I(S + vl,k) ... A -I(S + Vn,k)1 

13 ···In X--------------------

the series (lOa) converges absolutely and uniformly if 

(lOb) 

(lla) 

(lIb) 

v _ 2 (T2) < 00 in accordance with the condition (7a). If the 
qth interation of Eq.(6) is carried out, the function 
w(!,k,s + Vq + I) appears in its last term. According to the 
foregoing statement it is an analytic function of s for 
Res> IImk 1- (q + I}TI . The other terms and factors of this 
iteration are also analytic functions of s except for poles or 
cuts 

±ik, ±ik-71 -t (tE[O,oo», (llc) 

depending on the nature of the function Pe (I). Hence the 
analyticity region ofthe function (lOa) can be extended to 
the whole complex s-plane except for the points (1Ic). 

We expand the fractions contained in each term of se
ries (lOa) into a sum of partial fractions: 

A -I(S + vo,k) ... A -I(S + vn,k) 

= (l/2ik )(s - ik) - IA - I(ik + vl,k )···A - I(ik + Vn ,k) 

n-I 
+ L. A -I(ik - Vm + vo,k) ... A -I(ik - vm 

m=1 

+ Vm _ 1 ,k)(l/2ik)(s + vm - ik)-IA -I(ik + vm+ I 

-vm,k) ... A -I(ik-vm +vn,k)+A -I(ik-vn,k) 

···A -I(ik - Vn + vn_ 1 ,k)(l/2ik)(s + vn - ik)-I 

+ ( the same expression with k and 

- k interchanged). (12) 

This expansion is valid unless s + V p ± ik = s + v q =t= ik for 
p=/-q. We evade this possibility by taking out the cuts on 
poles 

±i(!71 +x), XE[O,oo) (13) 

from the complex k plane. 
Each term of the expansion (12) consists of the product 

of two independent factors, one being a function of variables 
(II , ... ,tm ) only and the other one of the complementary var
iables (1m + I , ..• ,In ) only. This makes it possible to rearrange 
the series (lOa), so that 
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w(!,k,s) = (l/2ik )[F(!,k)f1 ( - k,s) - F(!, - k)f1 (k,s)], 
(l4a) 

where the series 

F(!,k) = 1 + ntl ( - gy f dpe(tl ) ... f dpe(tn) 

XA -I(ik + VI ,k) ... A -I(ik + vn,k)-F + (!,k) 

[and F _ (!,k) = F(!, - k )], (lSa) 

f1 (k,s) = (s + ik) - 1+ ntl ( - gy f dpe(t l ) ... f dpe(tn) 

XA - l(ik + VI ,k ) .. ·A - I(ik + Vn ,k) 

X(s + Vn + ik)- \ (14b) 

converges absolutely and uniformly except for zeros of the 
functions A and s + V + ik provided v _ 2 (72 ) < 00. The in
verse Laplace transformation (Sb) gives 

q:>(!,k,r) = (l/2ik )[F(!,k }f(!, - k,r) 

- F(!, - k }f(!,k,r)], (ISb) 

where the Jost solutionf + (!,k,r) = f(!,k,r) andf _ (!,k,r) 
= f(!, - k,r). 

f(!,k,r) = e - ikr{ 1 + ntl ( - gt f dpe(t l ) ... f dPe(tn) 

Xe-v"rA -I(ik + vl>k) ... A -1(ik+Vn,k)}, 

(lSc) 

as well as the (normalized) Jost functionF (!,k ) = f(!,k,O) is 
given by a Born series, which is an analytic function of k 
except for the natural upper cut (poles) (13) provided 
v _ 2 (72 ) < 00. We can easily verify that the series (ISc) satis
fies Eq. (3). 

If a formal variable x;>O and a function G (k,r ,x), which 
satisfies the integral equation [G (k,r, 00 ) = 1]: 

G(k,r,x)=l-g f'dPe(I)A -I(ik+t+x,k) 

Xe- trG(k,r,1 + x), (16) 

are introduced, then the solution of the equation determines 
the Jost solution and the Jost functionf(!,k,r) 
= e - ikrG (k,r,O) and F(!,k) = G (k,O,O), respectively. It is 
worth remarking that there exists the solution 
G (k,O,x) = [x/(x + 2ik )]g/2ik ofEq. (16) for the coulomb 
potential, which does not belong to the class of the allowed 
potentials because of 71 = ° and 72 = 00, [dpe (I) = dt]. In 
the case of the potentials like the Hultben, Woods-Saxon, 
Eckhart, and Morse potentials 

g dpe(l) = f gn de (I - n) 
n=l 

[e (t ) = 1 for t> ° and e (t) = ° for t < 0], (17) 

Eq. (16) converts into a difference equation ofthe infinite 
order, in general, which, however, can be transformed into a 
first- or second-order difference equation and solved by ordi
nary methods. They are not always too simple even ifbound
state problems only are solved. 

TheeigenvaluesE = - b 2 (b>O)ofthe bound S states 
are solutions of the equation F (!, - ib) = ° and the corre
sponding regular solution q:>(!, + ib,r) = - (l/2b) 
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XF(!,ib }f(!, - ib,r). According to Eq. (15c) it formally re
sembles the potential (2). This suggests the idea of solving 
the simple Hartree-Fock problem 
V(r) = const[r~ Iq; (!, + ib,r)p by finding the appropriate 
function fLe (t) of the potential (2). 

4. POTENTIALS OF THE YUKAWA TYPE, A GENERAL 

The potentials of the type (1) are simpler for A:~! in the 
technical aspect, for the equation corresponding to Eq. (6) 
now reads: 

w( A,k,s) = r (U + l)A ~ A ~ 1/2(S,k ) - gA ~ A ~ 1I2(S,k) 

X fO dz A A ~ I12(S + z,k ) 

X i~2 dfL(t) W( .1,k,s + Z + t ), ReA> 0, (18) 

in view of analytic properties of the function w( .1,k,s). Its 
iterative solution 

w(.1,k,s) = r(U + I)A ~A ~ I12(s,k){ 1 + .~I (- g)" 

X f" dZI f dfL(t l )··· f" dz. f dfL(t.) 

X IT [A A~1I2(S + up + Vp~1 ,k) 
p~1 

XA ~A~I12(S+Up +Vp,k)]}, (19a) 

where 

Uo =Vo =0, Urn = f zp' 
p=1 

A (s,k ) = S2 + k 2, (19b) 

represents again an analytic function of s in the whole com
plex plane except for cuts (1Ic) under the assumption 
v ~ I (T 2) < 00 for ReA>! in accordance with the condition 
(7a). This follows from the evident inequalities 

IA(s+up +vp~l>k)A ~1(S+Up +vp,k)IReA~1I2 <1, 

for ReA>! and Res> IImk I, (20a) 

LX> dZpl(S+Up+Vp)2+k21~1 

< i~ dzp (Up + Vp)~2 <Vp~l, 

for Res> IImk I, (20b) 

and from the further considerations, which go along the 
same lines as in Sec. 3 [Eqs. (11)]. If - !<ReA <!, thestron
ger condition upon functions fL(t) coming from the require
ment of the convergence of series (19a) must be taken 
Vo(T2 ) < 00 and so on. 

Let us assume for the time being that A are positive half
integers (A = !, k·). The expansion in partial fractions dif
fers, now, from that one in Eq. (12) by the presence of powers 
(s+urn +vrn -ik)~P,p= 1, ... ,A +!.Theyaremultiplied 
by the coefficients, which are the (A +! - p)th derivatives 
of the product of A and A ~ I factors and of (s + Urn 
+ Vrn - ik)A + 1/2 at the point s = - Urn - Vrn + ik divided 

by (A +! - p)!. They factorize again, one factor depending 
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on the group of variables (ZI , ... ,zrn; tl , ... ,trn ) only, the other 
on the variables (zrn + 1 , ••• ,Z.; trn + 1 , ••• ,t.) only. In the latter 
factor, nonzero derivatives do not contribute in the resulting 
series (19a). One can easily show this by integrating by parts 
with respect to Zrn + I. The expansion is valid except for the 
cuts (13), so that the series (19a) can be rearranged and both 
its terms dependent on s and those independent of s can be 
summed separately. The latter sum gives the normalized 
Jost function 
F + (.1,k)=F(.1,k) 

= 1 + .~o (-gyfO dZI J dfL(tl)···i~ dZn f dfL(t.) 

• 
X II [A A ~ I12(U rn + Vrn ~ I + ik,k) 

rn~ I 

XA ~A~1I2(Urn +Vrn +ik,k)] 

= lim r ~ I(U + l)A A + 1I2(S,k )w( .1,k,s), 
s_ik 

F ~ (.1,k) =F(.1, - k), (21) 

which is an analytic function of k everywhere except for the 
cut (13), provided v ~ I (T 2) < 00. The sum dependent on s is 

A + 112 1 
n(.1,k,s) = r(.1 +!)( -2ik)A~ 112 L 

I ~ I (A + ! - I)! 

{ 
dA + 1/2 ~ I [ 

X (z - 2ik) ~ A ~ 112 (s + ik) ~ I dz" + 112 ~ I 

+ .~I ( - g)" i~ dZI f dfL(t l ) ... i~ dz. 

X f dfL(t.)(S+u. +v. +ik)~1 

X IT A A~1/2(Z + up + Vp~1 - u. - v. - ik,k) 
p~1 

XA ~A~1/2(Z+Up~1 +Vp~1 -un -v. -ik,k)]L~o' 
w~ ~~ 

w(.1ks)= r(U+l) [(-2ik)~A+I12F(.1 -k) " r (A + 112) , 
Xn(.1,k,s) + (2ik)~A+I12F(.1,k) 
Xn(.1, - k,s)]. (23a) 

Inverting the Laplace transformation (5b) and expressing 
the derivatives atz = Oby means of the Cauchy integral tak
en around a closed contour C in a tight neighborhood of 
Z = 0, we have 

q;(.1,k,r) = r(u + 1) [(2ik)~A+1I2F(.1 k) 
2ikr (A + 112) , 
xf(.1, - k,r) - (-2ik) ~A+1I2F(.1, - k) 

xf( .1,k,r)], (23b) 

where the Jost solution is given by the Born series 

f+ (.1,k,r) 

f(.1,k,r) 

=(_2ik)A+I12r~A+I12r(.1+l/2) j dse(s~ik)r 
21Ti Jc 

XA ~ A ~ 112(s - ik,k){ 1 + .~I ( _ gy 
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x f" dZI f df1-(t l ) ••• f" d~n f df1-(tn) 

Xexp[ -(Un +un)r] IT A''--1I2(s-Up _ 1 
p=1 

- Up - ik,k)A -A-I12(S - Up - Up - ik,k)} 

[f- (A,k,r) =f{A, - k,r)]. (22b) 

It converges absolutely and uniformly except for the upper 
cut (13) under the assumption v _ I (1"2) < 00. Integrating by 
parts with respect to Zn or s we easily verify again that (22b) 
satisfies Eq. (3). 

We stress, in this place, that the Jost solutions 
f ± (A,k,r) as well as the functions F ± (A,k) are determined 
only by the functionsf( A,k,r) and F ( A,k ), respectively, tak
en in the points ± k, where argk is not specified in any way. 
This statement applies to the Jost solutions and the Jost 
functions of Sec. 3 too. (This follows naturally from the deri
vation, which makes use of the fact that A are half-integers. 
For complex A, the point k = 0 becomes an additional singu
lar point of branch point type of the Jost solution and of the 
J ost function, so that their sheets in the k plane and, especial
ly, the quantity - k, must be properly defined.) 

A. The Jost solutions 

Substituting the expression (22b) for t/I( A,k,r) into Eq. 
(3), and carrying out some elementary transformations, we 
easily find that the Born series (22b) is a solution of Eq. (3) 
not only for a half-integer A but also for a general complex A 
of either sign. At the same time, owing to the complex power 
s - A - 112 in the factor A - A - I12(S - ik,k ), the closed con
tour C must be replaced by such an open one that the inte
grands in (22b) vanish in its initial and final point and that it 
encircles the point s = 0 in the anticlockwise direction 0 + . 

The asymptotic behavior of (22b) for r_ 00 is given by the 
first term of the Born series (g = 0). Thus this term must 
conform with the functionfo{ A,k,r) defined in the boundary 
condition (4b), if the expression (22b) is to represent the Jost 
solution. However, according to the integral representation 
of Hankel functions, 6 

fo(A,k,r) 
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= 1r- I exp(i ; (A - n)r(~ - A)( ~ y/2( ;k r 
X'' dse(S-ik)r~-1/2(s_2ik)"'-I/2 J oc: exp( - i1i + i[3) 

= fo ( - A,k,r) 

= 1r- 1 exp( _ i ; (A + ~»)rq +A)( k; )IIZ( 2: y 
X [ . ds e(s - ik )rs - A - 1I2(S _ 2ik) - A - 112 

oc exp( - iTT' + ifJ) 

for 1/31 < 1r/2 and - ~1r + /3 < argk < ~ 1r + /3, (24) 

so that the new contour must be identified with that given in 
Eqs. (24). In what follows we shall denote it by Cp . It goes 
from 00 exp( - i1r + i/3) along a line of constant phase to 0, 
encircles 0 in an anticlockwise direction and goes back along 
a line of constant phase to 00 exp(i1r + i/3). Changing /3 we 
achieve an extension of the analyticity region of k. By replac
ing the contour C in Eq. (22b) by Cp we get an analytic 
continuation of the Jost solutionf + (A,k,r) = f( A,k,r) 
= f( - A,k,r) in the complex A plane based, as usual, on the 

analytic continuation of the Schrodinger equation (3) and 
given by an explicit expression. Its virtue consists in the pos
sibility of the alternative sign choice of the complex variable 
A. 

In view of the exponential factors exp( - (un + un)r) 
this expression converges absolutely and uniformly for r> 0 
and any complex A provided v _ 1(72 ) < 00. Therefore, it re
presents an analytic function of k everywhere except for pos
sible poles or branch points at k = 0 and except for the re
gions of k defined by zeros of A factors in (22b). These 
regions change by changing /3 in the allowed bounds 
(1/31 < 1T /2), but they intersect in the upper cut (13), so that 
formula (22b) defines the "abstract" Jost solution as an ana
lytic function of k except for the natural upper cut (13) and, 
possibly, k = O. According to the relation (24) the integral 
representation ofthe function/o(A,e - irrk,r) with 
- 1r < argk < 21T is identical with that for the second func

tion in the boundary condition (4b). 
Hence, we define the Jost solutionf _ (A,k,r) as 

f _ (A,k,r) = f( A,e - i-rrk,r) [with the induced lower cut 
(13)]. We see at the same time, that the quantity - k is 
defined as e - i-rrk in the case of a general A. 

In some cases the integration contour Cp can be re
placed by the line [0, ooeiP ), of constant phase 

(c) 

FIG. J. (a) Modification of the con
tour Cli ( - 11/2 <f3<O, 

2 ik largk - PI <1T/2); (b) Modification 
of the contour Cli (11'/2 > P>O); (c) 
Transformed contour. 
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.c exp( _ irr + i{3) ds s - A f(s) 

r"" expU{3) 

= 2i sin(1TA) Jo dt t -Af( - t) 

for Re( I - A ) > 0, (25) 

and for suitable functionsf(s).1t is the standard modification 
used in the integral representations of the Hankel as well as 
the r functions. 7 

For any k*,O with I argk I < 1T under the suitable choice 
of p, i.e., - 1T/2 + argk <P < argk + 1T/2, one can always 
close the integration contour C{3 in the expression (22b) into 
the closed loop depicted for the four cases in Figs. lea) and 
l(b) and replace it by that depicted in Fig. l(c), which de
pends on the location of k only. The dashed regions are those 
ones of 2ik, where possible singularities of the used integral 
representation of the Jost solution may exist. It is, again, the 
same modification, which is carried out in the integral repre
sentations of Bessel and Hankel functions. 6 Since Jost solu
tionsf( A,k,r) are even functions of A, it results in 

f( A,k,r) - exp [i1T( ± A + ~)] f( A,e - hrk,r) 

=X( ±A,k,r) 

exp( - i ; (± ,.1,+ !»)(2k) ± A + I12r'FH 112 

r(±A + 112) 
X 2 . 

1Tl 

X I ds esrA 'f'A - 112(S,k)( I + n~1 ( - g)" 

X LX> dZ I f dJ.l(t l )··· 1"" dZn f dJ.l(tn ) 

Xexp[ -(Un +vn)r] IT A ±A-1/2(S_Up_ I 
p=1 

- vp,k)A 'FA - 1I2(S - Up - Vp,k») , (26) 

where the integration loop L has the form given on Fig. 1 (c), 
i.e., it encircles the point - ik in an anticlockwise direction 
and the point ik in a clockwise direction. The relation (26) 
becomes the well-known relation between Bessel and Han
kel functions6 for g = 0, considering that the first term of the 
right-hand side (26) equals exp [ i( 1T 12)( ± A - 1/2)] 
X (21Tkr)1!2J 'FA (kr), according to Ref. 6. As the loop L is 
closed, we easily find out by direct substitution in Eq. (3) too, 
that the functions X ( ± A,k,r) defined by Eq. (26) are its solu
tions. Taking s = ikx in their integral representation (26) we 
see that 

x( ± A,e - irrk,r) = - exp[i1T( ± ,.1,+ !)]X( ± A,k,r) 

for Ik I <71/2. (27) 

The double application of this relation to the inverted rela
tion (26) (with a noninteger A) 

f( A,k,r) = (2i sin1TA ) - 1 [e i1TAx( - A,k,r) - e - i1TAX( A,k,r)] 
(28) 

gives the well-known circuit relation forf( A,k,r). 3.1 We shall 
not, however, give it nor will we discuss the many other 
known and elementary relations and properties of Jost solu-
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tions,1-4 which follow from the explicit expressions here. We 
remark only that the integration contour C{3 can also be ex
tended to an open and nonintersecting loop unlike that de
picted in Figs. 1 (a) - (c) and thus obtain other relations. 

B. The Jost functions 

When the analytic continuation of the normalized Jost 
function (21) to the complex region of A is to be found, it is 
better to proceed from its alternative definition 1-4 

fo (A,k )F (A,k) = lim Ur A - I/y( A,k,r) 
r_O+ 

lim UrA - I/y( - A,k,r), (29a) 
r __ O I 

where the kinematic factor 

!o(A,k)= lim Ur A- I12!o(±A,k,r) 
r-.o' 

= 1T- I12 exp[ - i(1T12)(A -!)] 
X2A + 1/2r(l + A)k -A + 112 

= r(U + 1) (2ik)-HI12. 
rCA +!) 

(29b) 

We shall see that it is indeed identical to the expression (21) 
for a half-integer A. In view of this definition we are also not 
obliged to distinguish between functions F + (A,k) and 
F _ (A,k), since evidently F + (A,k) = F(A,k) and 
F _ (A,k) = F (A,e - i1Tk ) with the similar context as for the 
Jost solutions. 

When the expression (22b) is substituted forf( A,k,r) in 
(29a) the first limit is easily obtained. The corresponding 
Born series represents an (multivalued) analytic function of 
k except for k = ° and the upper cut (13) and a function of A , 
which is analytic everywhere (for any regular k ) provided 
v _ 1(72 ) < 00. The modification (25) can be used for 
~ > Re.i > O. Before carrying out the second limit we note 
that the simultaneous sign change of the first arguments of A 
factors does not change the expression in the brace of Eq. 
(22b). However, 

lim rZA r"" dZn A A -112( - S + Vn + Un -I + Zn 
r-----+O I Jo 

+ ik,k ) e - Z,,' = r (U ), for ReA. > 0, (30) 

so that successively under the use ofEq. (19a) 

F(A,k) = 1 + (2e-i1T/2k)-A+1I2r( -A + nro-1(A,k) 

X -. ds - g dJ.l(t) A A -1I2(S - ik,k) 1 i iT2 
21T1 C~ T, 

Xw( A,k, - s + t + ik) 

= 1 + eirr( A - (12)(2i cOS1TA ) - I 

X i dsA A - 112(S - ik,k ) 
C

" 

X ntl ( - gy L"" dZI J dJ.l(t1 ) ... 

xL"" dZn_ 1 f dJ.l(tn _ l ) J dJ.l(tn ) 

xA - A - 1/2( - S + VI + ik,k ) 
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n-I 
X IT A A - I12( - S + Up + Vp + ik,k) 

p~1 

XA - A - I12( - S + Up + Vp + I + ik,k) 

= I - i ~ ( ~ yr -I( A + I) 

X (X dr rl/2 V (r)H \2)(kr)cp (A,k,r), (31) 
Jo 

where passing from the first expression to the last one we 
apply relations (Sa), (24), (29b), and (1). It is the well-known 
formula 1,3 valid for general potentials V (r) and applicable as 
soon as the written integral exists. According to the transfor
mation (25) the second expression with fJ = ° turns into the 
expression (21), which holds now for any complex A with 
ReA> - 1 and k with - ~1T < argk < 17'/2. The series in Eq. 
(31) converges absolutely and uniformly in its regular points 
k,ifv. I (T2)<00 forReA>!andvo (T2)<00 for-1 
< ReA <!. It can be analytically continued even to the re
gions with ReA < 0, when the function,u(t ) belongs to the one 
of the classes K introduced in Sec. 2. Then the series in Eq. 
(31) converges absolutely and uniformly in its regular points 
k, as soon as ReA > - !(K +1). Thus it represents an ana
lytic function of k except for the upper cuts (13) and k = 0, 
respectively, and an analytic function of A in the half-plane 
ReA > - ! (K + I) except for the possible simple poles at 
A = - !, - ~, .... Using I'Hospital's rule we easily find out 
that poles - 1, - i,···, - i - [q/2] are not realized, as 
soon as the function,u(t) belongs to the subclassqofEq. (7b) 
as well. The detailed proofs of these particular statements 
are based on the inequalities of the type (20) and are carried 
out along the same lines as in Sec. 3 or as in the beginning of 
this section. 

Ifwe know, now, the analytic continuation of both the 
Jost solutions and the Jost functions, we can construct the 
analytic continuation of the regular solution cp( A,k,r) to the 
region of the complex values of A. Additional poles, howev
er, appear then at the negative integers owing to the factor 
rCA + 1) in Eq. (23b). 

Limit (29a) can be carried out in the relations (26) and 
(28) too. In Eq. (28) it leads to the circuit relation of the Jost 
function under the use offormula (27). In the minus alterna
tive of Eq. (26) we get 

F(A,k)-F(A,e- i7rk) 

= _ g exp[hr( ,1,- !)] (T2 d,u(t) 
2iF(U + 1) COS1TA J, 

X i ds A A - 1/2(S,k )lU( A,k, - s + t) 

irT ( k )A 
r(A+l) 2 

X fcc dr r1l2 V (r)JA (kr)cp (A,k,r), (32) 

according to the formulas (29), (30), (19a), (Sa), and (1). 

c. Behavior of the Jost functions as 1,1, 1- 00 (Imk = 0) 

Since the exponential factor exp(sr) is absent in the first 
and second expressions (31) for the normalized Jost function 
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the integration contour C{3 can be deformed rather arbitrar
ily. As k is taken real and positive, the choicefJ = !1T simpli
fies the investigation of the asymptotic behavior of 
F( A,k) = F*( ,1,*, - k )withrespecttoA.Itsdependenceon 
A is given by means of the factors 

IA(s-up -vp -ik,k)A -I(S-Up -vp+ 1 -ik,k)IA, 
(33a) 

exp[iA [argA(s-up -vp -ik,k)-argA(s-up -vp+ I 

- ik,k)] J (p = O, ... n). (33b) 
The absolute value in (33a) is less than unity if the con

tour C(I!2)7r encircles the origin s = ° in the close neighbor
hood (IResl < !TI). Hence F(A,k) = 1 as ReA-oo and 
ImA = const, according to the (second) expression (31) and 
(33a). 

The phases of the expression (33b) satisfy the relations 

O<argA (s - up - vp + I - ik,k) 

<argA (s - up - vp - ik,k) 

<argA (s - up _ I - vp - ik,k) 

<17' for p = 1, ... ,n, 
argA (s - VI - ik,k )<argA (s - ik,k) + 217', 

largA (s - ik,k)1 <17', (34) 

where the equality applies in the isolated integration points 
only. Thus F( A,k) = 1 as ReA = const and ImA-oo ac
cording to Eq. (31) too. 

The sum (series) in the second expression (31) con
verges absolutely and each ofits terms tends to zero accord
ing to the relations (34) as ReA = const and lmA- - 00. 

Because of the inequalities 

O<argA (s - Un _ I - Vn - ik,k) 
n -I 

+ I [argA(s-up_1 -Vp -ik,k) 
p~1 

- argA (s - Up - Vp - ik,k)] 

<argA (s - VI - ik,k), (35) 

its order with respect to ImA- - 00 can be determined by 
its first term only, so that 

according to Eqs. (31) and (23b) for this limit. But this rela
tion, in which p( A ) = 0 (q( A » means that I peA ) I 
= constq( A) as 1,1, 1-00, determines the asymptotic behav

ior of F( A,k) in all the (three) cases investigated as follows 
from the preceding considerations. 

Replacing the Hankel function by the known combina
tion of the Bessel functions and using the integration formu
las of Ref. 7 for products of the Bessel and exponential func
tions we have 

rOO dr (T2 d,u(t)e - Ir(i sind) - I [e i7rA JA (kr) 
Jo JT1 

- J _ A (kr) ]JA (kr) 

exp(i1TA) iT2 d (t)[Q (1 ~) 
i1Tk sin1TA T, Il A - 1/2 + 2k 2 
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k i1r d COMq7 ] 
- q7 , 

o (t 2 + 2k 2 + 2k 2 COStp)1I2 
(37) 

where Q.< _ 112 (z) is the Legendre function of the second 
kind. Its asymptotic behavior as IA 1-00 follows from the 
formulas given in Ref. 7. The second term in (37) is asymp
totically constA - 1. In such a way the order terms in Eq. (36) 
can be estimated (see also Ref. 3) for any asymptotic values 
of A, where either larg,t 1< 11T or ReA. > - 1 and 
lmA- ± oo.AsF(A,k) = 1 in these cases, the Sommerfeld
Watson transformation can be performed. The integral 
along the imaginary A axis in this transformation can be 
pushed further to the leftl if the function ,u(t ) belongs to the 
subclass (7b) as the relation (37) then holds for ReA. 
> - (q + 1)/2 too. 
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The radial Schrodinger equation is solved for an effective potential that can be considered as a 
gene!'alization of a potential suggested by Hylleraas and Risberg and by Hulthen. For the 
scattering problem the phase-shifts are deduced. For the bound state problem the energy 
eigenvalues and the normalized eigenfunctions are derived. Closed-form expressions for certain 
matrix elements are calculated, and for the particular case of expectation values a recurrence 
formula is derived. In an appendix Levinson's theorem is discussed for the particular potential 
under consideration. 

1. INTRODUCTION 

In studying the nature of the interaction of elementary 
particles, Yukawa' suggested as an interaction potential be
tween a neutron and a proton the expression C exp( - vr)/r, 
where C and v are constants. The same potential was used by 
Moller and Rosenfeld2 in their investigation of the station
ary states of a deuteron. Also, N. Bohr3 used a potential of 
this form when examining the scattering of charged particles 
in atomic fields. The corresponding radial Schrodinger 
equation for s states, i.e., for angular momentum / = 0, was 
solved numerically by Wilson4 and by Sachs and Goeppert
Mayer. s As an approximation of the interaction potential, 
Hylleraas and Risberg6 and Hulthen7 suggested the expres
sion C exp( - vr)/[1 - exp( - vr)], for which the Schro
dinger equation was solved analytically for the ground state 
by Hylleraas and Risberg and for any s state by Hulthen. The 
usefulness of this potential for calculations of scattering and 
bound states in atomic potentials was emphasized by Lind
hard and Winther8. A modification of the above-mentioned 
approximate potential was used by Gustavi. 9 As an approxi
mation of an alternative two-nucleon interaction potential 
C exp( - vr)/(vrf, Gustavi used the expression 
C exp( - vr)/[1 - exp( - vr)]2, for which he discussed the 
solution of the radial Schrodinger equation for s states. 

A linear combination of the previously mentioned ap
proximate potentials, - A exp( - vr)/[l - exp( - vr)] 
+ p exp( - vr)/[l - exp( - vrW, where A and v are posi

tive constants andp>O [cf. Eqs. (4a), (4b)], was treated as an 
effective potential by Rosenzweig and Krieger lO in their in
vestigation of exact leffreys-Wentzel-Kramers-Brillouin 
(JWKB) quantization conditions by means of a method de
veloped by N. Froman and P. O. Froman." With this meth
od the exact energy eigenvalues were calculated in Ref. 10. 
By the use of the factorization method, Infeld and Hull 12 

have calculated the same energy eigenvalues. 
. The present author will use the last-mentioned poten-

tIal as a effective potential in the radial Schrodinger equa
tion. This potential can, for small vr and for fixed angular 
momentum /, be considered as a generalization of the poten
tial suggested in Refs. 6 and 7, from the case of angular mo
mentum / = 0 to the case of a general angular momentum /. 

It should, however, be emphasized that this interpretation 
implies an / dependence of the physical potential. This will be 
further discussed in Sec. 2. The phase shifts for this potential 
are calculated. The energy eigenvalues and the normalized 
eigenfunctions are derived, as well as closed-form expres
sions for matrix elements of products of powers of exp( - vr) 
and 1 - exp( - vr). For the particular case of the expecta
tion values, a derivation is given of a recurrence formula 
which, in the limit when the parameter v tends to zero, trans
forms into Kramers' recurrence formula (see Sec. 7) for the 
expectation values of powers of r for the hydrogen atom. 

In an abstract of a paper contributed to an American 
Physical Society Meeting but apparently never published, 
Manning and Rosen '3 gave the eigenvalues and outlined ex
pressions for the nonnormalized eigenfunctions for a poten
tial equivalent to the one treated in the present paper. Since 
Manning and Rosen published their results without any 
derivation, and since Hulthen treated only a special case of 
the potential and also used a different method, the author 
thought it worthwhile to publish the present derivation of 
the eigenvalues together with the phase shifts, the normal
ized eigenfunctions, and the results concerning the above
mentioned matrix elements. 

2. THE POTENTIAL 

Consider the radial Schrodinger equation 

( _!!....~ + V(r) + /(/ + 1)1/
2

) U = Eu, (1) 
2m d,z 2m,z 

where we use standard notations. We shall solve this equa
tion exactly for the case when the effective potential is (cf. 
Ref. 13 and 14) 

Vetr(r) 

= V(r) + /(/ + 1)~ 
2m,z 

_ A - p + P (2) 
e,-r _ 1 (evr _ 1)2 

In Fig. 1 the effective potential (2) is plotted for two different 
choices of the real constants A, p, and v. 

When vr..(l, Eq. (2) can be written 
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b = 2m(A - 11)/~V = 2Z /vao - I (I + I), (5b) 

where ao = 1i2/(me2
) is the Bohr radius, and the new variable 

Z= vr. (6) 

The radial Schrodinger equation (1), with 
VCr) + I (I + 1)/(2m~) given by (2), can, by means of (4b), 
(Sa), (5b), and (6), be written 

d 2U + (a + _b _ _ I (I + 1) )u = O. 
dz2 e'-1 (e'-1)2 

(7) 

-nr-------====:::========~ For I = 0 this equation is simplified into Eq. (5.4) of Ref. 6 
rand Eq. (6) of Ref. 7. 

FIG. 1. Effective potential V,.-(r) = - (A - f.l)/[exp(vr) -1] 
+ f.l/[ exp( vr) _1]2 plotted for two different choices of the real constants A, 

f.l, and v. In both cases v> O. The curve indicated by I is valid for A > f.l >0 
and curve II is valid for f.l > A > O. 

(3) 

If V (r) represents an attractive screened Coulomb potential, 
which tends to Ze2/r as v-o, Eq. (3) gives 

A = vZe2
, 

_ v 1(/ + 1)172 

11- 2m' 

(4a) 

(4b) 

where Ze is the charge of the nucleon. For physical reasons 
we choose the constants v and I such that v> 0 and /'~O 
which, according to (4a) and (4b), implies that A > 0 and 
11>0. 

Using (4a) and (4b), we can write (2) as 

VCr) = _ vZe
2 + vi (I + 1)17

2
e

vr 
I (I + l)~ 

evr 
_ 1 2m(evr 

- 1)2 2m~ 
(2') 

and (3) as 

VCr) = _ Ze
2 + _1_(6vze2 _ vi (I + 1)~ ) + .... 

r 12 2m 
(3') 

Thus it is seen that the physical potential V (r) is I dependent. 
If r is finite and the parameter v-o, we get from (3') the 
potential of a hydrogenlike ion. 

In the following, the constants A and 11 are chosen ac
cording to (4a) and (4b). 

3. SOLUTION OF THE RADIAL SCHRODINGER 
EQUATION 

1733 

We introduce the new constants 

a=2mE/~v, 
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(Sa) 

Defining 

5 = e-', (8) 

we can write (7) as 

d 2U J.. ~ (~ b _ I (I + 1) )u = 0 (9) 
d5 2 + 5 d5 + 52 + 5 (1 - 5) (1 - 5)2 . 

To solve this differential equation we shall use the method 
described in Ref. 14 (cf. also Sec. 10.2 of Ref. 15). Thus we 
insert 

(10) 

into (9), getting 

d 2V J.. (1 + 4a 4b _ 41 (I + 1) )v = o. 
d5 2 + 4 52 + 5 (1 - 5) (1 - 5 )2 

(11) 
Defining new constants p, q, and s as 

p = -2v'~ = -2( -2mE)1/2/liv, (12a) 

q = - (21 + 1), (12b) 

s = 2[ - a + b + 1(/ + 1)j1/2 = 2[2m(A - E)j1/2/liv, 
(12c) 

we can write (11) in the form 

d 2V 1 ( 1 _ p2 1 + S2 _ p2 _ q2 1 _ q2 ) 
d5 2 + 4 ~ + 5 (l - 5) + (1 _ 5)2 V = O. 

(13) 

The solutions of (13) are generalized hypergeometric func
tions. In order to obtain these solutions in the form of Gauss' 
hypergeometric functions, we introduce a new dependent 
variable y defined by 

v = 50 - p)l2(5 _1)0 - q)/2y . (14) 

Inserting (14) into (13), we get 

5(1-5) d
2

y + [(I-p)-(1-p-q+l)5] dy 
d5 2 d5 

- [~(l- p)(1 - q) - ~(1 + S2 - p2 - q2)]y = O. (15) 

Defining 

a = !(1 - p - q) + !S, (16a) 

P = ~(1 - p - q) - Irs, (16b) 

Y = 1 - p, (16c) 

we can write Eq. (15) as 

5(1_5)d
2y 

+[y-(a+p+l)5] dy -apy=0.(17) 
d5 2 d5 

This is the hypergeometric differential equation, the solu-
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tions of which are given for the nondegenerate case in Sec. 
2.3.1 of Ref. 16 and for the degenerate case in Sec. 2.2.2 of 
Ref. 16. 

Thus, according to (10), (14), and (8), the solution of 
the radial Schr6dinger equation (1), with (2) inserted, can be 
written 

u = el'z/2( e - Z _ 1) (I - q)/2y 

= e-z(-a)"'(e- Z _l)'+ly , (18) 

where (12a) and (12b) have been used to obtain thelastmem
ber. Wheny is a general solution to Eq. (17), we get the 
general solution of (1) from Eq. (18). To find the physically 
acceptable solution of (1) we have to impose the condition 

u(O) = o. (19) 

The solution of (17), for which (18) fulfills the condition 
(19), can be written 

y=NF(a,/3; a+.8+1-y; I-e-,), (20) 

where N is a constant factor and F(a,/3; a +.8 + 1 - y; 
1 - e - ')is the hypergeometric function defined in Sec. 2.1 
of Ref. 16. The wavefunction satisfying Eqs. (1), (2), and (19) 
is thus given by (18) and (20) as 

u = Ne-Z(-a)"'(e- Z _1)1+1 

XF(a,/3; a +.8 + 1- y; 1- e-,), (21) 

where N is to be chosen conveniently. Using relations be
tween Kummer's solutions of the hyprgeometric equation 
given by Eqs. (35), (1), (5), and (17) in Sec. 2.9 of Ref. 16, we 
can rewrite (21) as 

u= N F (a+.8+ 1 -y)F(I-y) e-z(-a)'" 
F (.8 + 1 - y)F (a + 1 - y) 

x(rZ -1)1+ IF(a,/3;y;e-,) 

N F (a + .8 + 1 - y)F (y - 1) ez< - a)'" 
+ F(a)r(.B) 

x(e- Z -I )1+ IF(a + 1 - y,/3 + 1 - y;2 - y; e-,). 
(22) 

4. THE SCATTERING PROBLEM 

In this section we shall be dealing with energies such 
thatE> 0, which according to (5a) implies that a > O. Choos
ing v' - a = iv' a, letting z- + 00 in (22), and using the fact 
that both the hypergeometric functions in Eq. (22) tend to 
unity when z_ + 00, we obtain 

u-N r(a +.8 + 1 - y)r(1 - y) (_1)1+ Ie - iz(a)'" 
r (.8 + 1 - y)r (a + 1 - y) 

N r (a+.8+ 1-y)r(y-l) (_1)I+l eiz(a)'" 
+ r(a)r (.B) 

= 2N( _1)1+lr(a +.8+ 1 _ y) I r(y -1) I 
r(a)r(.B) 

xcos(zV~ + arg r(y -1) ), z_ + 00. (23) 
r(a)r.8) 

Thus we have obtained the correct asymptotic behavior for 
large positive values of z. From (23) we can deduce the phase 
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shift 8 1 as 

8 =l(l+I}1T+arg r (y-l) 
1 2 r(a)r(f3) 

(24) 

where the argument shall be chosen such that 8/-0 as 
V(r)_O. For the special caseE = A, we get from (12c), (16a) 
and (l6b) that s = 0 and a = .8, and (24) can thus be simpli
fied to 

8 = 1(1 + 1)17' + argr(y -I) . 
1 2 [r(a)]2 

(24') 

The phase shift is further discussed in the Appendix. 
We recall that, according to Sec. 2, different values of 1 

correspond to different physical potentials. 
The behavior of u for small z is easily obtained from (21 ) 

as 

(25) 

5. THE BOUND-STATE PROBLEM 

In the present section we are concerned with energies 
such that E < 0, which according to (5a) implies that a is 
negative and hence that V - a is a real parameter. This pa
rameter shall be chosen to be positive. 

In order to find the physically acceptable solution for 
the bound-state problem, we have to impose the boundary 
condition 

u(r)-o, r_ 00 . (26) 

Letting z- + 00 in (22) and recalling that we have chosen 
v' - a to be positive, we realize that the solution fulfills the 
condition (26) when 

a = - (k - 1), (27) 

where k is a positive integer. By the use of (16a) and (12a), 
(12b), and 02c), the quantization condition (27) can be 
written 

V-=-;;=+(b+:~71) -(k+l)), (28) 

i.e. [cf. Eqs. (4b) and (5b)], 

V -a-~( 2mA -(k I») (28') 
- 2 (k + l)(fiV)2 + . 

An investigation of (21) for the special value E = 0 shows 
that, when z_ + 00, the condition (26) is not fulfilled, i.e., 
that E = 0 is not a bound state. Hence v' - a shall be posi
tive, and therefore it is seen from (28') that k can assume only 
those positive integers that fulfill the inequality 

0< k < [2mA ] 1/2/fiv - I. (29) 

From (5a) and (28') we get the possible energies for the 
bound states: 

E = _ fi
2
vZ ( 2mA _ (k + 1»)2, (30) 

8m (k + 1 )(fiV)2 

where k is a positive integer fulfilling (29). 
Letting the parameter v-o in (30), putting Z = 1, and 

noting that k + 1 = n is the principal quantum number, we 
arrive at the energy eigenvalues of the hydrogen atom. 

The result in formulas (29) and (30) is in agreement 
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with the result obtained by Infeld and Hull. 12 Manning and 
Rosen J3 gave the eigenvalues (30) but without the condition 
(29). 

The eigenvalues (30) have also been obtained by Ro
senzweig and KriegerlO by means of a phase-integral tech
nique, II but the condition corresponding to (29) has not been 
given correctly by the authors of Ref. 10. The condition in 
the last column of their Table I for the case under consider
ation should, with their notations, be 

n < VA /a - ~ -1(1 +4b /a2)1/2. (31) 

Inserting (27), (16a), (16b), (16c), (12a), (12b), and 
(12c) into (21), we get 

Uk _I = Ne-z<-a)"'(e- Z -1)/+IF( - (k -1), 

21 + 1 + k + tv'~;21 +2;1 - e- Z
), (32) 

where the index k - 1 o~ U enumerates the quantum states in 
such a way that the ground state has the index O. Formula 
(32) was given by Manning and Rosen,13 but only with the 
specification that the function F should be a terminated hy
pergeometric series. 

We shall now determine the normalization factor N in 
(32) from the normalization condition 

L'" luk _ 1 12 dr= 1. (33) 

Using formulas 15.4.6 of Ref. 17 and 10.8 (13) of Ref. 18, we 
can express Uk _I given by (32) in terms ofJacobi polynomi
als instead of hypergeometric functions, getting 

U = N( -1)/+ k2 - [/+ 1+ (- a)'''J r(k )r(21 +2) 
k - I r (21 + 1 + k) 

x(1 - xy -a)'''(1 + xy+lp~(~t)"'·2/+I(X), (34) 

where 

x = 1 _2e- Z
• 

Inserting (34) into (33) and using (35) and (6), we get 

/N12 2 -2[/+1 +<_a)"'J(r(k)r(21 +2»)2 
V r(21 + 1 + k) 

X f~1 (1 -X)-I +2(-a)"'(1 +X)2/+2 

X (P~<~t)'''·2/+ I(XW dx = 1. 

(35) 

(36) 

Writing one of the 21 +2 factors 1 + x in the integrand of 
(36) as 

1 + x = 2 - (1 - x), (37) 

and using formulas (5) and (6) in Sec. 16.4 of Ref. 19, which 
are valid since the conditions 

and 

Re(21 +1) > -1 

are fulfilled, we get 

INI2 (l+k) 
v 2( - a)l!2(l + k + ( - a)1!2] 
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(38a) 

(38b) 

r(2! + 1 + k)r (k + (- a) liZ) 

X r(2/+1 +k+2(-a)1!2)r(k) 

x(r(k)r(21 +2»)2 = 1. 
r(21 + 1 + k) 

Choosing the phase of N conveniently, we obtain 

(39) 

N=(_1)/+1 1 (v 2(-a)1/2[l+k+(-a)I!Z] 
r(21 +2) (l + k) 

r(21 + 1 + k)r (21 + 1 + k + 2( - a)1!2 ) )112 
X . 

r(k)r (k + 2( - a)1/2) 
(40) 

Using (40), we can write the normalized wavefunction 
(34) as 

Uk_I = (-I)k-12 - [/+1 +(-a)'''J 

( 
2( - a)1/2[1 + k + (_ a)1/2] X v~--~~~--~--~~ 

(I + k) 

X r(k)r(21 + 1 + k +2( - a)1/2 »)112 
r(21 + 1 + k)r (k +2( - a)1/2) 

x(1-xy-a)'''(1 +X)/+lp~(~t)'''·2/+I(X). 
(41) 

Using (32) and (40) instead, we get an alternative expression 
for the normalized wavefunction: 

= (v 2( - a)1/2[1 + k + (- a)1/2] 

(I + k) 

X r(2/+1 +k)r(2/+1 +k+2(_a)1/2»)1I2 
r(k)r(k +2( - a)I/Z) 

X 1 e- Z(-a)"'(I_e-,)/+1 
r(21 +2) 

XF( - (k -1),21 + 1 + k 

+2V~;2! +2;1 - e- Z
). (42a) 

For small values of z, Eq. (42a) behaves like 

( 
2( - a)1!2[l + k + (- a)1/2] 

Uk - V ---'----'---"----~--'-~ 
-I (I + k) 

X r(21 + 1 + k)r (21 + 1 + k + 2( - a)1/2) )112 
r(k)r (k + 2( - a)1!2) 

X r(2/+2) i+
l

, z-O. (42b) 

Inserting (6) and (28') into (42b), this equation can after 
simplifications be written 

U _ (2Z/ao)1 + 312 

k-l (21 + 1)!21/2(1 + k)3/2 

X [1 - (;i Y (l + k )4 r)~Io {( 1 - (I ~2 k )2 ) 

X [1- (;i)\1 + k)2l]r12r
+

l
, r-o, (42c) 

where ao = rr /me2 is the Bohr radius. 
When we particularize (29), (30), and (42a) to I = 0, we 

obtain the formulas given by Hulthen in Sec. 1 of Ref. 7. 
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6. DEFINITION AND CALCULATION OF CERTAIN 
MATRIX ELEMENTS vIt:,~ l,k'-1 

Assuming that 

Re (A + v' - a k + v' - a k' ) > ° (43a) 

ducts of the A th power of e - vr and the B th power of 
1-e- vr as 

<.If t'~ I,k' _ I 

= (Uk _ 1 l(e- V jA(l-e- V j Bluk '_I) 

and 

Re(B + 21 + 3) > 0, (43b) 
= L'" uLI(e- V jA(l_e- V jBUk '_1 dr, (44) 

A and B being integers, we define matrix elements of pro- The conditions (43a) and (43b) are to be fulfilled in order to 
make the integral in (44) convergent, Inserting (6), (35), and 
(41) into (44), we get 

vltt,~ I,k'-I 

= -1 k+k'2 - [2/+2+A +B+(- a,)'''+(-ad ",](2( - ad 1/2 [1 + k + (- ak Y/2]r(k)r(21 + 1 + k +2( - a k )1/2) 

( ) (l + k)r(21 + 1 + k)r (k +2( - ak)l/Z) 

X 2( - ak,)1/2[1 + k' + (- ak ,)1/2]r(k ')r(21 + 1 + k' +2( - ak,)1/2) )112 

(I + k ')r(21 + 1 + k ')r (k' +2( - ak,)1/2) 

Xfl (1 - X)A -I + (- a,)'" + (- ad"'(l + X)B+2/+2 p!(~/,)",,2/+ I (x) p~(,= ~')''',2/+ I (x) dx, 
-I 

(45) 

For some diagonal matrix elements, the integral in (45) can be evaluated in a fairly direct way. Ifwe put k = k', A = 0, 
and B = - 1, the conditions (43a) and (43b) are fullfilled and (45) can be written 

vlt0.- I = 2 - [2/+1 +2(- a,),,,]2( - ak )1/2(l + k + (- ak )1/2)r(k)r(21 + 1 + k +2( - ak)1/2) 

k-I,k-I (l + k)r(21 + 1 + k)r (k +2( _ ad1/2) 

X f-I (1 - x) -I +2(- a')'''(1 + x)2/+ I [p~(~la')''',21+I(X)]2 dx, 

Using formula (6) in Sec. 16.4 of Ref, 19 in (46), we obtain 

JlZ'~ik_1 = Cl + k + v' - a k )/(1 + k), 

If instead we put k = k " A = 0, and B = - 2, the conditions (43a), (43b) are still fulfilled and (45) can be written 

vito, -2 = 2 - [21 +2( - a,)'''] 2( - ad
1/2 (l + k + (- a k )1/2)r(k )r(2/ + 1 + k + 2( - ad

1/2
) 

k - I,k - I (I + k )r (21 + 1 + k)r (k + 2( _ a
k

) 112) 

X r I (1 - X) -I +2( - a')'''(1 + X?I [p~(~la')"',21+ I (x) F dx, 

Inserting in the integrand of (48) a factor 1 as 

1 = HO + x) + (1 - x)] 

and using formulas (6) and (15) of Sec, 16.4 of Ref, 19, we obtain 

vlt
0
,-2 _ [I + k + (- ak)1/2][21 + 1 +2( - a k )1/2] 

k-I,k-l - (/+k)(2/+1) , 

The matrix elements given by (47) and (50) will be used in the next section, 

(46) 

(47) 

(48) 

(49) 

(50) 

We shall now return to the calculation of the general matrix element JI t,~ 1 ,k' _ I ,Inserting formula 22.3, 1 of Ref, 17 into 
(45), we get 

1736 

// A B __ 2 - [21 + A + B + k + k' + ( - a,)'" + ( - a, .)'''1 
.At k·-I.k'-I 

X(2( - ad1/2 [1 + k + (- akY/2]r(k)r(21 + 1 + k +2( - ak)1/2) 

(I + k)r(21 + 1 + k)r (k +2( - ak)l/l) 

X 2( - ad1/2 [1 + k' + (- ad1!l]r(k ')r(21 + 1 + k' + 2( - ak ,)1/2»)IJ2 
(I + k')r(21 + 1 + k')r (k' +2( - ak,)1/2) 

X k - I k' - I ( _ 1) i + j (k - 1 + 2~ - a k) 1;2) ( k + 21 .) (k ' - 1 + 2~ - a k' ) 1/2) ( ~' + 21 .) 

,..~o /~o I k - 1 - I J k - 1 - J 

Xfl (1 +X)B+21+2+i+j(1_X/+ k '+A-3-i- j +(- a,)'"+(-ad''' dx. 
-I 
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Putting 

x=2X-l (52) 

in the integrand of (51) and using the definition of the.B function and the formula which expresses the.B function in terms of the 
r functions, i.e., formulas 6.2.1 and 6.2.2 of Ref. 17, we get 

Jlt,~ I,k' ~ I = (2( - ak)I/2[1 + k + (- as/
2
]F(k )F(21 + 1 + k +2( - ak)I/2) 

(I + k)r(21 + 1 + k)F (k +2( - as/2) 

X 2( - ak ,)1/2[1 + k' + (- ak,)1/2]F(k ')r(21 + 1 + k' +2( - ak,)1/2»)I!2 

(I + k')F (21 + 1 + k')F (k' + 2( - ak, )lt2) 

k~lk'~1 _ i+ j (k-l+2(-ak)I/2)( k+21 )(k'-1+2(-ak,)1/2)( k'+2/) 
X L L ( 1) . k _ 1 - . . k' - 1 -J' i=Oj=O I I J 

We have thus obtained an explicit formula for the general matrix element JI t,~ I,k' ~ I defined by (44). 

(53) 

As mentioned in Sec. 2, we get the potential of a hydrogenlike ion when v-o. Letting the parameter v-o in (53) and 
putting atthe same time A = OandZ = 1, we arrive, except for the factor ( - l)k + k', at formula (21) of Ref. 20, which is valid 
for the hydrogen atom. This last-mentioned factor is due to a different choice of phase in the normalization of the hydrogen 
wavefunction. 

In particular, for the diagonal matrix elements Jlt,~ I,k ~ I , we get from (53) the formula 

JlA,B 
k~l,k~1 

2( - adl/2[1 + k + (-ad 1/2]F(k)F(21 + 1 + k +2( - ak)I/2) 

(I + k)F(21 + 1 + k)F (k +2( - ak)I/2) 

X kfl kfl (_I)i+ j (k -1 +2~ - ak)I/2)( ~ +~ .) (k -1 +2~ - a
d1

/
2
) ( ~ +~ .) 

i=O j=O I k 1 I J k 1 J 

7. A RECURRENCE FORMULA FOR THE EXPECTATION 
VALUES JI:''!I,k ~1 

As an alternative method for obtaining the expectation 
values Jlt,~ I,k ~ I , we shall in this section derive a recur
rence formula by using a similar method as the one devised 
by Kramers in Sec. 59 of Ref. 21. Multiplying both members 
of the differential equation (9) by 

sA+2(1_0B+3 du _.:i.SA+I(1-0B+3U 
ds 2 

+ B + 3 SA +2(1 _ OB+Zu 
2 

(55) 

and integrating the resulting formula with respect to S, we 
get 

t (sA+Z(I_ s )B+3 du _.:i.sA+I(I-0B+3u 
~ ds 2 

+ B+3 SA+Z(1_0B+2U)(d
2
u J..-~ ~u 2 ds 2 + s ds + s Z 

+ b u- 1(1+1) U)ds=O. (56) s (1 - s) (1 - 0 2 

Assuming, in order that the integral in (56) be convergent, 
that [cf. (43a)] 

Re (A + 2 v' - a) > 0 (57a) 

and [cf. (43b)] 
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(54) 

Re(B +21 +3»0, (57b) 

and integrating (56) by parts, we get when u is normalized 
according to (33), 

CO(SA (1 - S)B +3) + CI (SA + 1(1 _ S)B +2) 

+cz(sA+2(I- s )B+I) +C3(SA+3(I- s)B) =0, 

(58) 

where 

Co =A [40 +A 2], (59a) 

CI = 2b (2A + I) - (B + 3)[40 + A 2 

+ (A + 1)(2A + I)], (59b) 

c2 = 3(A + l)(B +2)(B +3) -4(A + 1)/(/ + 1) 

- 2b (2B + 5), (59c) 

C3 = 4(B + 2)(1 + ~ + !B )(1- ! - !B). (59d) 

Choosing A = 0, we get Co = 0 from (59a), and (58) 
becomes 

(CZ - CI - c3)«1 - OB +3) + (C I - 2cz + 3c3 ) 

X (1 - s)B+Z) 

+ (cz - 3c3)«1 - OB + I) + c3 «1 - OB) = O. (60) 

Inserting (59b), (59c), (59d), (5a), (5b), (4a), (4b), and 
(30) into (60), and letting v-o, we arrive at Kramers' recur-
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renee formula for expectation values of powers of r for the 
hydrogen atom (Sec. 59 of Ref. 21). 

The formulas (33), (47), and (50) can be written 

(I) = 1, (33/) 

«(1 - g)-I) = [l + k + ( - ak )1/2]!(1 + k), (47') 

«I - 5y2) = [1 + k + (- aS/2 ] [21 + 1 +2( - aS/2 ]! 

(I + k )(21 + 1). (50/) 

By means of these expectation values together with the re
currence relation (60), one can obtain the expectation value 
of any power B of 1 - 5 fulfilling the condition (57b). Exam
ples of expectation values thus calculated by means of the 
recurrence formula (60) are 

(1-5)=1- 2(-a)'/2[b+2/(/+l») (61) 
[[2k +21 +2( - a)1/2 f -lj(k + I) 

and 

«1 g)2) _ 1 2( - a)1/2 

8{ [k + 1 + ( - a)1t2f -1 j(k + l) 

x( [b +2/(1 + 1») [-8a + 14b -14 +201(1 + 1) ) 
{ [2k + 21 + 2( - a) 1;2 f -lj 

-21(1 + 1) ). 

(62) 

APPENDIX 

In this Appendix we shall investigate the validity of 
Levinson's theorem for the particular potential under con
sideration. The theorem can be formulated as follows: Pro
vided the physical potential satisfies the conditions 

1'" I V(r)lrdr< 00, (63a) 

100 

lV(r)lr dr< 00, (63b) 

the phase shift ° I (E) and the number NI of bound states with 
angular momentum 1 are connected by the relation 

0/( +0) - 0/( + (0) 

(NI +!)1T if 1 = 0 and 10(0) = 0, 

= NI1T otherwise, 

(64a) 

(64b) 

whereiI(E) is the Jost function defined according to Chap. 
12 in Ref. 22. 

For the physical potential given in (2/) the conditions 
(63a) and (63b) are satisfied if 1 = 0 but violated if 1 #0. 
From (22) and Eq. (3.10) in Ref. 23 it follows that 

10(E) = lim [e iz(a)"'(1 - e -, 
z- ..... o 

XF(a+l-y.B+l-y;2-y;e-,). (65a) 

Inserting (12a), (12b), (12c), and (16a), (16b), (16c) into 
(65a) and using Example 18 in Chap. 14 of Ref. 15, we obtain 

10(E) = r (1 - 2i(2mE)1t2/fiv)1 r (1 + [2m (A. - E)]1/2/fiv - i(2mE)1/2/fiv)r (1 - [2m(A. - E)] lt2/fiv - i(2mE) 1/2/fiv). 

(65b) 

Since A. > 0, it easily follows from (65b) that 

10(0) = 0 if (2mA. )1/2/fiv is a positive integer, 

10(0) #0 if (2mA. ) 1/2/fiv is not a positive integer. 

(66a) 

(66b) 

Consequently, Levinson's theorem states that for 1 = 0 the relation (64a) is fulfilled if (2mA. )1/2/fiv is a positive integer, while 
(64b) is fulfilled if (2mA. ) 1/2/fiv is not a positive integer. For 1 # 0 the relation (64b) is expected to be violated, since the 
conditions (63a) and (63b) are then not fulfilled. We shall now verify the correctness of this in a direct way by means of the 
expression (24) for 01 , 

Inserting (16a), (16b), (16c), and (12a), (12b), (12c) into (24), we get 

o 1(1 1) r(2i(2mE)lt2/fiv) 
1=2 + 1T + arg r(1 + 1 + i(2mE) 1/2/f1V + i[2m(E _ A.») 1/2/fiv)r(1 + 1 + i(2mE)1/2/fiv _ i[2m(E _ A.)] 1/2/fiv) 

21 

= W + 1)1T - arg IT [21 + 2i(2mE)lt2/fiv - n) 
n=O 

r (1 + 1 + i(2mE)I/Z/fiv + i[2m(E - A.») 1/2/fiv)r (I + 1 + i(2mE)1/2/fiv - i [2m(E - A. )] '/Z/fiv) 
- arg r (21 + 1 + 2i(2mE) '/Z/fiv ) . 

(67) 

Using the formula (cf. p. 2 in Ref. 24) 

r(x + 1)F(y + 1) __ IT"" n(x + y + n) , 

r(x + y + 1) n~ I (x + n)(y + n) 
x,y# -1, -2, -3,.·" 

we can write (67) as 
21 

81 = W + 1)1T - arg IT [21 + 2i(2mE)'/2/fiv - n] 
n=O 

00 n[21 +2i(2mE)'/z/fiv + n] 
- arg JJI -p-+-n-+-i(-2-m-E-)-1-/2/-fi-v-+-i-[ 2-m-(-E--...!:..-A.-)~)-11"":2/~fiv-j--'p:-+--':"'-n-+---":"i(-2m-'--E-)-:-1/-:-2 /-fi-v---i [-2-m-(-E---A.-)-] :-:1/2:-:/-=-fi-:-v J 
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1 ~ ar [21 2i(2mE)i/2/Iiv-n] -.~ ar n[2/+2i(2mE)i/2/Iiv+n] (68) 
=!( +1)17"- /20 g + n~i g(/+nf-2mA./(1iv)2+2i(/+n)(2mE)i/2/1iv 

From (68) it follows that 

if (2mA. )lt2/1iv is a positive integer, 

if (2mA. )lt2/1iv is not a positive integer, 

(69a) 

(69b) 

where (2mA. )1/2/1iv is equal to the integer part of (2mA. )i/2/1iv. Recalling (29), we can write (69a) and (69b) as 

if (2mA. )lt2/1iv is a positive integer, (70a) 

(70b) if (2mA. )1/2/1iv is not a positive integer, 

where Nt is the number of bound states in the potential under consideration. A comparison between (70a), (70b), on the one 
hand, and (64a), (64b) and (66a), (66b), on the other hand, shows that Levinson's theorem is fulfilled when 1 = 0 but violated 
when 1 ~O. This fact is consistent with the conditions for the validity of Levinson's theorem. 
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Analysis of interacting quantum field theory in curved spacetime 
N. D. BirreW) and J. G. Taylor 
Department of Mathematics, University of London, King's College, Strand, London WC2R 2LS, United Kingdom 

(Received 17 May 1979; accepted for publication 11 October 1979) 

A detailed analysis of interacting quantized fields propagating in a curved background spacetime 
is given. Reduction formulas for S -matrix elements in terms of vacuum Green's functions are 
derived, special attention being paid to the possibility that the "in" and "out" vacuum states may 
not be equivalent. Green's functions equations are obtained and a diagrammatic representation 
for them given, allowing a formal, diagrammatic renormalization to be effected. Coordinate 
space techniques for showing renormalizability are developed in Minkowski space, for A<I>~4,6) field 
theories. The extension of these techniques to curved spacetimes is considered. It is shown that 
the possibility offield theories becoming nonrenormalizable there cannot be ruled out, although, 
allowing certain modifications to the theory, <I>~4) is proven renormalizable in a large class of 
spacetimes. Finally particle production from the vacuum by the gravitational field is discussed 
with particular reference to Schwarzschild spacetime. We shed some light on the 
nonlocalizability of the production process and on the definition of the S matrix for such 
processes. 

1. INTRODUCTION 

Despite the fact that in recent years much work has 
been done on the study of free quantized fields in curved 
background spacetimes, there has been very little study of 
self, or mutually interacting fields in such backgrounds. The 
work that has been done on interacting fields has tended to 
be on very simple special cases. In particular the first sub
stantial calculations to be performed in this area, as far as we 
know, are those of Drummond, I who considers the case ofa 
massless self-interacting field in a spherical (Euclideanized 
De Sitter) universe in perturbation theory. Subsequently, 
Drummond and Shore2 performed perturbation calcula
tions for massless electrodynamics in a spherical back
ground, a situation first studied by Adler.3 More recently 
Birrell and Ford4-6 and Bunch, Panangaden, and Parker7

,8 

have carried out perturbation calculations in Robertson 
Walker spacetimes. On the other hand studies of the exactly 
solvable interacting Thirring model in a curved background 
have been made by Scarf and Birrell and Davies 10; however, 
this is a rather unrealistic theory of massless fermions in a 
two-dimensional universe. 

The main reason that so little work has been done in this 
area is that it is very difficult to obtain exact results in pertur
bation theory, As a start it is generally a most difficult task to 
merely find the free Feynman propagator on which pertur
bation theory is based. However there are a number of inves
tigations which can be carried out without resorting to actu
al calculation, and it is to some of these that we devote our 
attention in this paper, 

The most obvious question to ask ourselves is whether a 
curved background spacetime (that is the presence of an ex
ternal gravitational field) can destroy the renormalizability 
of an otherwise renormalizable field theory. One intuitively 
expects that it cannot, because the ultraviolet divergences 
are, in coordinate space, short distance divergences, and by 

,'lSupported by a Flinders University of South Australia Overseas 
Scholarship, 

the principle of equivalence, the short distance behavior 
should be the same as in flat space. However it is not clear 
"how far" about a point the divergences probe and whether 
the part of the free propagator DF(x, x') which is finite when 
x---+x' (and different from that part in flat space) will playa 
part in the divergence structure. Indeed a naive examination 
of say the second-order perturbation contribution to the 
complete}.,¢ 4 propagator using the De Witt Schwinger ex
pansion for the bare propagator ll

,12 suggests that there will 
be divergent terms that do not appear in flat space. It is thus 
of some interest to make a more rigorous study of the renor
malization process in curved spacetimes. This we do in Sec. 5 
for }.,¢ 3 theory in four and six dimensions and find that we 
are not, in general, able to eliminate the possibility that the 
theories might be nonrenormalizable in certain curved spa
cetimes. The reason for this is that the divergences which 
occur in the theory do indeed probe more than just the local 
neighborhood of a point, preventing us from making general 
statements about the structure of the counterterms which 
will be needed to remove certain of the infinities. However 
}.,¢ 3 in four dimensions does not have this dangerous possi
bility to such a degree; its renormalization proceeds as in flat 
space times. 

Before coming to this conclusion we carefully develop 
in Secs. 2 and 3 reduction formulas and Green's function 
equations for the self-interacting fields in a curved back
ground. In so doing we give particular attention to the possi
bility that the initial and final vacuum states may not be the 
same; a subject already much discussed for free fields in 
curved spacetimes, The Green's function equations are re
presented in a compact diagrammatic form identical to the 
flat spacetime case. 13 in writing equations for connected 
Green's functions, however, we must contend with "tad
pole" diagrams which represent absorption or emission of 
one particle by the vacuum, and which do not contribute in 
flat spacetime. The diagrammatic Green's function ap
proach allows us to formally renormalize the equations just 
as in flat spacetime. That is, all bare vertices and propagators 
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are replaced by their clothed counterparts in a consistent 
way. Since this procedure is to a certain extent modified by 
the occurrence of tadpole diagrams it is described in some 
detail in Sec. 3. 

In general it is not possible to perform momentum 
space calculations of amplitudes in curved spacetimes, un
less they satisfy very restrictive requirements. For this rea
son we work in coordinate space, a technique not too famil
iar in flat-space-field theory. To demonstrate our strategy 
for considering the renormalization of A¢J 3 in curved space
time, we show in Sec. 4 how it applies in flat spacetime. This 
is of interest in its own right, as we use the Green's function 
equations along with the theory of products of distributions 
in an iterative procedure which makes short work of the 
proof of renormalizability. In extending the procedure to 
curved spacetime we come upon new problems which can
not be completely solved for the reasons mentioned briefly 
above. 

The spacetimes to which the developments of this paper 
apply are globally hyperbolic with Cauchy hypersurfaces 
which are either noncompact, or compact without boundary 
but asymptotically having infinite volume in the far past and 
future. These restrictions ensure that the usual procedure of 
defining as S matrix and setting up Green's function equa
tion works almost as in flat spacetime. The difficult prob
lems of defining interacting quantum field theories in curved 
spacetimes which are not globally hyperbolic or which are 
globally hyperbolic with arbitrary compact Cauchy surfaces 
is not considered here. In the case of a spacetime which has 
asymptotically compact Cauchy surfaces, there is a serious 
difficulty in deciding on initial values for fields which are 
never free. If the Cauchy surfaces are also bounded there are 
additional problems in determining the boundary values of 
the fields at all times. These are problems which should be 
given consideration in the future, and in particular are of 
importance in discussing radiative corrections to closed cos
mologies where the gravitational field is also quantized. 

In Sec. 6 we make some comments on how our formal
ism can be applied to particle production calculations, with 
particular reference to Schwarzschild spacetime. The final 
section concludes by considering the main features of our 
work. In particular the question of whether renormalizabi
lity can be firmly proved or disproved is discussed. In this 
connection several second-order perturbation theory calcu
lations in A¢J 4 theory4-8 are mentioned. 

2. REDUCTION FORMULAS 

If we wish to consider the renormalization of the S
matrix for scattering from an initial "in" state to a final 
"out" state in terms of Green's functions it is essential that 
we have some means of calculating the former quantity in 
terms of the latter. The derivation of such reduction formu
las for interacting fields in flat space is well known (see for 
example Ref 14, Chap. 16), however in curved space the 
discussion is complicated by the possiblity of the final and 
initial vacuum states being different. The effect of having 
different final and initial vacua has been much discussed in 
the case offree fields in curved backgrounds (for a review see 

1741 J. Math. Phys., Vol. 21, No.7, July 1980 

Ref. 15); in particular DeWitt ll derives equations for the 
scattering amplitUdes for free scalar fields in such space
times. We shall now obtain equations which in the limit of 
flat space give the usual reduction formulas, and in the limit 
offree fields (zero coupling constant) in curved space give 
DeWitt's equations. 

For our discussion we consider a self-interacting scalar 
field with Lagrangiam density l6 

.:.t' = ~'V' - g[gI"Val"¢Jav¢J - (mZ + sR)¢J Z] 

+.:.t'I' (2.1) 

where the exact nature of the interaction Lagrangian does 
not enter into the derivation of this section, but might as well 
be assumed to be 

(2.2) 

(The term a¢J, where a is a function of spacetime, is included 
for use later.) 

The field equation resulting from (2.1) and (2.2) is 

Kx¢J (x) + a(x) + A¢J (x)Z = 0, (2.3) 

where we have defined 

K,,=Ox + mZ + sRx' 

and 

(2.4) 

Ox = (iN - gx )al" [g'"V(x)'V' - gx av¢J ] = V I" VI", 
(2.5) 

VI" being the usual covariant derivative (also denoted by a 
semi-colon). 

We assume that the spacetime is globally hyperbolic, 
andhence l7 homeomorphictoR I X.I, where for each xOER I, 
{XO 1 X.I is a Cauchy surface for the spacetime. 18 We can 
now define for any two solutions U I , Uz of the free field 
equation, 

Kxu(x) = 0, (2.6) 

a conserved scalar product 

(ul,uz)=-i Lculal"ut-utaI"Ut)'V' -gd.I1" 

= - i L Utal"ut~ d.Il", (2.7) 

where d.I I" is the future directed surface element to.I. 
Letfn ,J~ andg n ,g~ be two sets of complete solutions of 

(2.6), satisfying 

(fn,fm) = 8nm , (f~J,!) = - 8nm , (fnJ'!) = 0, (2.8) 

and similarly for gn' These will be chosen in some way from 
the infinite number of such sets. We assume that as 
XO ~ ± 00 the interaction is switched off adiabatically and 
the solution of (2.3) becomes asymptotically free (in the 
sense of weak operator convergence): 

lim ¢J (x) = ¢Jout (x), 
x u_ + 00 

(2.9) 

lim ¢J (x) = ¢Jin (x), 
xo_- 00 

(2.10) 

where 
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Kx¢out(in) (x) = O. (2.11) 

With these asymptotic conditions, which are only phys
ically tenable in spacetimes which asymptotically have spa
tial sections of unbounded volume, we can expand ¢in and 
¢out in terms of either of the complete sets of modes, thus 

¢in (x) = L [A ~'1n(x) + A ~n tt~(x)] (2.12a) 
n 

= L [B~ngn(x) +B~t~(x)], (2.12b) 

" 
¢out (x) = L [A ~uYn (x) + A ~ut V~(x)] (2.13a) 

" 
(2.13b) 

" 
We may now quantize the system and construct "in" and 
"out" Fock spaces as in flat space. However while in flat 
space the definition ofthe "in" and "out" vacua (denoted 
lin)andlout), respectively) is clearly established, in curved 
space there can exist an infinite number of equally acceptable 
inequivalent vacua. In particular we could define lin) by A::' 
lin) = 0 or B ~n lin) = 0, and similarly lout) could be de
fined by A ~ut lout) = 0 or B ~ut lout) = O. In certain space
times there will be a "natural" definition of positive frequen
cy solution/" to (2.6) and these can be used to give a 
"natural" definition ofthe vacuum. For example for uni
verses which are asymptotically slowly expanding Park
er's5.19 extended WKB definition of positive frequency 
modes is appropriate. 

Let us suppose that the modes/" are in some sense posi
tive frequency as XO ~ - 00, and, as there is no reason why In 
should necessarily also be positive frequency as xo~ + 00 ,5 

letusassumethatforxo~+ 00 theg" arepositivefrequen
cy. We thus define the "in" and "out" vacua by 

A ~Iin) = 0, (2.14) 

B~utlout) = O. (2.15) 

This then gives asymptotic definitions of particles. How 
"natural" these definitions will be will depend on the par
ticular spacetime under consideraion, and the choice of posi
tive frequency modes. 

Since the modes/,..J: are complete we can relate them 
to g" (or g!) by a Bogolubov transformation: 

g" = L (a,,"'/m +13"",/:), (2.16) 
m 

and conversely one can show that 

I" = L (a:"gm - Pm"g:)· (2.17) 
m 

Using (2.8) we find the following relation between the Bogo
lubov coefficients which will be used in the ensuing 
discussion: 

2: (amra:r - PmrP !r) = (jm,,' (2.18) 
r 

From (2.12), (2.13) and (2.16), (2.17) we obtain 

A~n=L(amnB::: +p:"B~f), (2.19) 
m 
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Bin = ~ (a. A in _ p. A in "h 
" £..i nm m nm m· " 

m 

A out = ~ (a Bout +13. BOutt) 
II L mn m mn m , 

m 

Bout = ~ (a. A out _13. A out t) 
11 L nm m nm m • 

m 

(2.20) 

(2.21) 

(2.22) 

Now for free fields we have A ~n = A ~ut and B ~n = B ~ut, 
in which case the S matrix elements can be determined from 
a knowledge of the Bogolubov coefficients.ii For interacting 
fields, even in flat space, these equalities will not necessarily 
hold, and additional information (the Green's functions) is 
needed to construct the S matrix. We now consider such a 
construction. 

Define an s-particle out state by 

I l1(s), out} = IT B~~ttlout), 
;= I 

where l1(s) = I nl,· .. ,n, }, and an r-particle in state by 

lm(r), in) = iI A ~,tlin), 
j=1 

(2.23) 

(2.24) 

with m (r) = 1m I, ... ,mr }. Our aim is to evaluate the ampli
tude (out, 11 I IlL in) in terms of Green's functions, that is, in 
terms of vacuum expectation values of time (x~ ordered pro
ducts offield operator solutions of (2.3). 

Assume for the sake of argument that s-,r, the case r < s 
being very similar, and consider 

(out, l1(s) I T (¢ (x l )· .. ¢ (X" )Im(r), in} 
= (out, l1(s) I T(¢ (x l )· .. ¢ (x,,»IA ~itll1l(r) - mj> in). 

(2.25) 

The time-ordered product in (2.25) is of an arbitrary collec
tion offield operators, and m(r) - mj denotes {mi,···,m j -I' 
mj + I , ... ,mr }. Using (2.10), (2. 12a), and (2.8) we can write 
(2.25) as 

i f I (out, I1(S)IT(¢ (XI)'''¢ (x,,)¢ (x»lm(r) 

" . ~ m j , in}a,Jm,(x)V -gd.I~, 
which upon using Gauss' theorem, (2.9), (2. 13a), (2.8), and 
the fact that 1m, (x) satisfies (2.6) gives 

(out, l1(s) 1 T (¢ (x l )···¢ (x" )Im(r), in) 

= if 1m, (x)Kx (out, I1(S) I T (¢ (x l ) .. ·¢ (x,,)¢ (x» Im(r) 

-mj,in)V _gd 4x 
+ (out, I1(S)IA ::" tT (¢ (x I),,,¢ (x,,» Im(r) 
- mj) in}. (2.26) 

In the derivation of the flat space reduction formulas 
one has A out t = Bout t, and thus if one assumes that l1(s)il111(r) m, m, 

= { }, then (out, l1(s) IA ::,t t = 0 and the second term in 
(2.26) vanishes. However in curved space the "out" Fock 
space is based on the B :;:'t t operators which are not necessar
ily the same as theA ::,ut t, and for this reason the second term 
in (2.26) will not in general vanish, but requires further 
treatment. 

From (2.18) one can deduce that a, considered as a 
matrix, will have an inverse a-I. This allows us to obtain 
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from (2.22) the relation 

A out t = " (a -I Bout t + " a -I fJ A out) 
m, ~ m;p p £." mJ> pq q , 

q q 

(2.27) 

which when used in the second term of (2.26) gives 

(out, l!(S)IA:::': tT(tfo (xl)···tfo (xn»lm(r) - mjO in) 

= L a;;;;fJpqijl:(x)Kx (out, l!(s) 
p,q 

IT(tfo(x)tfo(xl) ... tfo(xn))lm(r)-m j, in)V _gd 4x 

+ L a;;;'~j (out, 1!(s) - njlT(tfo (xl)· .. tfo (xn»lm(r) - m j, in) 
j 

+ L a;;;;fJpmj (out, 1!(S) I T (tfo (xl) .. ·tfo (xn))lm(r) 
pJ 

- mj - mj , in), (2.28) 

where we have also used (2.9), (2. 13a), (2.8), Gauss' theo
rem, (2.10), (2. 12a), and the fact that/q satisfies (2.6). Ifwe 
noweliminate/q from (2.28) using (2.16) and substitute the 
result into (2.26) we find 

(out, 1!(S) I T(tfo (xl) .. ·tfo (xn»lm(r>, in) 

= Oz, (out, 1!(S) I T(tfo (zJtfo (xl) .. ·tfo (xn))lm(r) - m j, in) 

+ L a;;;,~j (out, 1!(s) - nj I T(tfo (xl)· .. tfo (xn»lm(r) - mjO in) 
j 

+ iL Aij(out, 1!(S) I T(tfo (XI)"'¢> (xn»lm(r) - mj - mj , in). 
j 

(2.29) 

In writing (2.29) we have introduced the integral operator 

Oz,=i~ a;;;; J V-=-;z, d 4
z jg/zJKz" (2.30) 

and have defined20 

A - '''fJ -I ij= -1L,. pmjam,p, 
p 

which is in fact symmetric in i,j.ll 
By repeated use of (2.29) we arrive at 

(out, 1!(S)lm(r), in) 

= " j<r - 1)120 ... 0 a - I ... a - I 
~ Zp/l) Zplkl mp(k +1) Np(1< -t t) mp(l)np(f) 

p 

XA p(l+I)P(l+2) ... Ap(r_I)p(r) 

X (out, 1!(s) - np(k + I) - ... 

(2.31) 

- np(1) IT (tfo (Zp(l) ... ¢> (Zp(k») lin), (2.32) 

where the sum is over all distinct ways of attaching the indi
ces p(1) = 1, 2., ... ,r, to combination of the operators 0, a-I, 
andA. 

If we assume that there is no interaction, by putting 
A = 0, a = 0 in Eq. (3.15) ofthe next section and noting (2.6) 
we easily see that there will be no Oz terms in (2.32). Ifwe 
further take s = 0 there will be no a-I term, and (2.32) re
duces to 

= 0, rodd, (2.33) 
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which is precisely DeWitt'sll Eq. (164). 
We now only need to know how to reduce amplitudes of 

the form 

(out, 1!(S) I T (¢> (XI)"'¢> (xn))l in) 

= (out, 1!(s) - nj IB ~~tT(tfo (xl) .. ·tfo (xn))l in). 

By arguments very similar to those used in arriving at (2.29) 
we can show that such amplitudes may be written as 

(out, l!(S)IT(tfo (xl} .. tfo (xn))l in) 

= Qz, (out, '1(s) - nj IT(¢> (zJtfo (XI)"'¢> (xn»1 in) 

+iL V;j(out,1!(s)-n j -njIT(¢>(xl) .. ·tfo(xn))l in), 

(2.34) 

where we have defined 

Qz, = iL ap-;;,I J V - gz, d 4zJ;,(zJKz, ' (2.35) 
p 

Vij = iL fJn,pap-;;,1 
p 

(2.36) 

(see Ref. 20). Repeated application of this equation gives 

(out, 1!(s)IT(tfo(x l) .. ·tfo(xn))l in) 

- " z's - k )/2Q Q V V - £.. z,~t)'" z~", o(k + I)o(k + 2)'" o(s -l)o(s) 
(7 

X (outl T (tfo (Zo(l»"'tfo (Zo(k»tfo (X I)"'tfo (xn))l in), 
(2.37) 

which in the limit of no interaction (and nO initial time-or
dered product) gives DeWitt's Eq. (163). 

Ifwe now use (2.37) in (2.32) we finally arrive at the 
complete reduction formula: 

(out, l!(s)lm(r), in) 

X A A " ~s - 1- w + k )/2Q Q p(1 + I)P(I + 2)'" p(r - I)p(r) £.. t Z,~I)'" z",w, 
(7 

X Vo(w+l)o(w+2) ",Vo(s-I+k-I)o(s-I+k) 

X (outIT(tfo (Zo(l»"'¢> (Zo(W»tfo (Zp(l»"'tfo (Zp(k»))I in). 
(2.38) 

As before the p sum is over all distinct ways of attaching the 
indicesp(t) = 1,2, ... , r to combinations of the operations 0, 
a-I and A. The 0' sum is then over all distinct ways of attach
ing the indices 0'(1) = [ 1!(S) - np(k + I) - ... - np(l) I to com
binations of the operators Q and V. 

Finally, if we go to the limit of Hat space we have 
fJij = 0, aij = oij and hence A = V = O. We also have 
J;, = gp' and, assuming as is usual in flat space derivations 
that l!(s)n m(r) = I I, then (2.38) reduces to the usual Hat 
space reduction formula [see, for example, Ref. 1, Eq. 
(16.81)]. 

The discussion given here applies equally well to global
ly hyperbolic spacetimes with or without horizons, however 
in the former case great care is needed in the choice of the 
modes In and g n , as has been discussed, for example by U n
ruh21 in the case of free fields. The interpretation of the S 
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matrix as far as scattering of particles across the horizon is 
concerned also needs care.22 We shall return to those topics 
in Sec. 6. 

3. GREEN'S FUNCTION EQUATIONS IN CURVED 
SPACETIME 

In the last section we showed how the determination of 
scattering amplitudes could be reduced to a calculation of 
the Green's functions. 

(outl T (tP (x)tP (x\)···tP (xn »Iin) 
7(X,X\"'Xn)= . . (3.1) 

(outIIn) 

We now wish to derive equations from which the Green's 
functions can in principle be determined. 

To obtain such equations we need only assume (in addi
tion to the assumptions of Sec. 2) that the interacting field is 
quantized in the usual (canonical) fashion, satisfying com
mutation relations5 

[tP (XO,x),tP (XO,x')] = 0, 

[1T(XO,X),1T(xo,x')] = 0, 

[tP (XO,X),1T(XO,X')] = i8(x - x'), 

where the canonical momentum conjugate to tP is 

1T = a2" ria (aotP) = Y - ggOllalltP, 

with 2"0 given by (2.1) without the interaction term. 

(3.2) 

(3.3) 

We shall also need to use the Feynman propagator (for 
the free fields) which satisfies 

KxDF(x,y) = - (lI-V=-;)8(x - y), (3.4) 

and is given in terms offree-field solutions tPf of (2.6) by 

If tPf has a mode decomposition in terms ofthefn or gn of the 
last section given by 

tPAX) = I [AJn(x) +A ;;.r~(x)] 

= I [Bngn(x)+B~g~(x)], 

then the vacua lout)f and lin)f are defined by 

Bn lout)f = ° 
and 

An lin)f = 0, 

(3.6a) 

(3.6b) 

(3.7) 

respectively. Note that An need not necessarily be equal to 
A ~n of Sec. 2 and hence lin) f will not in general be the same as 
lin). Similarly lout)f will not necessarily be equal to lout). 

If in (3.5) we use (3.6a) for XO > yO and (3.6b) for XO <yO 
we obtain 

iDF(x, y) = {} (XO - yO)[D fn- )(x, y) + din (x, y)] 

+ {} (yo _ XO) [D~';; )(x ,y) + dout(x, y)], 
(3.8) 

where we have defined 

(3.9) 
n 
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(3.10) 
n 

f(outln,m,in) f 
din(x,y) = I ( I') f~(x}f:(y) 

n.m f out In f 

= iI An,mf~(x}f:(y), (3.11) 
n,m 

[see Eq. (2.33)], 
f(out,n,mlin)f 

dout(x,y) = I ( I') gn(x)gm(y) 
n,m f out In f 

= iI Vn,mgn(x)gm(y)· (3.12) 
n,m 

We are now in position to derive Green's function equations. 
Let us consider the action of K" [defined in (2.4)] on the 

time-ordered product appearing in (3.1). If we write 

DT(tP (x)tP (xt)-··tP (xn» 
= (IN - g)ao{gOIlY - gall T(tP (x)tP (xt)···tP (Xn» J 

+ (IN - g)a; {gijaj T(tP (x)tP (xt)-··tP (xn» J, (3.13) 

we can evaluate this by expanding the time-ordered products 
in terms of step functions to obtain 

DT(tP (x)tP (x\)···tP (xn) 

= T(DtP (x)tP (x\)-··(xn» 

+ i I {} (x~, - x~, ) .. ·8(xO - x~) 
j = I perms 

p 

X {} (XO - XO ) ... {} (XO - XO ) 
pz Pj +-1 p" I P" 

xtP(x
P
,)"'{(1/Y -g)ao[gooy -g[tP(x),tP(xp)]] 

+ (lIY - g) [1T(X),tP (Xp) ]}tP (XP1 ,I )···tP (xp)' (3.14) 

where the second term arises from the first term in (3.13). 
Noting that the delta function makes the commutators in 
(3.14) equal-time commutators, we may use (3.2) and defini
tion (3.1) to obtain 

Kx 7(X,X t, ... ,xn) 

i n 
-== I8(x-X)7(Xt"",Xj_t,Xj+t,,,,,xn)' 
Y -gx j~t 

If we now use (2.3) in the first term of this expression we 
obtain 

Kxr(x,xt, ... x n) = - A7(X,X,Xt"'xn) - a(x)7(x t, .. ,xn ) 

i n --- I 8(x -X)7/Xt"'X n ), 

Y -gx j~t 
(3.15) 

where we have introduced the notation 

7/Xp,,,Xn)=7(Xt'''Xj_t ,xj+t ",xn). (3.16) 

Intergral equations. Our task now is to invert (3.15) to 
obtain integral equations for the Green's functions. Using 
Gauss' theorem, and, as usual, assuming the spacetime to be 
globally hyperbolic with the fields vanishing at spacelike in
finity we have 

f d 4yY -gyDF(x,y)KyT(tP(y)tP(xt)···tP(xn» 
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-f d 4yV -gy [Ky DF (X, y)] T(t,6 (y)t,6 (X 1)···t,6 (Xn» 

= f ~ d:I/'~DF(X,y)a:. 
y0--+ + 00 

X T(t,6 (y)t,6 (X 1)···t,6 (xn» 

- f ~ d:I/,V - gy DF(x, y>a:. 
yU __ 00 

x T(t,6 (y)t,6 (X 1)···t,6 (xn», 

where we have used the fact that the spacetime is globally 
hyperbolic with Cauchy surfaces which are either compact 
without boundaries or noncom pact with the fields vanishing 
at spacelike infinity. The second term on the left-hand side of 
this expression can be simplified using (3.4), while the right
hand side can be evaluated using Eq. (3.8)-(3.12) for D F , 

along with the asymptotic conditions (2.9), (2.10), and the 
orthonormality conditions for the modes (2.8). We find 

T(t,6 (y)t,6 (x 1) .. ·t,6 (xn» 

= - f d 4y V - gyDF(x,y)KyT(t,6 (y)t,6 (x 1) .. ·t,6 (xn» 

+ [~g~(X)B ~ut t + i~ Vn.mgm (x)B ~ut t] 
X T(t,6 (x 1) .. ·t,6 (xn» + T(t,6 (x 1) .. ·t,6 (xn» 

X [~fn(X)A ~n + i~ An.J~(x)A ~ ]. (3.17) 

Taking the vacuum expectation value of this equation be
tween (outl .. ·lin) vacua, we see from (2.14) and (2.15) that 
the second and third terms from (3.17) vanish, leaving 

T(X,X1'''Xn) = - f d 4yV ~gyDF(X,Y)KyT(y,xl''''Xn). 
(3.18) 

Finally applying (3.15) to the right-hand side of (3.18) we 
obtain the inverted Green's function equations 

r(x,x1· .. x n) = A. f d 4y V - gy DF(x, y)r(y,y,x1 .. ·xn) 

+ r(xl· .. x n) f d 4y V - gyDF(x,y)a(y) 

+ i i Dp(X,x)Tj(Xl·"Xn)· (3.19) 
j~ 1 

The equivalent of this equation for A.t,6 4 theory is obvious. 
It is interesting to note that the disappearance of all but 

the first term on right-hand side of (3.17), when the vacuum 
expectation value is taken, is not merely fortuitous, but rath
er due to the fact that we calculated the Feynman propagator 
(3.5) usingf(outl, lin)f vacua defined with respect to the 
same modes as the (out I, I in) vacua, even though the "free" 
vacua need not necessarily be the same as the "asymptotic 
interacting" vacua. This simply means that we are being 
consistent with our definition of positive frequency in the far 
past and future. If we had not, these extra terms would not 
have disappeared. 

Since the reduction formula (2.38) involves 

Y(X1, ... ,xn)==[ IT iK,,]r(X1'''xn), (3.20) 
J~I 
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it is worthwhile obtaining equations which can, in principle, 
be solved for the y's directly. Such equations are derived in 
an obvious way using (3.20), (3.19), and (3.4) to give 

r(x,XI,. .. ,xn) 

= -A. f d 4YI d 4Y2V -gy, V -gy, iDF(x'YI) 

X iDF(x, Y2)Y(Yl' Y2,xl, .. ,xn) - ia(x)y(x1, .. ,xn) 

• n 1 + I L Kx 8(x - xj)Yj(xIo· .. ,xn), (3.21) 
j~1 V -gx , 

where Yj is defined in analogy to Tj [Eq. (3.16)]. 

For the purposes of the formal renormalization of these 
equations it is convenient to give them a diagrammatic re
presentation. (See Ref. 13 for the corresponding procedure 
in fiat space.) To this end we let 

y(x" ... ,x.)~ On (3.22) 

iDF(x,y) = ---, 
x y 

(3.23) 

and understand that internal vertices are integrated over; for 
example 

n~ 
(3.24) 

If we also denote 

i Kx 8(x _ y) = ( __ yl, 
~ / x y 
V -gy 

(3.25) 

then, with the internal vertexy being integrated over, we 
have 

(--yl-- = __ ( __ yl 
xy yz xy yz 

1 8(x _ z) , 
V -gx 

(3.26) 

which is the identity (the spacetime volume element being 
(- gx )1/2 d 4x). 

With these conventions established we can represent 
Eq. (3.21) as 

- a(x) On 
n 

+ 2 (-x--x!-IOn-(j) 
j =1 

(3.27) 
or, suppressing the labeling of vertices and letting the spot 
where three lines come together represent - iA. we have sim
ply 
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<:::On - a(x) On 

n 

+ 2 
(3.28) 

Alternatively it may be easily verified from (3.21) that at
taching external propagators to (3.28) gives the expected 
result 

+~ 
j =1 

_ C%X~(j), 
x x 

j 

x 

where 
(3.29) 

Apart from the term involving a(y), Eq. (3.29) has exactly 
the same diagrammatic structure as did that for J..t/> 3 theory 
in a flat background spacetime. t3 We may thus apply much 
of the development given in that reference. There is however 
one major difference in curved spacetime which requires 
consideration. After application of the connectivity anzatz13 

to (3.29), we obtain equations for the connected Green's 
functions: 

r 
1 

r 
2 

-a(x) b + ( __ )-1 b 
no x nl 

(3.30) 

Now r l and r2 in the second term in (3.30) run from zero 
to n, but in flat spacetime the terms involving r l or r2 zero are 
either ignored on the grounds of energy momentum conser
vation, or are removed by normal ordering. Similarly the 
n = 0 Green's function equation is not considered. In curved 
spacetime we can no longer ignore these contributions as 
they can possibly give significant physical effects (such as 
production of a particle from the vacuum). The inclusion of 
these "tadpole" diagrams alters slightly the formal renor
malization l3 of(3.30). We shall thus briefly review this pro
cedure paying particular attention to the differences intro
duced by the Green's functions with n = O. 

As in Ref. 13 we write Eq. (3.30) amputated with re-
spect to the complete propagator , defined by 

--------4UJ----
(3.31) 
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which (henceforth dropping the "e" from connected Green's 
functions) gives 

- --oono + -- (--r 1 
b 

nl • 

(3.32) 

Introducing the one particle irreducible function defined by 

=:0" ~ =:¢" + ::cxJ", 
(3.33) 

one finds 

--+-On --<rt} + '3~::, 
n> 1, (3.34) 

where (3.32) for n = 1 has been used in the removal of the 
bare propagators. Notice that this equation contains no ex
plicit "tadpole" terms. Next, introducing the two particle 
irreducible function by 

+ 1- 2: 
r 1" 2"0 

r +r = n 
1 2 

the final term only being included for n > 2, one finds 

and 

+ +2 
'1,' 2 * 0 
r +r = n 
1 2 

1,2 

1,2 
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r 1 

n>2, 
(3.36) 

(3.37) 
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From (3.32) for n = 1 comes 
o 

-1 
(~):: ( __ )-1 _ <0 -,9, 

(3.38) 

which upon insertion of the bare vertex· from (3.37) gives 

(-t--t 1 = (--tl -Il(x,y) -Il'(x,y), (3.39) 
x y x y 

where 

11(X.Y)i t xaDY-±o:c:tr:oy 

12 

(3.40) 

n'(x.y) 

1,2 (3.41) 

The self-energy, II + II', contains only renormalized ob
jects; that is it does not depend on --- or " and in this 
sense is formally renormalized. II is the same as the self
energy dealt with in flat spacetime, 13 while II' is an addition
al contribution containing n = 0 Green's functions (i.e., 
"tadpoles"). These tadpoles are given by (3.32) for n = 0: 

o 

--a 

o (3.42) 

In analogy to (3.33) let 

(3.43) 

define the object -=m 0 . Then one finds 

-+O~. -~.---+-. 
1 Do (3.44) 

Replacement of the bare vertex in (3.44) using (3.37) 
gives 
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+-'• 

(3.45) 

which is the formally renormalized equation for the n = 0 
Green's function. Iteration of(3.36), (3.37), (3.39), and 
(3.45) allows one to build up perturbation theory in the man
ner described in Ref. 13, complete with the combinatorial 
factors obtained in other methods. 

Similar renormalizations can be applied to other inter
actions as was described in Ref. 13, however in most cases 
there will be additional terms arising in curved spacetime. 
For example in).¢ 4 theory all the renormalized Green's 
function equations are the same as in Ref. 13 except that in 
the equation for the inverse propagator there are additional 
terms arising from a term of the form 

o (3.46) 

in the ¢ 4 equivalent of(3.38). Replacement of the bare vertex 
in (3.46) results in several new terms in the renormalized 
equation for the inverse propagator. 

The general idea of constructing Green's function equa
tions by the principle of "complete unitarity" (Sec. 5 of paper 
III of Ref. 13) may also be extended to curved background 
situations by means of the interpretation of the lines and 
bubbles given above. We may thus generalize beyond field 
theories or consider approximations to them. 

We have used the adjecting "renormalized" to the 
equations obtained from (3.29) by exposing certain one and 
two particle intermediate states. As was stated in Ref. 13 
there is no assurance that the resulting equations have finite 
solutions. We have, therefore, to extend the analysis of Sec. 3 
in paper II of Ref. 13 in order to show that such finiteness 
does indeed result. We will turn to that question now. 

4. FINITENESS OF INTERACTING FIELD THEORIES IN 
FLAT SPACETIME 

We wish to prove that the renormalized Green's func
tion equations for interacting fields in a given background 
spacetime have finite solutions. The method used to prove 
this result in the case of a flat background was by means of 
iteration of the equations in momentum space. 13 The iter
ation technique may still be used in the nontrivial back
ground spacetime case but we cannot assume that Fourier 
transform techniques are applicable without further restric
tions (such as asymptotic flatness) on the background. In 
lieu of making such restrictions we will develop the renor
malization argument in position spacetime. Since such an 
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analysis has not been effected even for flat spacetime at the 
same level of completeness as for momentum space we will 
attempt it in this section before extending our results to a 
curved background spacetime in the next section. 

Renormalization of perturbation theory in coordinate 
spacetime has received considerable attention, most recently 
by Collecott23 and earlier by Caianello and collaborators. 24 

All of these and earlier discussions in position space analyze 
Feynman graphs directly, and do not utilize the Green's 
function equations in the manner of Ref. 13. 

We will attempt to adopt this latter method so that it 
applies in position space. We will do that in detail only for 
the topologically simplest example of the cubic self-interac
tion A,p 3, though we consider this theory in both four and six 
dimensions so as to mimic the divergence content of Q.E.D. 
and other nontrivial theories in four dimensions. The meth
od in flat space goes through for these latter theories but 
their added complexity does not seem to add anything useful 
to our discussion, and we will not consider them further 
here. 

The equations to be discussed are (3.36), (3.37), and 
(3.39) with the n = 0, "tadpole," Green's functions omitted 
in flat space for reasons given earlier: 

n>2, (4.1) 

0 2 = 2 a : 0 2 + 2., 

(4.2) 

-+--1= --~tO:O+to:cD:o. 
1,2 

(4.3) 

In order to construct the most general renormalization ap
proach we will use the distribution techniques associated 
with the theory of products of distributions25 as related to 
products offree propagators. 26 Thus we wish to define the 
products of distributions on the right-hand side of (4.1), 
(4.2), and (4.3) initially on a subspace of the space of all test 
functions. We will then extend this definition to the whole 
space by the Hahn-Banach theorem in the usual fashion. We 
hope to show that the ambiguities which arise in such an 
extension correspond exactly to mass and charge renormal
ization effects. 

We will begin by considering the simplest divergence 
arising in (4.3), the self-energy bubble [DF(X - y)]2, where 
DF(X) = (x2 - iO+t l in four dimensions (themassivepropa
gator has the same light-cone singularity). We consider the 
space of test functions,p (x) for which DAx),p (x) is suitably 
smooth to act as a test function for DF(X). 

We will simplify our analysis even further by making a 
formal analytic continuation to Euclidean spacetime. We 
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thus reduce the singularities of DF(x) from the light cone to 
the origin. We appeal to general theorems27 that indicate 
that analytic continuation of Green's functions back to the 
Lorentz metric should be possible at least in principle. Thus 
our renormalization will explicitly be of the Euclideanized 
field theory. 

We may write formally 

(D~,,p) = J [DF(x)]2,p(x) d 4x = LOO ~ J dfl,p(r,fl), 

(4.4) 

where the usual spherical polar coordinates have been intro
duced in right-hand side of (4.4). Thus the left-hand side of 
(4.4) is finite if l,p (r, fl)1 = 0 (r) as r-o. We may write any 
function,p (x) in terms of a function a(x), equal to 1 at the 
origin and suitably decreasing for large r, as 

,p (x) = a(x),p (0) + t/J(x), 

where It/J(r, fl)1 = OCr) as r-o. Then 

(D~,4» =,p(0) (D~,a) + (D~,t/J). (4.5) 

The second term on the right-hand side or (4.5) is finite, as 
has already been shown. We take (D ~,a) to be an arbitrary 
constant c. The Hahn-Banach extension of D ~ from the 
subspace S = !,p: l,p (r, fl ) 1 = 0 (r) as r-o J to all (suitably 
differentiable) functions will thus be 

D ~ = c8(x) + (D ~)finite' (4.6) 

where 

«D ~ )finite ,,p ) = (D ~,(,p - ,p (O)a». 

Clearly (4.6) is the position-space analog of the usualp-space 
representation. 13 

Before we turn to other Green's functions let us consid

er the problem of defining D ~ in six dimensions, so that in 
the massless case, DF(X) = (X2t 2. Then 

(D ;.",p ) = f" r3 dr J dfl,p (r, fl). (4.7) 

In order for the right-hand side of (4.7) to be finite we require 

,p (0) = ,p /(0) = ,p "(0) = 0, 

where the prime on,p denotes any of the partial derivatives. 
We extend the expansion of a test function to be 

,p (x) = a(x),p (0) + fJI'(x)a P ,p (0) 

+ y"'(x)apa",p (0) + t/J(x), 

where 

a(O) = 1, ai' a (0) = ai' ava(O) = 0, 

IP'(O) = 0, aJP'(O) = OJ:, a).a,JJP(o) = 0, 

A ''''(0) = 0, a). A ''''(0) = 0, 

a).a"A ''''(0) = H~8~ + 8~8~), 
so that 

t/J(O) = ap t/J(O) = apa"t/J(O) = o. 
Then 

(D ~,,p) =,p (O)(D ~,a) + ap,p (O)(D ~,/3P) 

+apav,p(O)(D~,y'V) + (D~,t/J). (4.8) 
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By similar arguments to those used in deriving (4.6) from 
(4.5), together with the absence of any constant vector for 
(D},/3J1.) and the only possibility for (D},yJ1.") = 1]J1.'" we 
have 

D} = c«5(x) + d0«54(x) + (D})finite' (4.9) 

where 

«D } )finite ,<p ) 

= (D },<p - a<p (0) - {3J1.JJ1.<P (0) - yI'''JJ1.Jy<p (0». 

Let us next look at the vertex function, which in lowest order 
is DF(x - y)DF(y - z)DF(z - x). In four dimensions this is 
finite, but in six dimensions we find 

f d 6(x - y) d 6(y -z)DF(x - y)DF(y - z) 

XDF(z - x)<p (x - YJl- z) 

= Saoo dr, dr~ rlr~(rl + r l t 4 

X f dfJ I dfJ l <p (rl,fJ l,r2,fJ~). (4.10) 

The possible logarithmic divergence in (4.10) can be pre
vented by working with test functions <p (x - y,y - z) for 
which <p (0,0) = 0. We may again write in the general case 

<p (XI' x 2) = a(xl xl)<p (0,0) + ¢(x, x 2), 

where a(O, 0) = 1, so that ¢(O, 0) = 0. Thus by a similar 
argument as before, 

DF(x - y)DF(y - Z)DF(Z - x) 

= C'D(X - z).:5(x - y) 

+ [DF(x-y)DF(y-z)DF(z-X)]finite, (4.11) 

which is again an x-space version of a wen-known p-space 
result. 

We now turn to analyze the clothed Green's function 
equations (4.1), (4.2), and (4.3). We do that by choosing a 
trial position space behaviour for the Green's functions on 
the right-hand side of these equations and show that this 
behavior is possessed by left-hand side. 

Let us consider the trial singularity behavior for the 
various Green's functions and one and two particle irreduci
ble functions, the later being given by (3.33) and (3.35). For 
four dimensions we have 

--+-- ~(x - yy2 + 0(1), 
x y 
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-f> (x, - y,)f>(x2 - Y2)(x, - x 2yz 
+ (Yl'<---Yz) + 0(1), 
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(4.12) 

(4.14) 

x 1 tD I b(x, - yJb(xz - y) 
n (iJ.k) dinstinct 

(iJ./) distincCz 2 
::c 2 x(x, - Yk)- (X2 - Ylt + 0(1), 

1,2 (4.15) 

with the extension to six dimensions being obvious. In (4.15) 
the singular behavior has been exposed in its dependence on 
the variables x 1 and x2 • There will be singular behavior in the 
other variables, as given by the one and two particle struc
tures exposed on the right-hand side of (3.33) and (3.35), but 
that is not relevant to the renormalization problem of (4.1)
(4.3). We may then use (3.33), (3.35) to generate the singular 
behavior of the remaining Green's functions not specified in 
(4.12)-(4.15). In particular for = 2, (3.35) is to be regarded 
as an integral equation intl{ , while the right-hand side of 
(4.33) and (4.35) for n > 2 then describes the resulting singu
lar behavior of $.andO"in coinciding variables. 

I 
We will consider the removal of coincident position-

space singularities from (4.1)-(4.3) exactly as described in 
Refs. 26 and 13. Thus each of the equations is considered as a 
distribution on that subspace of test functions on which the 
right-hand sides of the equations are well defined. The exten
sion to the space of all test functions will then involve the 
introduction of ambiguities along the lines of those in (4.6), 
(4.9), and (4.1 I). Since the distribution-theoretic analysis 
has already been performed for the momentum space vari
able equations in Ref. 13 we will dispense with all similar 
discussions in position space except for the details referring 
to the position-space singularity structures. We turn to that 
now. 

The singularity structures of (4.12)-(4.15) have to be 
substituted into the right-hand side of (4. 1)-(4.3). Equations 
(4.12), (4.13), and (4.15) ensure that the integral in the first 
term on the right-hand side of (4.1) is finite, for the relevant 
singularity structure is that arising at most from the product 
of free propagators described by the box diagram 

By methods similar to those used in discussing (4.10) it is 
easily seen that this is finite for all test functions, even in six 
dimensions. We have thus removed all of the coincident sin
gularities in the propagator and vertex function equations, 
(4.3) and (4.2), respectively; this is identical to the situation 
arising in momentum space. 13 

Use of (4. 13) and (4.14) in the vertex function equation 
(4.2), together with our earlier discussion of( 4.10), indicates 
that in four dimensions the right-hand side of (4.2) is finite 
for a test function. In six dimensions there will be an ambigu
ity arising from the product of (4.10), so giving an arbitrary 
addition to the bare coupling constant term [the second term 
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on the right-hand side of (4.2)]. The behavior of (4.13) is 
preserved by the right-hand side of (4.2), thus ensuring con
sistency for that case. 

The propagator equation (4.3) has singular products 
arising from the assumed behaviors (4.12), (4.13), and (4.17) 
corresponding to the graphs 

o· 
CD· 

(4.16) 

(4.17) 

Since only the first of these is singular in four dimensions, in 
that case we only have the ambiguity of the form (4.6) in 
(4.3). In the case of six dimensions it is necessary to remove 
the overlapping divergences present in the last two terms of 
(4.3 ). We do that essentially by transforming the momentum 
space methods developed in Ref. 13, p. 916 to position space. 
To that we denote multiplication by (x - t) /< of a function of 
(x - t) by D/<. Then we can write, by use of D Il applied to 
(4.2), 

1.2 

· eta , + o:ib:o. (4.18) 

1.2 

where the product has been effected only on the intemallines 
of the irreducible function in the appropriate diagrams. To 
obtain (4.18) Dil applied to (4.2) has been used. Then the 
expression corresponding to (4.17) is 

f d 6y d 6z d 6(x - t) [(x - y)(x - z)(y - z)(y - t) 

X(z-t)]-4t,6(x-t). (4.19) 

If we take t,6 (0) = t,6 '(0) = t,6 "(0) = 0, and let one power of 
(x - t) acting on the right-hand side of (4.3) be split as in 
(4.18) we find that (4.19) reduces to expressions of the form 

f dOy d 6z d\x - t) [(x - y)(x - z)(y - z)(y - t)(z - t)]-4 

X (x - y)' (y - z)rn(z - t )"t/J(x - t ), (4.20) 

where m> 1, I + m + n = 3, and t/J is also a test function. All 
terms of the form (4.20) are finite, as may be seen by inspec
tion. Extension of (4.19), and also of (4.18), to the space of all 
test functions gives the ambiguities described earlier. Our 
method also ensures that (4.12) is preserved by the right
hand side of (4.3) [modified by (4.18)]. 

Finally we note that (4.14)( and (4.15) are also pre
served by (4.1)-(4.3) and (3.33), (3.35), (4.18), since the for
mer are the relevant one-particle singularities of the left
hand sides, which are generated by right-hand side of(3.33) 
and (3.35). 

We have thus shown that field equations for At,6 3 are 
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renormalizable, with only mass and charge effects in a space
time of six dimensions, there only being mass effects in four 
dimensions. 

5. CONSIDERATION OF THE FINITENESS OF At,63 IN 
CURVED SPACETIME 

In this section we wish to extend the methods of the 
previous section to a curved background spacetime. The 
only obvious point of difference from flat spacetime is that 
we must include the "tadpole" Green's functions. However 
we shall see that there are other differences, brought about 
by the loss of Poincare invariance, which can have a possibly 
disastrous effect on the finiteness of the theory. To see where 
this effect arises, let us closely follow the flat spacetime pro
cedure and see how far we can get. 

As in the previous section we consider At,6 3 theory in 
four and six dimensions, although we shall concentrate on 
the six dimensional case, which has singularity structure 
similar to four dimensional Q.E.D., and gives rise to the ef
fect mentioned above. We shall also consider the spacetime 
to be analytically continued so as to have Euclidean signa
tured metric gllv' Consideration of Euclidean spacetimes 
rather than their Minkowskian counterparts should not af
fect the renormalization of the field theory. However, since 
the topological properties of the spacetime might be different 
in its Euclideanized form28 even this is not guaranteed.6 

As in flat spacetime we postulate trial singularity be
havior for the various Green's functions and one and two 
particle irreducible functions, and show that this behavior is 
preserved under iteration of the equations. In six dimensions 
this behavior is 

-+- = CI0"-2(X,y) + 0(0"-1), (5.1) 
x y 

O
~ =Cz o(x- y) o(x-z) 

X Vg
y 

Vg
z 

~ + 0([0" (x, y)O" (x,z)O" (y,z)]j-2), (5.2) 

1.2 

Xy-+-rho ~ ~ c,O" "(x. y) + 0 (,,.-'), (5.5) 
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where a (x, y) is one half of the square of the geodesic dis
tance between x and y. The trial behaviors (5.1)-(5.5) are 
seen to be correct in lowest order, if one notes that in that 
case --+---- = --- = iDF(x, y), which has the behavior 
(5.1) as can be seen from the DeWitt-Schwinger expan
sion ll

,I2 (in six dimensions), and 0 = 2·, which certainly 
has behavior (5.2). Then in lowest order (5.3)-(5.5) are 
forllled from these lowest-order quantities according to their 
definitions, and are seen to have the behaviors given above. It 
remains to be shown that these trial behaviors are preserved 
under iteration. We also have not included any mention of 
the behavior of the "tadpole" Green's functions in the above. 
These are obviously a special case and will be returned to 
later. 

As in fiat spacetime, substitution of(5.1), (5.2), and 
(5.4) into the right-hand side of(3.36) shows that the Green's 
functions for n > 2 are finite, and preserve the singular be
havior (5.4). We thus turn to the case n = 2 and so to Eq. 
(3.37). Writing the second term on the right-hand side of 
(3.37) as G (x, y, z), we see that substitution of the singular 
parts of (5.1), (5.2), (5.3) gives the only part of G to give a 
divergence. This has the structure 

ci C2C3 [a (x, y)a (x,z)a (y,z) ]-2, (5.6) 

in six dimensions. In four dimensions the vertex function is 
finite, and will not be considered further. 

As in fiat spacetime we wish to define G on suitable test 
functions. It is convenient though not essential, to define a 
test function "about x" by 

tPx()I",zI') = qt(a/l(x,y),aV(x,z», 

where qt is a test function in eight variables and 

a /'(x, y) = a ;/l(x, y) 

(5.7) 

(5.8) 

is the tangent vector at x to the geodesic from x to y, and has 
length equal to the geodesic distance from x toy.I1,12 Then G 
is defined on such test functions about x which satisfy 

(5.9) 

where the action of G on the test function is defined by 

(G,tPx) = J V gx V gy G (x, y,z)tPx(y,z) d 6y d 6z. 

(5.10) 

We extend the definition to arbitrary test functions ¢Jx (y, z) 
about x by writing (as in fiat spacetime) 

¢JAy,z) = ax (y,z)¢Jx (x ,x) + tPx(Y,z), 

where 

aAx,x) = 1, 

which implies that tPx satisfies (5.9). Then 

(G,¢Jx) = (G,ax )¢Jx(x,x) + (G,tPx)' 

(5.11) 

(5.12) 

(5.13) 

where < G,tPx) is finite and (G,ax ) is an arbitrary dimension
less scalar function. Since ¢Jx is arbitrary we have 

G( )-(G ) D(X-y)D(X-Z) Gfi'l( ) x,y,z - ,ax + me x,y,z. 
V gy V gz 

(5.14) 

It is at this stage that we strike the first major difference 
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from the fiat spacetime analysis; for while in fiat spacetime 
Poincare invariance implies that (G,a,,) is a constant, allow
ing it to be absorbed into coupling constant renormalization 
in (3.37), in curved spacetime there may be an enormous 
range of dimensionless, scalar functions all of which must be 
considered as candidates for (5.14). To make further pro
gress we must decide which of these functions can actually 
appear in perturbation theory. In order to achieve this we 
must not only specify trial singularity behavior in (5.1)
(5.3), but also trial metric dependence of the singular terms. 
Then, an well as showing that the singularity behavior is 
preserved under iteration, we must also show that the metric 
dependence is preserved. In fact in writing C1-C3 as constants 
in (5.1 )-( 5.3) we have presupposed the metric dependence of 
the singular parts of these functions, and this is indeed the 
metric dependence at lowest order of iteration. 

Equation (5.14) establishes that the singularity struc
ture in (5.3) is maintained under iteration, so we must next 
decide whether the metric dependence is also preserved. 
That is, we must determine whether (G,a x ) is a constant. To 
this end we consider the singular part (5.6) of G acting on a 
test function about x satisfying (5.9): 

CiC2C3J Vgx Vgy [a (x,y)a(x,z)a(y,z)]-2tPx (y,z) 

Xd 6yd 6z. (5.15) 

We consider the evaluation of (5.15) in normal coordinates 
y/l, z/l at x,29,30 in which case 

aI'(x, y) =)1", aI'(x,z) = zI', 

a(x,z) = ~1J/lvzI'zv=¥2, 
(5.16) 

a(y,z) = !1J/lv()I" - zI') (yv - Z) + 0 «y - zt), 

V gy = 1 + o (y2), vZ = 1 + o (Z2) 

(1J/lV = - 8w in the Euclideanized spacetime), and noting 
(5.7), (5.15) is 

16cic2c3 J y-4Z-4(y - zt4qt (y,z) d 6y d 6Z + finite terms. 

(5.17) 

In the extension to arbitrary test functions it is only the 
integral shown in (5.17) which contributes to (G,a x )' it be
ing the only "infinite" piece. However this piece is not ex
plicitly dependent on the metric, and in fact is exactly the 
same as in fiat spacetime. We may thus take (G,ax ) to be a 
constant, allowing its absorption into coupling constant re
normalization, and hence showing that the metric depen
dence (5.3) is preserved under iteration. 

Thus, in the vein of the discussion in the Introduction, 
the divergences in the vertex function only probe the local 
neighborhood of the point x, and do not sense the less local 
properties of the spacetime geometry. This is just as one 
would expect. We shall now see that this is not necessarily 
the case with the self-energy given by (3.40) and (3.41). 

Let us suppose that we have already dealt with the 
n = 0 Green's function equations, so that those appearing in 
(3.41) are finite. There seems to be an immediate problem 
with the second term on the right-hand side of (3.41) which 
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is the divergent G, just considered, combined with the finite 
part of a "tadpole." We have just seen that the divergent part 
of G is constant, but the finite part of the tadpole can have 
very complicated dependence on the metric, even in the first 
iteration. Thus, at first sight it seems that (3.41) is going to 
produce divergences which cannot be absorbed into renor
malization of the constants m and 5 which appear in (3.39) 
[see Eqs. (3.2S) and (2.4)]. However we show in the Appen
dix that the divergences involving the "tadpoles" which arise 
from the second term in (3.41) exactly cancel similar ones 
which arise from the first term in (3.40) under iteration. 
Since the first term in (3.41) is finite we now need only con
sider the divergences arising in Il, given by (3.40). 

As in flat spacetime the second term in (3.40) contains 
overlapping divergences, which can have a possibly ruinous 
effect. This potential threat arises from the product of the 
logarithmic divergences in "one half" of 

O:cD:O (S.18) 

1,2 

multiplying the finite part of the "other half," which can 
have very complicated metric dependence. If such a product 
is not canceled, then once again we have the possibility of 
infinities which cannot be removed by mass or 5 renormal
ization. However, this is no more than the overlapping diver
gence problem already dealt with in flat spacetime, and can 
be treated in a similar way in curved spacetimes by multiply
ing (3.41) by (x - y)!'. We prefer to work in a slightly more 
obviously covariant fashion by multiplying (3.41) by o(x, y). 
If we let 

d"(x,y) = (x - yt.I~(x,y), (S.19) 
where 

.I~(x,y) = 8:, - W~v(x - yf + 0 «xl' - yP)(x'" - y"'», 
(S.20) 

and allow (x - y) v to act on the diagrams in Il as in flat space 
we obtain 

o{x,y)Il(x,y) = ~l"v(x)d"(x,y).I;(x,y) 

+ {)::C} +t{J:1!to 1 
1.2 

(S.21) 

where, as in flat spacetime DPf(x, y) = (x - y)Pf(x,y). Sub
stitution of the singular behaviors (S.1)-(S.3) into (S.21) 
shows thatIl (x,y) is defined on test functions r/lAy) about x 
(i.e., r/lx(Y) = W(al"(y»; Wis a test function) satisfying 

r/lAx) = 0, 

(V~r/lx(Y)]y~X = 0, 

(V~V;r/lAY)]y~x = 0. 

In fact we can represent such a test function as 

r/lAy) = o(x, Y)¢x(Y), 

(S.22) 

where ¢x is a test function about x satisfying ¢x (x) = 0. 
Then letting a act on Il as in (S.21) we see that 
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(Il,r/lx)= J v' gy Il(x,y)r/lx(Y) d 6y 

will be finite. 

(S.23) 

We extend to arbitrary test functions ¢ x (y), about x by 
writing 

¢x(y) = ax (Y)¢x(x) + P~(y)[V~¢x(z) L~ x 

+ y:V(y)[V~ V~¢x(z)]z~x + r/lx(Y), (S.24) 
where 

aAx) = 1, 

p~(x) = 0, 

[V~ax(z)]z~x = [V~V~aAz)L~x = 0, (S.2S) 

[V~P~(z)L~x =g'"V(x), 

[V;V~P~(z)L~x =0, (S.26) 

y:V(x) = ° = [VAy:V(Z) L ~ x' 
[VAVPY:V(Z) L ~ x = HgAl"(x)gPV(x) + gAV(x)gPl"(x)], (S.27) 

which imply that r/lAy) satisfies (S.21). We then obtain 

Il (x, y) = [(Il,ax ) + (Il,P~) V: + (Il,y:V) V: V~] 

X [<5(x - y)N gy ] + IlJ(x, y). (S.28) 

All the quantities in the square brackets are arbitrary apart 
from the requirements that 

(Il,ax ) is a scalar field of dimension (length)-2, 

(Il,P ~) is a vector field of dimension (length)-I, 
and 

(Il,y:V) is a rank-two, dimensionless tensor field. 

For the field theory to be renormalizable without the addi
tion of extra counterterms we need 

(Il,ax ) = a + bR (x), 

(Il,f3~) = 0, 

(Il,y:V) = c g'"V(x), 

(S.29a) 

(S.29b) 

(S.29c) 

where a, b, c are constants. That this is the case in flat space
time is guaranteed by Poincare invariance, but in curved 
spacetime we do not have such a restrictive covariance as to 
eliminate all but the possibilities (S.29), and must proceed as 
in the case of the vertex function to determine what the met
ric dependence of these functions might be in perturbation 
theory. To obtain the metric dependence of (Il,ax )' which 
receives contributions from the logarithmic divergences in 
rI, we must postulate trial metric behavior of the a-I terms in 
(S.l) and (S.3). In lowest order the metric dependence of the 
a-I term in (S.l) is [a + bR (x)]a-I(x, y), while in (S.3) it is 
obtained by inserting such a term into the square bracket. 
Unfortunately it is not possible, for reasons to be discussed 
shortly, to show that this metric dependence of the a-I terms 
is preserved under iteration. In fact, in general it will not be 
preserved. This means that we are not in a position to deter
mine whether (Il,ax ) has metric dependence as in (S.29a). 
We shall return to this problem after we have gleaned all the 
information that we can from the substitution of the leading 
singular terms in (S.I)-(S.3) into Il, as given in (S.21). 

Such a substitution gives all the quadratically divergent 
behavior of Jl. Let us consider only the quadratic contribu
tion to Il from the second diagram in (S. 21), that from the 
first being simpler. Substitution of (S.I)-(S.3) gives this con
tribution to Il acting on a test function r/I x of the type in 
(S.22) to be 
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(5.30) 

Now expanding everything in normal coordinates about x using (5.16), and the fact that.I ; (x, y) = 8; in these coordi
nates, we have, retaining only the quadratically divergent term (but noting that there arise no linearly divergent pieces) that 

f 1] (x yY'(z wyl/l(y)d 6yd 6zd 6w 
Eq. (5.30) = 256c~c~C3 I-'P + log divergent terms. (5.31) 

(x - y)2(X - zt(x - W)4(y - W)4(Z - W)4(y - Z)4 

This integral contains no explicit metric dependence, and is 
the same as occurs in flat spacetime. We can extend to arbi
trary test functions f/J (y), writing 

f/J (y) = a(y)f/J (0) + (JI'(y)(JI-' f/J )(0) 

+ yl'Y(y)(JI-'Jyf/J)(O) + I/I(y), (5.32) 

wherea,,8, ysatisfy relations similartoax ' ,8x, Yx in (5.25)
(5.27). Then we can write for the kernel, 1, ofthe integral in 
(5.31), acting on f/J 

(I,f/J) = (I,a)f/J (0) + (l"BI-')JI-' f/J (0) 

+ (I,yI'Y)JI-'Jyf/J(O) + (1,1/1), (5.33) 

where (I, 1/1 ) is finite. Since 1 is independent of the metric we 
can consistently take (I, a) = constant = c', (1, ,81-') = 0, 
and (I, yl'Y) = C 1] I-'Y, just as in flat spacetime. The treatment 
of the quadratically divergent part of the first diagram in 
(5.21) is similar, and from (5.33) we obtain for the total qua
dratically divergent part of H in normal coordinates 

Hquad(x, y) = (d 0 + d') [8(x - y)N gy ] + H'j"ad(x, y). 

(5.34) 

Since this is a covariant expression it holds true in all coordi
nates [the 11 g y' which, when dividing 8(x - y), is one in 
normal coordinates at x has been inserted to give the right
hand side the same coordinate transormation properties as 
the left-hand side.]' 

As the quadratically divergent part of H is the only 
piece which can give rise to a 0 8 (x - y) term, we have from 
comparison of (5.28) and (5.34) that (5.29c) does indeed 
hold. Further, Hquad is the only part which could give rise to 
a term of the form (H, ,81-'), but we have seen above that this 
vanishes, so (5.29b) also holds. We also note that modifying 
H as in (5.21) has shown the cancellation of all the infinities 
resulting from the product of a logarithmic divergence in one 
side of (5.18) with a finite contribution from the other half. 
This may be seen by considering the replacement of the sin
gular part, a-2

, one of the propagators in (5.30) by a finite 
part. Then one sees that rather than obtaining an infinity of 
the type just mentioned, as would have been the case without 
the modification (5.21), the integral now is finite for any test 
function about x. However if the a-2 part of one of the propa
gators in (5.30) is replaced by a a-I part, then there is still an 
overall logarithmic divergence which gives a contribution to 
(H, ax). It is for this reason that we need the metric depen
dence of the a-I term in (5.1) and (5.3). 

If these a-I terms maintained their lowest-order metric 
dependence under iteration it is possible to show by a fairly 
lengthy calculation in normal coordinates that (H, ax) 
would satisfy (5.29a), allowing all the divergences in the self-
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energy to be removed in mass, 5, and "wave function" renor
malization. Before we indicate why in general the a-I metric 
behavior will not be preserved under iteration, we show how 
the a-2 metric dependence is preserved. 

Multiplying (3.39) by (z-+--x) (y--w) and inte
grating we have 

T(z,w) = z-+--w 

=iDF(z,w) + f V -gx V -gyT(z,x)[Hf(x,y) 

+ H ;(x, y) ]iDF( y,w) d 6X d 6y , (5.35) 

where the subscript "/" has been attached to the self-energy 
to show that it is the finite part. That is, we assume that the 
metric dependence of the singular parts in (5.1)-(5.3) is such 
that H can be made finite by renormalization, and see wheth
er this metric dependence is preserved by (5.35). The lowest
order singularity behavior is given by DF , which, as already 
stated has a-2 metric dependence as in (5.1), and a-I depen
dence of the form 

[0 + bR (z)]a-I(z,w). (5.36) 

At higher orders of iteration there will be new a-2 and a-I 

terms coming from the integral in (5.35). Such a-2 terms will 
only arise from the combination of the most singular part of 
r(z, x), which goes like CI a-2

, with a term containing 
8(y - w) coming from the action of Dy in H/x, y) 
+ H ;(x, y) onDF(y, w). However the only part ofHf or H; 

which can involve terms proportional to 0 is H 'j"ad given in 
(5.34), which has such terms just as in flat space. SinceH'j"ad 
does not depend explicitly on the metric, and C I is a constant, 
the most singular part of the integral in (5.35) will go like c; 
a-2

, thus preserving the metric dependence of the a-2 part of 
(5.1) and, with (3.35), (3.36), and (5.3), the metric depen
dence of (5.4). 

If we now turn to the contribution to the a-I term in 
(5.1) from the integral in (5.35), we see, in particular, that 
there will be such terms arising from the a-2 parts of T and D F 

combined with the parts of Hf and H; not proportional to D. 
Such finite parts of H can in general have complex metric 
dependence which can change the metric behavior of the a-I 

term from that of the lowest order (5.36). 
The most obvious modification to the a-I term in iter

ation stems from the occurrence of "tadpoles" in H'. From 
these, via (5.35), there will arise a-I terms with metric depen
dence modified by the complicated metric behavior of the 
"tadpole". We have, however, shown in the Appendix that 
the logarithmic infinities caused by these "tadpole"-modi
fied a-I terms are expected to cancel. 

To acquire a feeling for where else modified a-I behav-
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ior can come from, it is convenient to consider the calcula
tion of (5.35) in momentum space. As was stated earlier, 
momentum space is not wholly appropriate for curved-spa
cetime quantum-field-theory calculations, however, in par
ticular spacetimes-momentum-space methods have been de
vised,31,s and more recently a means of calculating the 
divergent parts of Feynman graphs in curved spacetime us
ing momentum space has been proposed. 8,32 For our present 
purposes momentum space has the advantage of making 
more transparent the reason for the modification of the (r 1 
term. Let us write (for justification see Ref. 5) 

Ilix,y) = f exp[i(p.x - q.y)] Ilip,q) d 6p d 6q, 

(5,37) 

where, unlike flat space time, Ilip, q) is a function of two 
independent momenta as translation invariance does not 
necessarily apply. Another way of seeing this is to write 
symbolically 

"fl")"~" [{)+'O'6""J, 
(5.38) 

where the quantities in the square brackets are flat space 
objects with varying numbers of couplings to the external 
gravitational field, which feeds extra momentum into the 
system. We can consider a similar expansion for the propa
gators, which will have a contribution from the zero cou
pling (flat space) propagators going likep-2, Then the contri
bution of order a-I currently under discussion comes from 
parts of 

f exp[i(p.w - q.z)]p-2q-2Ilip,q) d 6p d 6q 

= f exp[i(p + q). (w ~ z) y-2q-2Ilip,q) 

xexp[i(p _ q). (w; z) ] d6p d 6q, (5.39) 

which have Ilip,q) going like a constant or In(p + q) for 
large Ip + ql. Such contributions come not only from the 
first term on the right-hand side of (5.38) but also other 
terms with couplings to the gravitational field. It is such 
terms which we are not able to adequately examine within 
the framework of this paper. On the other hand the a-2 con
tributions arise from parts of Ilj which go like (p + q)2 for 
large IP + q I, and these arise only from the first term of 
(5.38) as indicated previously. It seems that the momentum 
space methods mentioned above could provide a useful tool 
for investigating this point. In particular, in the Bunch Pan
angaden method, it would be necessary to ensure that the 
metric dependence of the p-4 term in the momentum space 
propagator (corresponding to the a-I term in six dimensional 
coordinate space) is preserved under iteration. We shall re
turn to discussion of this question in Sec. 7. 

We finally turn to renormalization of Eq. (3.45), for 
n = 0, "tadpole," Green's functions. We have left this until 
last because it is markedly different from the n = 1 and n = 2 
Green's function equations just dealt with. The reason for 
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this is that it cannot be defined on a suitable class of test 
functions in the same way as the n = 1,2 cases, but has to be 
defined by some regularization scheme. We first observe that 
one can show, by means similar to those used in the Appen
dix, that the divergence in the third term on the right-hand 
side of (3.45) cancels against similar divergencies from the 
first term, We need thus concern ourselves only with the first 
two terms on the right-hand side of (3.45). These terms con
front us with two problems to which we cannot give defini
tive solutions within the present framework. 

First we note that the singular behavior (5.5) is obvious
ly preserved under iteration, as follows from (3.43) and the 
fact that (5.1) is preserved under iteration, Then we see that 
the second term in (3.45) has a severe overlapping diver
gence problem: The "right-hand half of the diagram" is qua
dratically divergent, while the "left-hand half' is logarithmi
cally divergent. We cannot treat this overlapping divergence 
in the same way as we did that in the second term in (3.40), 
and it is by no means obvious that it will not have the effect of 
preventing us from absorbing the infinities in (3.45) into a 
local, geometrical counterterm a(x). 

Even if this first problem is overcome there remains a 
second stumbling block: Ifwe imagine calculating the diver
gence in the first term of (3.45), there will be a contribution 
from the delta function (5.3), in the compl.~ vertex, com
bined with each of the singular parts of.:::::1J)o , which, just 
like the complete propagator, will have a-2, a-I, and In a 

singularities, We have already discussed how the metric de
pendence of the a-I term senses the finite part of the self
energy, but the In a singularity is even more dependent on 
the metric dependence of this finite part, and there is no 
reason at all to expect that it will have simple metric struc
ture to all order of iteration. Thus, unless there is a great deal 
of cancellation between the diagrams in (3.45) it is most un
likely that the infinities can be removed by a geometrical 
counterterm a(x), 

If it happens that (3.45) cannot be made finite by renor
malization of a finite number of constants multiplying geo
metrical objects in a(x), we can ask whether there is any 
reasonable way of overcoming the problem. The most obvi
ous thing to try is normal ordering, as in flat spacetime. The 
equivalent of this is to take a(x) = - A r(x, x). Then it is 
easily shown that the term involving a(x) in (3,28) is now 

which in terms of connected Green's functions in (3,30) gives 
the a(x) term to be 

o 

+ 

o 

Then the n = 0 Green's function equation is simply 
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o. 

This procedure quite clearly obliterates any problems 
with the "tadpole" Green's functions, however it means in
troducing into the Lagrangian a term T(x, x), which, from its 
definition (3.1), depends on the "in" and "out" vacuum 
states, neither of which is uniquely defined in a general 
curved spacetime. This would not be a very desirable step to 
have to take, and the full implications of such a move still 
have to be analyzed; however should our expectation that 
the nonlocal infinities do not cancel be confirmed, then this 
action does offer a means of escape. 

We must then conclude this section with a question 
mark hanging over the finiteness of IirfJ 3 in curved spacetime. 
We have not been able to show that the theory is definitely 
nonrenormalizable, since there will undoubtedly be space
times other than Minkowski space in which it is renormali
zable. It would be necessary to find one particular spacetime 
or class of spacetimes in which explicit calculation shows 
nonrenormalizablility. What we have shown is that the di
vergences are sufficiently severe as to probe more than just 
the local structure of spacetime. This is the case with the self
energy in six dimensions, but not in four, where it is only the 
leading (7-1 behavior of the complete propagator which pro
duces divergences; in four dimensions the n = 1 Green's 
function equation is renormalizable. In both four and six 
dimensions the n = 0 Green's function divergences depend 
on more than the leading divergence; however, as a last re
sort, such a problem can be cured by the normal ordering 
mentioned above, making IirfJ 3 in four dimensions complete
ly renormalizable. It is this dependence of the divergences on 
more than the leading singularity of the propagator which 
has prevented us from giving a general proof of renormaliza
bility along the lines proposed. We shall make further re
marks on this result, and comment on similar difficulties in 
IirfJ 4 theory in Sec. 7. 

6. PARTICLE PRODUCTION 

Particle production by gravitational fields has received 
a great deal of attention for free-field theories, but little in the 
case where interactions are present (see, however, Ref. 4 
where low-order perturbation calculations of particle pro
duction in the latter case are performed). 

Although formulas for the calculation of particle pro
duction amplitudes are all contained in Sec. 2, it is worth 
considering in more detail the production of particles from 
the vacuum, this being a uniquely curved spacetime (or ex
ternal field) phenomenon. As we merely wish to demon
strate the principles of particle production, and not perform 
detailed calculations, we shall restrict our attention to the 
production of two particles in the final state, one in mode m 
and one in mode n from out ofthe initial vacuum. We thus 
wish to look at the amplitude 

Imn=(out, m, nlin)/(outlin). (6.1) 

Applying the reduction formula (2.37) we have 
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= iVmn + QzQx (outIT(rfJ (z) rfJ (x» lin) 

= iVmn - J d 3k d 3/ ak--;"I al-;;I J v' - gx ~/: (x) 

X/;(z)KxKzr (z,x) d 4x d 4z 

=iVmn + J d3kd3/ak--;"lal-;;IJ v' -gx v' -gJ:(x) 

x/;(z)y(z,x) d 4x d 4z, (6.2) 

in the notation ofEq. (3.20). In writing (6.2) we have adopt
ed continuum rather than discrete normalization as 
previously. 

It is perhaps worth reminding ourselves why Imn van
ishes in the usual Minkowski space-scalar-field theory. In 
this case there is no mode mixing, a ij = 8 (3 )(i - j), f3ij = 0 
and hence from (2.36) Vm,n = O. We also have 

/k (x) = [(21T?2liJ k ]-1/2exp( - i(j)kXO + ik·x), (6.3) 

where (j)~ = Ikl 2 + m2, and because of Poincare invariance 

r (z,x) = (21T)-4J d 4p exp[lp,(Z - x)]r (p2), 

implying 

y (z,x) = (21T)-4J dp exp[ip.(z - x)]y (p2), (6.4) 

with 

Y (p2) = (p2 _ m2)2r (p2). 

Substituting (6.3) and (6.4) into (6.2) and performing all but 
the p integral we have 

Imn = 1T((j)m(j)n)-1!2J 8(3)(n - p)8(3)(m + p) 

X8«(j)n + pO)8«(j)m - pO)y (p2) d 4p, (6.5) 

which is clearly zero because of the pO delta functions (unless 
the mass is zero, in which case there is an infrared divergence 
problem). 

It is quite obviously time-translation invariance which 
prohibits the production of particles due to the interaction in 
Minkowski space. In a spacetime with a time-varying metric 
however, we cannot rely on such an invariance, and hence 
the modes (6.3) and the amputated Green's function (6.4) 
will not have such simple time dependence. In such situa
tions Imn can be nonzero even in the case where there is no 
mode mixing; f3ij = O. Several calcuations of particle pro
duction in time dependent Robertson-Walker Universes, 

FIG. 1. A first-order particle production diagram. 
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I 

FIG. 2. The Penrose diagram for part of the extended Schwarzschild mani
fold. with a particle production diagram superimposed. 

with and without mode mixing, have been performing by 
Birrell and Ford4 in lowest, nontrivial order perturbation 
theory. It should be noted that while perturbation theory 
based on (6.2) would use the Feynman propagator (3.5), the 
calculations in Ref. 4 used 

iDF(x, y) = J(inl T(tPAx)tPAy»lin) J/J(inlin) J' (6.6) 

Thus, while outgoing lines in Feynman diagrams (e.g., Fig. 
1, where the double line is used to denote the propagator 
(3.5) for later convenience) resulting from (6.2) would repre
sent physical "out" particles, those in Ref. 4 represent "in" 
particles. To ensure that the correct "out" observables are 
finally computed Birrell and Ford make use of the Bogolu
bov transformations (2.19). To a given order in perturbation 
theory the two approaches will give the same results. 

It is interesting to observe that even in the conformally 
trivial case of a conformally invariant field theory in a con
formally flat spacetime, in which case the integral in (6.2) 
will formally vanish, there can still be particle production 
because renormalization can break the invariance. 

This claim can be substantiated by combining two very 
elegant pieces of work. The first is by Parker30 who shows 
from the conformal trace anomaly that there is nofree parti
cle production in the conformally trivial case. If one exam
ines how this argument proceeds if instead of the free anom
aly one uses the interacting field anomaly as calculated for 
arbitrary spacetimes (in particular Robertson Walker space
times) by Drummond and Shore,33 one easily sees that Park
er's argument will not now go through, and particles may be 
produced in the interacting case. 

Particle production by black holes is one area which, for 
free fields, has received considerable attention since Hawk
ing's pioneering work.34 Based on the general consideration 
of Gibbons and Perry, 35 and the treatment of the particular 
case of the Thirring model by Birrell and Davies,1O we can 
safely assert that the particles produced by interacting fields 
in a black-hole background will have the spectrum ofther
mal radiation. We shall thus not attempt to further verify 
this assertion, or perform actual calculations (which in any 
case would be most difficult in this case), but rather discuss 
the way in which the formalism of Sec. 2 can be adapted to a 
spacetime with a horizon. In particular we shall confine our 
attention to the examination of (6.2) for a scalar field in a 
Schwarzschild spacetime. 

To this end we use the method originated by Unruh,21 

1756 J. Math. Phys .• Vol. 21. No.7. July 1980 

and subsequently discussed by Hawking22 of treating the 
analytically extended Schwarzschild manifold rather than 
the spacetime of a collapsing star (for a review of this and 
other relevant topics see Ref. 36). We shall follow as closely 
as possible the notation of Hawking, 22 and refer the reader to 
that reference, or any of Refs. 21, 35, or 36, for the physical 
motivation for the choice of "in" and "out" modes and hence 
vacua. Thus, corresponding to Hawking's Eq. (4.7), we have 
Eq. (2. 12a), where now we switch to continuum normaliza
tion and suppress angular summations to write 

(6.7) 

The "in" modes have been divided into three orthogonal 
families, i = 1,3,4 in Hawking's notation. We shall not re
peat the detailed specification of these modes, as it is mainly 
their relation to the decomposition of tPout which is impor
tant and consequently we· write (2. 13b) as 

tPout = i oo 

L (B ~outg~ + H.c.). (6.8) 
o i 

Here we have deviated from Hawking's notation, with his 
being related to ours by B~) = jev' B~) = hw' B~) = g,u' g~) 
= Zev' g~) = Yw' andg~) = Ww' Of the three surfaces,,f

(past-spacelike infinity), H- for retarded Krushkal coordi
nate U> 0, and for U < 0, the modes g~) have nonzero 
Cauchy data only on,f -; g~) have nonzero Cauchy data only 
on H -for U < 0, whileg~) have nonzero Cauchy data only on 
H - for U> 0 (see Fig. 2). 

From Hawkings Eqs. (4.10), (4.13) (noting that the 
complex conjugate on the left-hand side of this equation is in 
error, as is obvious from the remarks preceding it) and 
(4.14), we can read off the Bogolubov coefficients as defined 
in our Eq. (2.17) to be 

a~:2 = o(w - w'), 

a~:,:! = a~:'~~! = (1 - xt1/20(W - w'), (6.9) 

/3 ~,;,~~) = /3 ~:,~! = - (1 - xt1/2X1/20(W - w'), 

and all others are zero (x~e -- 21T<UK·22). Then from (2.36) we 
easily find 

V~,~! = V~,~! = - io(w - w')x (6.10) 

and all other V(iJ) are zero. Thus in the case of a free scalar 
field, in which only the first term in (6.2) contributes, we see 
that a pair of particles will only be produced if one is created 
by B ~)out \ thus appearing in region I of the Penrose dia
gram (Fig. 2), and the other is created by B ~:)out t, appearing 
in region II. This is by now a well known result,21,22,34.36,37 

Let us now tum to the inclusion of interactions, for 
which we must examine the integral in (6.2). If we perform 
the integral using Schwarzschild coordinates then all of the 
quantities in the integrand have simple Schwarzschild time 
(t) dependence. In particular 

and 

f~~) = e - iwtF~~)(r,e,tP), 

f~,;) = e - i<utF~)(r,e,tP ), 

f~,;) = e + i,utF~:)(r,e,tP ), 
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Y (z,x) = - dp exp[ - ip(zO - XO)Jy (z,x;p) 1 foo 
21T - 00 

[see Ref. 38 Eq. (3.11) and thereunder for an explanation of 
the time dependence of T and thus yJ. We can now carry out 
the t integrals in (6.2), and for the combinationf~)*(x }fP*(z) 
appearing in the integrand we obtain a factor 
8(k + p)li(l - p) for i = j or neither of i,j equal to four, and 
8(k + p){j(/ + p) if one of i,j is equal to four and the other is 
not. Since k, [">0 the integral will necessarily be zero unless 
the latter situation (i = 4,j#4 or vice versa) arises (in fact 
with nonzero mass the modes, and hence the integral will 
vanish for k = l = 0, avoiding an infrared divergence). Not
ing that a-I is diagonal, we see that, as in the free-field case, 
the interaction will only give rise to production of a pair of 
particles if one occurs in region I and the other across the 
future horizon (H +) in region II. 

It is clear that the amplitudes for the production of a 
larger number of particles will be nonzero provided that at 
least One particle is produced in region II to "pay for" the 
energy of the particles which escape to f+. 

A number of comments on these results are in order. 
First we note that we have been careful not to localize the 
place of production of the pair of particles. This seems to run 
against the usual understanding of Green's function tech
niques, which, in perturbation theory, give rise to diagrams 
such as Fig. 1 showing production as a point. We have not 
been able to specify this point, only where the external lines 
"end up." This seems to require a reinterpretation of dia
grams like Fig. 1. We can easily give such a reinterpretation 
if we consider the curved spacetime propagator, (denoted in 
this section by a double line) as being made up of Rat space
time propagators (denoted by a single line) with varying 
numbers of interactions with the external gravitational field 
(denoted by crosses). Such a notion can be made precise by 
considering the expansion of(3.5) in a Volterra series in the 
metric about 'TJ /-tv, but this will not be necessary for our pre
sent purposes. Viewed this way we see that the vertex in Fig. 
I simply represents the point at which the A¢ 4 interaction 
acts, and it is only when this is combined with the infinite 
number of interactions (at various spacetime points) with 
the external gravitational field, represented in the external 
lines of Fig. 1, that the production of two particles in the final 
state is ensured. Thus, one contribution to Fig. 1 is a diagram 
which might (as well as any other way) be drawn as in Fig. 2 
(its superimposition on the Penrose diagram illustrating its 
contribution to the Hawking radiation) clearly demonstrat
ing the lack of localizability in the production process. 

A second point requiring comment is the interpretation 
of the S matrix which the reduction formulas and the discus
sion of this section tell us how to calculate. We have shown 
that we are able to calculate S matrix elements describing the 
complete scattering situation, involving regions I and II; 
however the existence of the event horizon H + between the 
two regions means that an observer can never have complete 
knowledge of the final state in both of these regions. Thus an 
observer on f+ cannot determine the amplitUde for the oc
currence of n particles in the final state on f+, but only the 
probability of such an occurrence, once all the possible ac-

1757 J. Math. Phys., Vol. 21, No.7, July 1980 

companying outcomes in region II have been summed over. 
It was with this in mind that Hawking22 introduced the su
perscattering operator, which maps between density matri
ces rather than pure states, as the operator which determines 
observations on f+. We note that an S-matrix formulation of 
quantum mechanics has not failed in this case, contrary to 
Ref. 22; the S-matrix elements we predict could, however, 
only be utilized in region II by the supreme sacrifice. 

7. DISCUSSION 

In this section we wish to discuss the achievements and 
shortcomings of this work. While much has been achieved in 
constructing a rigorous framework for interacting quantum 
field theory in curved spacetime, we have not been able to 
achieve our main aim of establishing whether or not A¢ 3 in 
curved spacetime is renormalizable. Let us retrace our steps 
and see where the failure occurred. 

Once formally renormalized Green's function equa
tions had been developed it was an easy matter to show that 
all the infinities in the vertex could be expressed in a quantity 
which had a form allowing for its absorption into coupling 
constant renormalization, apart from the fact that the un
known quantity [see (5.14)] was possibly spacetime depen
dent. This led us to decide that we must not only show that 
the singular structure of various Green's functions is pre
served under iteration, but also that the metric behavior of 
these singularities is preserved. The vertex function renor
malization in six dimensions depended only on the leading 
singularity structures of the complete propagator, and we 
were able to show that the infinity could indeed be absorbed 
into coupling constant renormalization. There was no renor
malization of the vertex in four dimensions. On turning to 
the self-energy and the renormalization of(3.39) we could 
once again show that the infinities in six dimensions could be 
absorbed into three different types of renormalization as in 
(5.28). It was shown that the metric dependence of two of 
these quantities depended only on the leading singularity 
structure of the Green's functions and could be determined 
to vanish in one case and give wave function renormalization 
in the other [see (5.29b, c)]. In trying to establish whether the 
third quantity would give mass and 5 renormalization as in 
(5.29a), we found that we needed to show that the 0--

1 depen
dence of the metric is preserved at each order of iteration. It 
was pointed out that the "tadpoles," which do not playa role 
in flat spacetime, immediately change the 0-- 1 dependence, 
even at the first iteration. However we were able to show that 
the effect of such 0--

1 dependence was canceled in the diver
gences. We showed that there is other modification of the 0-- 1 

term coming from the finite part of the self-energy, which is 
coupled to the external gravitational field. Our method was 
unable to determine the nature of this modification and so 
we were unable to verify that the remaining infinities could 
indeed be absorbed into mass and 5 renormalization, as is the 
case if the 0--

1 dependence is unchanged from its lowest or
der. 

We must ask whether this problem is only an inade
quacy of our method, or whether it points to the possible 
nonrenormalizability of A¢ 3 theory in curved spacetime. 
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One can advance arguments in support of the first of these 
points of view; for even though in Eq. (5.38) the (7-1 modifica
tion arises from couplings to the external metric, a more 
detailed study suggests that in fact they only arise from 
terms with up to second derivatives of the external metric. 
This strongly suggests that the form (5.36) is preserved, but 
it would be foolish to make a stronger statement without 
careful analysis, which we cannot do in the present frame
work. 

Even if the (7-1 metric dependence of the complete prop
agator is preserved it is much less likely that the In (7 metric 
behavior will retain its lowest-order form. This we saw 
would be necessary for the renormalization of the n = ° 
Green's function equation (3.45). We were also unable to 
show that overlapping divergences in these equations would 
cancel, thus leaving the possibility of divergences with very 
complicated, non local, metric dependence which might also 
lead to the breakdown of the theory. However if we allowed 
the removal of these terms by normal ordering then in four 
dimensions ¢J 3 theory was shown to be renormalizable. 

What then can be done to firmly establish whether in
teracting field theories in curved spacetime can become non
renormalizable? An obvious approach is to find, by explicit 
calculation, a case in which the renormalization procedure 
breaks down. As was mentioned in the Introduction such 
explicit calculations are of great difficulty in curved space
time. However, since the initiation of the writing of this pa
per, methods have been developed which bring such calcula
tions from the realm of the near impossible into the domain 
of laborious computation. These methods make use of mo
mentum space representations of the curved-space Feynman 
propagator. That of Birre1l31

.
5 allows the representation of 

the entire propagator of spacetimes which are asymptotical
ly fiat, while that of Bunch and Panangaden,8 and Bunch 
and Parker32 represents only the singular part of the propa
gator. Such momentum space representations have recently 
been used to consider the renormalization of A¢J 4 theory in 
curved spacetime. 

In this paper we have considered ¢J 3 rather than ¢J 4 the
ory mainly because of the reduction in the number of dia
grams which appear in the Green's function equations. 
There is, however, a difference between the theories which 
makeA¢J 4 an even more likely candidate for nonrenormaliza
bility in curved spacetime. Just as in ¢J 3 theory we had to 
contend with the occurrence of "tadpole" Green's functions 
appearing in the self-energy, in ¢J 4 theory we have the appear
ance of extra terms in the self-energy resulting from (3.46). 
While in ¢J 3 theory it was possible to show that infinities with 
complicated metric and state dependence resulting from 
terms with "tadpoles" canceled between themselves, it is not 
possible to give a similar proof for the contributions from 
(3.46). Indeed it can be shown that such infinities will not 
cancel amongst themselves, but, if they are to cancel, must 
cancel infinites from diagrams with quite different topology. 
That this would have to be the case for renormalization to be 
successfully effected at second-order perturbation theory 
was pointed out by Bunch, Panangaden, and Parker. 7 It was 
then shown independently by Birrell,5 and Bunch and Pan
angaden,8 using their respective momentum space methods, 
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that such a cancellation does in fact occur at second order in 
spacetimes with metric 

(7.1) 

That this is the case appears to us to be merely fortuitous, not 
necessarily continuing to occur at higher orders of perturba
tion theory and/or in other spacetimes. The reason we can
not be sure of cancellation at higher order is that the metric 
dependence, or even the numerical coefficient, of the non
leading singular term in the complete propagator, which 
contributes to the divergence under consideration, can 
change at each order of iteration. Since the removal of the 
state dependent infinities depends on exact numerical can
cellation between terms, showing that such cancellation oc
curs at second order, in no way guarantees that it will occur 
at higher orders. A proof of renormalization to all orders 
thus remains as work for the future. 

Finally we note that there are numerous other investi
gations involving interacting quantum fields in curved spa
cetime which must still be made. Examples of these are stud
ies of the stress tensor, currents and associated anomalies, 
the renormalization group, operator products, and the spec
tral representation of propagator. These investigations are 
best left until after the renormalizability of the underlying 
theory is firmly established. 

Note added in proof In arriving at the allowed forms of 
the quantities (II, ax) < (II, /3/") and (II, r/"'V) appearing 
in Eq. (5.28), we have imposed only two constraints, namely: 
(i) correct dimensionality, and (ii) general covariance. Only 
one further constraint is needed to ensure renormalizability, 
this being (iii) locality of these terms. Locality means that the 
quantities listed above can only depend on the spacetime 
structure at the point x, and not elsewhere. The only possible 
local, generally covariant expressions with the correct di
mensions are those exhibited in Eq. (5.29). In considering 
the dimensions of the quantities involved, one must bear in 
mind that the only dimensional constant that appears in the 
theory is m, and that only positive powers of m, or Inm can 
arise in the self energy, because there is at worst a logarith
mic infrared divergence in the terms which are also ultravio
let divergent. We would like to point out that our three con
ditions above arise naturally from the initial Lagrangian 
structure, and are to be regarded as analogous to the imposi
tion of Poincare or gauge invariance in fiat spacetime 
theories. 

We hope to discuss this point in more detail elsewhere. 

APPENDIX A 

It is shown that all the logarithmic divergences in (3.40) 
and (3.41) containing dependence on the n = 0, "tadpole," 
Green's functions cancel. Write (3.43) as 

o 

= + 

N.D. Birrell and J.G. Taylor 1758 



                                                                                                                                    

then substitution of (A 1) into the first term of (3.40) gives 

0:0 

From (3.35) and (3.36) we have that 

xrt1w 

Y~~ 
1,2 

contains a term 

+ 

+ finite term. 
(A2) 

(A3) 

which, when substituted along with (AI) into the second 
term in (3.4) gives 

o 
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o 

(A4) 

+ finite term. 

This exactly cancels the second term in (A2). Provided that 
---J- has no single "tadpole" contributions we have 
shown that the logarithmic divergences arising from inser
tions of a single "tadpole" in a complete propagator in the 
first term of (3.40) cancel terms with no "tadpole" insertions 
in the propagators of the seond term of (3.41). Terms with 
more than one "tadpole" insertion in the first diagram of 
(3.40) are finite as are those with any insertions of tadpoles in 
the second diagram of (3.41). That -+- does in fact have 
no single "tadpole" insertions can be checked by induction 
on the iteration procedure. 

We are still left with logarithmic infinites arising from 
insertions of tadpoles in the vertex functions of the diagrams 
in (3.40), or into the propagators in one side of the second 
diagram of (3.40) (insertion into propagators on both sides 
giving a finite diagram). However these infinites are some of 
those removed by the overlapping divergence treatment 
leading to (5.21). In fact, since separate multiplication of 
either of the two terms in (3.40) by ul'(x,y) does not remove 
these infinities, the fact that they are gone in (5.21) after 
manipulation using D I' of (3. 37) and executing various can
cellations between the two diagrams, shows that the loga
rithmic infinities of the type under discussion must cancel 
between the two diagrams. 
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~ general formulation for treatment of extended objects in a quantum field system is presented. It 
IS shown how to co~struct the solutions of the Heisenberg equation when static extended objects 
are present. A detaIled study of the quantum coordinate is presented. The Hamiltonian for the 
quantum mechanical object, which comes out of the quantum field theory, is obtained. It is shown 
that creation of extended objects does not upset the renormalizability. 

1. INTRODUCTION 

This paper is aimed at a general formalism for the treat
ment of extended objects which are created in quantum field 
systems by the condensation of certain bosons. There has 
been an active interest in the analysis of quantum effects in 
solition solutions l

.
2 among physicists of many fields. The 

interest of the high energy physicists lies in their search for 
extended models of elementary particles, while many math
ematical scientists are attracted to this subject purely by 
their mathematical curiosity. In solid state physics this study 
has a more realistic purpose; there we find a variety of phe
nomena in which microscopic objects (i.e., quanta) and ex
tended (or macroscopic) objects coexist and interact with 
each other. Consider a crystal as an example. A perfect crys
tal without boundaries is a quantum system consisting of 
phonons and other quantum modes. However, perfect crys
tals are rarely found in reality; in almost all practical cases 
crystals contain many sorts of macroscopic objects such as 
dislocations, grain boundaries and point defects. 3 Vortices in 
superconductors4 and magnetic domains in ferromagnets 
are also well known examples. The study of these extended 
objects in quantum many-body systems signals the opening 
of a new development in quantum field theory. At the begin
ning of the history of quantum field theory, the problem was 
to quantize the classical field equations in order to derive the 
quantum field theory. Our problem now is to start with the 
quantum field theory and to derive quantum mechanical or 
classical objects out of quantum field theory. 

As a preliminary formulation of this kind, we have pre
se~ted the boson transformation method.s A simple presen
tatIOn of the boson transformation method was given in 
Refs. ~ and 7. In this method, one first solves the Heisenberg 
equatIons for the homogeneous system without any ex
tended object and then certain extended objects are created 
in this quantum system by means of the boson transforma
tion, which corresponds to a boson condensation. The boson 
transformed Heisenberg field describes both extended ob
jects and quanta and also their mutual interaction. 

It has been shown 7 that, as soon as an extended object is 
created by the boson condensation, the "quantum coordi
nate" Q, which is the quantum mechanical coordinate of the 

")Centre de Recherches Nucleaires, Universite Louis Pasteur, 67037 Stras
bourg, France 

extended object, appears naturally. It was shown 7 that the 
operator Q appears only through the combination (x + Q), 
where x is the space coordinate. This quantum coordinate is 
the collective coordinate introduced by Gervais and Sakita.8 

When the size of the extended object is much larger than the 
quantum fluctuation of Q, the object behaves as a classical 
object; otherwise it behaves as a quantum mechanical object. 
In this way, both classical and quantum mechanical objects 
can result from quantum field theory. In Ref. 9 we applied 
the boson transformation method to the calculation of the 
quantum effects in the static soliton solution of the (1 + 1)
dimensionalA.cP 4-model, and the results were compared with 
those2

.
lo of other methods. The purpose of the present paper 

is to study a general formalism for extended objects in quan
tum field systems. In particular, we make a detailed analysis 
of the problems of the quantum correction, the renormaliza
tion and the Q- and P-dependence of the Heisenberg opera
tors. Here P is the canonical momentum of Q. 

As a continuation of our study in Ref. 7, we consider a 
Heisenberg equation of the simple form 

A (J)¢(x) =F[¢(x)], (1.1) 

where ¢ is a scalar Heisenberg field. We assume that this 
model is renormalizable. Equation (1.1) leads to the Yang
Feldman equation 

¢(x) = CPo(x) + A (J)-IF[¢(x)], (1.2) 

where cpo<x) is a renormalized free boson field satisfying 

A (J )CPo(x) = O. (1.3) 

Note that our choice of CPo in (1.2) is not necessarily limited 
to the infield. As a matter of fact, in solid state physics one 
frequently uses CPo which is different from the in-field. For 
simplicity, we assumed that only one kind of free field ap
pears in the theory. When we solve (1.2) by successive iter
ation we are led to an expression for ¢ in terms of CPo 

¢(x) = ¢(X;CPo) 

I ~fdal · .. dan c(x;a1 .. ·an ) :cpo(al)· .. cpo(an ):, 

n~O n. 

(1.4) 

which is called the dynamical map . 
. We now introduce a c-number function/(x) which 

satIsfies 

A (J)/(x) = o. (1.5) 
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Then we can generalize the Yang-Feldman equation as 

¢(x) = fPo(x) + f(x) + [A (J)]-IF[¢(x)]. (1.6) 

Solving this equation successively, we obtain a new solution 
of (1.1) 

¢J(x) = ¢(x;fPo + f). (1.7) 

Note that IpIis related to ¢ through the substitution (the 
boson transformation) fPo--+({!o + f The fact that both ¢ and 
¢f satisfy the same Heisenberg equation (1.1) is the content 
of the boson transformation theorem 

(1.8) 

It is obvious that, whenf(x) is Fourier transformable, the 
result of the boson transformation is a particular case of the 
coherent representation II in which the c-number f(x) is re
quired to satisfy the free boson equation (1.5). The boson 
transformation method admits also thosef(x) which are not 
Fourier transformable. This is the origin of topological 
objects. 12.13 

The boson transformation theorem (and, therefore, the 
boson transformation method) has been formulated5 even in 
those general cases in which there appear many free bosons, 
some of which are composite. However, in this paper we 
confine our consideration to the above simple case (1.1 ). We 
further simplify the situation by assuming that the extended 
objects are static [i.e.,J(x) = f(x)], 

Let us now write the dynamical map of the boson-trans
formed Heisenberg field ¢f as 

00 1 
¢f(x) = I -: ¢jn):, (1.9) 

n ~O n! 

where ¢j') has the form 

¢j') = f dO'l .,. dUn c/x;UI"'Un)fPo(UI)"'fPo(Un)' (1.10) 

The leading term ¢}O) is equal to 

tP/x)- (01 ¢f(x)IO). (1.11) 

This is the classical field which describes the classical behav
ior of the extended object created by the condensation of fPo' 
The function tPf depends on x throughf(x). The linear term 
in the dynamical map of ¢f is 

¢jl} = f dO' c/x;u)fPo(u). (1.12) 

The matrix elements of ¢Y) describe the behavior of a single
quantum under the influence of the extended object. The 
higher order terms describe the quantum reactions in the 
presence of the extended objects. In this way the ¢f describes 
the system of quanta and extended objects. The ¢}n) with 
n > 0 contains up to the nth order products of the quantum 
coordinate Q. 7 When we use the Taylor expansion, we have 7 

(1.13) 

with 

(1.14) 

In the next section it will be shown that, when the Hei
senberg equation (1.1) is renormalizable in the homogeneous 
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system (i.e., the system without any extended object), the 
creation of extended objects does not upset the renormaliza
bility.9 It has been proved6 that, when the three approxima
tion is used, the classical field tPf satisfies the Euler equation. 
It was briefly shown in Ref. 7 how each term in the dynami
cal map (1.9) in the tree approximation can be determined 
from the knowledge of tPf' Thus, when we specify a solution 
tP/' the boson-transformed Heisenberg field ¢f in the tree 
approximation is determined. In Sec. 3 a short resume of the 
content of the Ref. 7 will be presented. In Sec. 4 it will be 
shown that all of the quantum corrections in ¢fcan be calcu
lated from the dynamical map of ¢f in the tree approxima
tion. Thus, we are led to the remarkable conclusion that the 
knowledge of the classical field tPf in the tree approximation 
determines the boson-transformed Heisenberg field ¢f with 
full quantum-corrections. Hereafter we will use the hat nota
tion ¢/ to distinguish operators in the tree approximation 
from exact operators. Those without a hat are exact. Section 
4 will be devoted to a detailed study of the quantum 
coordinate. 

2. RENORMALIZATION AND EXTENDED OBJECTS 

Let us assume that the Heisenberg equation (1.1) is ren
ormalizable when it is applied to the homogeneous system 
(i.e., the system without any extended object). Then the coef
ficients c(x;ul···un)in (1.4) are finite functions when they are 
expressed in terms of the renormalized quantities. Equations 
(1.7) and (1.10) now lead to 

c/x;ul·"un) = ,to 1\ f d 4
tl ". d

4
t, c(x;ul"·Untl,,·t,) 

(2.1) 

Thus, the coefficients c/x;ul,,·un) do not contain any diver
gences when they are put in this expansion form. Recalling 
the fact that the statement of renormalizability has always 
been associated with certain expansions (such as perturba
tive expansion, loop expansions, etc.), we may express the 
above result by the statement that, when c(x;u 1'''0' n) are ren
ormalized, so are c/x;ul·"un ). In other words, the creation 
of extended objects does not upset the renormalizability. 
There still remains the question of how the summation in 
(2.1) is defined. 

3. THE DYNAMICAL MAP IN THE TREE 
APPROXIMATION 

In the tree approximation the classical field satisfies the 
Euler equation 

(3.1) 

We now show that a solution of this classical equation 
determines uniquely the dynamical map of the Heisenberg 
operator in the tree approximation. This is a preparation for 
the proof of the statement that the classical field tP f in the tree 
approximation determines the boson-transformed Heisen
berg field ¢f with full quantum corrections. 

Recall that operators in the tree approximation are de
noted by the corresponding symbols with a hat. The Heisen
berg equation (1.1) is read in the tree approximation as 
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A (a)( nto ~l tfjn») = F [ nto ~l tft)] . (3.2) 

In the above, noncommutativity among "'jn) can be disre
garded in the tree approximation. This equation leads to the 
recurrence formula 

with 

o <n l <n2 • .. <no 

(3.4a) 

(3.4b) 

In (3.3), F(l) [¢I 1 is the nth derivative of F[ ¢I 1 with respect 
to tPr. The summation in (3.3) runs over all the possible 
choices of I, n; and a; satisfying the conditions (3.4a) and 
(3.4b). In particular, (3.3) with n = I and 2 leads to 

(A (a) - F<l >[¢ix) l)tf<l 'ex) = 0 (3.5) 

and 

(A (a) - F' I >[¢ix) ])tf'2)(X) = F'2[¢ix) HtfjO(x»Z, (3.6) 

respectively. Another derivation of(3.3) is given by a succes
sive operation of 8r on both sides of (3.1).7 

Let us now note that the equations for tft) with an n>2 
~re inhomogeneous. Thus, tfjn) with n>2 are determined by 
",jl). In other words, t/ljn) with n>2 can be expressed in terms 
oflin~ar combinations of products of tfy). Since (1.12) shows 
that ",jl) is the physical field modified by the influence of the 
extended object, we see that tfjn) with n>2 are expressed in 
terms of physical fields. Equation (3.5) shows7 that the influ
ence of the extended object on the physical field appears 
through the self-consistent potential F' I l¢r(x)]. 

Since Eq. (3.5) is homogeneous, it cannot determine the 
structure of ",Y). This structure is determined by the equal 
time canonical commutation relation.7 Treatment of (3.5) 
requires particular care, because this equation admits, not 
only solutions for scattering waves, but also bound states' we 
meet the well-known intricate relation between the itera~ive 
method and the appearance of bound states. When we re
write (3.5) as 

tfY)(x) = tp O(x) + A -I(a) F(l '[¢/(X) ltfY)(x), (3.7) 

the iterative method gives the solution for the scattering 
waves only. This solution will be denoted by x~ (x). Equation 
(3.5) admits also some solutions which have discrete ener
gies. Among these solutions, there appear7 three zero-energy 
modes when/ex) depends on the three components ofx. 
These zero-energy modes originate from the translational 
in variance of the Heisenberg equation (1.1), and therefore 
they are called the translation modes. Since they are not ob
served as excitation modes, we associate' the quantum co
ordina~e Q (rather than the creation or annihilation opera
tors) With them. We denote the canonical conjugates ofQ by 
P. Then our Hilbert space is the product of the Hilbert space 
dY Q = { 1 «P Q) J of the quantum coordinate and the Fock 
space dY F = (I «P F) J of the excitation modes 

I«P) = I«PF)xl«PQ )· (3.8) 
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We use the notation 10) to denote the vacuum state in :tt'F' 
Thus, the definition (1.11) of the classical field should be 
modified as 

(3.9) 

As was shown in Ref. 7, the canonical commutator requires 
that all the members of the complete set of solutions of(3.5) 
should appear in tfjl). Thus, tfjl) has the form 

tfY)(x) = (Q'V)tP~(x) + Xo(x), (3. lOa) 

with 

io(x) = i~(x) + i~(x), (3. lOb) 

where X;; (x) is the physical field associated with nonzero 
discrete en~rgy sol!ltion of (3.5) in the tree approximation. 
The fields X~ and X~ have the forms 

ro(x) = J d 3k (I~){u(x,k)a(k)e-;W" 

+ u*(x,k)at(k)e;w,r J, (3.Ila) 

i~(x) = L (1/V 2w; ) I u;(x)a;e - ;Wi' + ur(x)aTeiw,1 J, 
; 

(3.llb) 

where a(k) and a; are the annihilation operators of quanta 
with continuous energy and nonzero discrete energies re
spectively, and u(x,k) and u;(x) are their orthonormalized 
wavefunctions. In writing (3.lla) and (3.llb), we assumed 
that the canonical conjugate of", is (a / Jt)"'. When this as
sumption does not hold, (3.Ila) and (3.IIb) require a suit
able modification. The appearance of the bound states 
through the boson transformation may depend on the way of 
defining the limit of the iterative method applied to the 
Schrooinger equation (3.5). This may depend also on the 
way of defining the summation of the power expansion (2.1) 
with n = 1, i.e., 

(3.12) 

The summation should be defined in such a way that the 
equal-time canonical commutation relation for ",rholds. 

Summarizing, the rule of calculation of tfY) is a follows: 

calculate i ~ by the)terative method and then replace this by 
i ~ + i~ + (Q.V)tPI· The operator tfjl) is then given by 
(3:lOa). Using tfY) thus determined, tf}n) with n>2 are ob
tamed from the equation (3.3) with n>2. The dynamical 
map of ",I in the tree approximation is now determined. 

It w~s sh.own in Ref. 7 that x and Q appear only through 
the combmatlOn (x + Q). Thus the spatial translation 
x-x + a is induced by the transformation Q_Q + a. Con
sidering this, we can simplify the above-mentioned rule of 
':.alculation of ",fin the tree approximation as follows: we use 
./,(1) _ A (h A(1) A A • 
¥;'I - Xo rat er than "'I = (Q·V)tP/ + Xo) and determme 
"'in) by means of Eq. (3.2) with n>2. We then replace x by 
x + Q. This point will be further elaborated in Sec. 5. 

. In the above argument the tree approximation is ap
plIed .to the unrenormalized Heisenberg equation (1.1). In 
practice, the renormalization process is performed before 

Matsumoto et al. 1763 



                                                                                                                                    

the boson transformation is made. In renormalization the
ory, F[¢] has the form 

F[¢l =Fo[¢] + Fc[¢], (3.13) 

where Fe [¢] contains the counter terms which compensate 
the differences between the renormalized parameters and 
the bare parameters. In renormalization theory, the tree ap
proximation is applied to 

A (J)~ = Fo[~], (3.14) 

which leads to the Euler equation 

A (J)iJ = Fo[iJ]. (3.15) 

When
A 

our consideration begins with a solution of this equa
tion, ¢, in al~ the formulas in this section should be expressed 
in terms of ¢ J. To do this we use the equation 

A (J).1if = Fo[iJ + .1i,] - Fo[iJ] + Fe [iJ + .1J,], 
(3.16) 

where 

.1Jr=Jf - J J. (3.17) 

Using the Taylor expansion 

F(n)[J,] = Ito 1\ F(n+ I) [JJ](.1J')', (3.18) 

we can express Eq. (3.3) in terms of J~. Solving this equa
tion, we can express the dynamical map of~' [satisfying 
(1.1) in the tree approximation] in terms of i J. 

In the above consideration, we ignored the quantum 
coordinate. The latter coordinate will be recovered in Sec. 5. 

4. THE QUANTUM EFFECTS 

In the last section we constructed the dynamical map of 
¢' in the tree approximation. In this section we show how to 
take into account the quantum effects. As was pointed out 
previously, operators with a hat indicate those in the tree 
approximation. 

It should be noted that ;jI in the tree approximation 
considered in the last section contains the renormalization 
effect .1Jf which is creat~d by the counter term Fc [¢]. This 
renormalization effect.1 ¢, is a part of the quantum effect. In 
the following we consider the other part of the quantum 
corrections. 

Let us first calculate the quantum correction in the clas
sical field ¢/x) defined by 

¢/x) = (OI¢'(x)IO)lp~Q~o. (4.1) 

The ¢Ax) can be obtained from ~t<x) in the tree approxima
tion by contracting the physical field operators in all the 
possible ways. Therefore, we have 

¢/x) = JJ(x) + .1J/x) + 1Lfo/x), (4.2) 
with 

ifJ/x) = ! _1_ (OI~yn)(x)IO). (4.3) 
n~ 1 (2n)! 

Here the ~}")(x) are those which were calculated in the tree 
approximation. In deriving (4.2) we considered the fact that 
all possible contractions among the physical fields <Po ap
pearing in the dynamical map of ~'in the tree approxima
tion contribute to the classical field ¢[" 
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The quantum effects in the linear term in the dynamical 
map of ¢f can be calculated in a similar manner. In this case 
we consider ~(/' + 1) of the tree approximation and perform 
all possible contractions of21 physical fields. The result is the 
I-line corrections to ~y). In this way, we can calculate the 

quantum effects in any term in the dynamical map of ¢f. 
As an example we consider the one-quantum correction 

to the classical field ¢f' Then, (4.3) is approximated by 

ifi,=!(01~}2)10). (4.4) 

Equation (3.4) with J, = JJ + .1J, gives 

(A (J) - F( 1 '[JJ + .1Jf] 1 (01~}2)10) 

= P<2'[JJ + .1J, ] (01(tfY»21 0). (4.5) 

Following the computational rule presented in the last sec
tion, we replace ~y) by io' disregarding the quantum coordi
nate. Then (4.5), together with (4.4), gives 

(A (J) - P< 1 '[JJ + .1Jf] lifJf 

= W(2'[JJ + .1 if ](OI(io?IO). (4.6) 

Since we are considering the one-quantum correction only, 
we can rewrite (4.6) as 

(A (J) - F~/)[JJ]lifJf = Wb2)[JJ](01(io)210). (4.7) 

Here we considered the fact that F~ [J J] is a quantum correc
tion. The renormalization term.1¢, is a function ofrenorma
lized constants and the Planck constant; the latter constant 
results from the quantum corrections in the counter term Fe . 
Expanding this function in powers of the Planck constant as 

.1J, = ! .1J Y), 
,~ 1 

(4.8) 

we approximately put .1J,c:::::AJ Y). Then Eq. (3.16) for .1J, 
becomes 

[A (J) - Fgl[JJ1].1Jy) = Fc [JJ]. 
Combining (4.7) and (4.9), we obtain 

(A (J) - Fg)[JJ]](.1JYl + ifJf) 

= Wb2
) [J}O)](OI (iO)2 10) +Fc [JJ]. 

(4.9) 

(4.10) 

This is the equation which, together with (4.2), determines 
the one-quantum correction of the classical field ¢,. As it 
was proved in Sec. 2, the divergence which appears in 
(01(iO)210) should be cancelled by the counter term Fe [JJ]. 

When we are interested in the one-quantum effect in 
(OIQ [¢']IO) where Q [¢'] is a linear combination of pro
ducts of ¢" we can simply make the replacement 

¢'-¢f + Xo, (4.11) 

where ¢, is given by (4.2). For example, the energy of the 
vacuum state with the extended object in this approximation 
is given by (OIH[¢, ]10) with the replacement (4.11). Here 
H is the Hamiltonian. 

Let us now illustrate the one-quantum correction in ¢ f 
by means of the simple models. First we start from the J.p4_ 
model 

(4.12) 
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When we put 

p(x) = Z t/2(mlg + ¢(x», 

A = ~2ZtZ-2, 

112 = ~mZZzZ-l, 

(4.13a) 

(4.13b) 

(4.13c) 

we have 

(4.14) 

where 

Fo[¢l = J.gm¢z + ~¢3, 
m 3 

Fc[¢l = -!-Z-t(Z2- Z t) 
g 

+ m 2
[ ~ZtZ-t - (1 + ~Z2z-t)1 ¢ 

(4.1Sa) 

+ ~(ZtZ-t _1)gm¢2 + ~(ZtZ-t _1)gZ¢3 

= - ~mZ(Z-tZ2 -l)(mlg + ¢) 

+ ~(Z-tZt -l)(mlg + ¢)3. (4.1Sb) 

Here, m is the renormalized mass, g is the renormalized cou
pling constant, and Z, Zt, and Z2 are the renormalization 
factors. The renormalization constants in the (1 +l)-di
mensional case were calculated in Ref. 9. Deviations of the 
constants Z,Zt, and Z2 from 1 are caused by the quantum 
effects. 

The Euler equation for J J is given by 

(- JZ - m2)JJ = Fo[JJ], (4.16) 

which reads as 

(- J2 + ~m2)(mlg+ JJ) = ~(mlg + JJ)3. (4.17) 

This leads to the well-known soliton solution for tP J. Equa
tion (4.1Sa) gives 

F~t)[¢l = 3g m¢ + J.g2¢2, (4.18) 

F~2)[¢] = 3gm +3gl¢. (4.19) 

Since we have (Z;z-t -l)=(Z; - Z)(i = 1,2) in the one
loop approximation (4.1Sb) gives 

Fe [JJ] = - ~m2(Z2 - Z)(mlg + JJ) 

+ ~(Zt - Z)(mlg + JJ)3, (4.20) 

and Eq. (4.10) for (.J.JJ + ;rJJ) becomes 

! - J2 - m2 - 3g mJJ - }g2(JJ)2J(.J.JJ + ;rJJ) 

= ~2(mlg + JJ)(Olx~ 10) + ~(Zt - Z)(mlg + JJ)3 

- ~m2(Z2 - Z)(mlg + JJ). (4.21) 

This agrees with the result in Ref. 9. As was shown there, the 
divergencies in Zt, Z Z, and (Olx~ 10) cancel out among 
themselves even in the (1 +3)-dimension, implying that cre
ation of soliton does not upset the renormalization. Calcula
tion of the one-quantum correction of the energy for the 
model under consideration was calculated also in Ref. 9 and 
10. 

In the case of the sine-Gordon equation 

J 2p = al/3 sin/3p, (4.22) 

the renormalized field ¢ and constants a r,/3r are defined, 
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respectively, as 

P = Z t/Z¢, (4.23a) 

a = Z-tZaar , (4.23b) 

/3 = Z-I/Z/3r· (4.23c) 

The sine-Gordon model is renormalizable only in the 
(1 +l)-dimension, so that the divergence appears only in 
the mass renormalization Za. The /3r is determined in the 
course of defining the renormalized coupling constant. Then 
Eq. (4.22) is rewritten as 

J2¢ = Fo[¢] + Fe [¢]. (4.24) 

where 

Fo[¢l = aJ/3r sin/3r¢' (4.2S) 

Fe [¢] = (1 - Z)J2¢ + a rl/3r(Za -1) sin/3r¢. (4.26) 

Notice that the one-quantum correction of the mass renor
malization in the homogeneous case leads to the relation 

(4.27) 

with 
(J2 + ar)ipO<x) = O. (4.28) 

The equation which determines the one-quantum cor
rection of the classical fields is given by (4.10) 

! J2 - a r cOs(JrJJj(.J.Jy) + ;rJJ) 

= - ~ar/3r sin/3rJ J( (Olx~ 10) - 2/3 r- 2(Za - Z)]. 
(4.29) 

To derive (4.29), the Euler equation 

J2JJ = a rl/3r sin/3rJJ (4.30) 

was used. Since ! (Oli~(x)IO) - (Olip~(x)IO) J is finite, one 
gets the finite value for the one-quantum correction of tPJ. 

We have so far disregarded the quantum coordinate, 
which will be recovered in the next section. 

5. THE QUANTUM COORDINATES 

In the calculations of the dynamical map of ¢J in the 
last two sections we ignored the quantum coordinate Q and 
its canonical conjugate P. In this section we study how ¢J 
depends on Q and P. Since each term ¢t) in the dynamical 
map depends on Q only through the combination (x + Q), 
we have 

¢jn)(x) = ¢(/(x + Q,P,t). 

For the sake of simplicity, we assume 

A (J) = - J2 - m2. 

(S.l) 

(S.2) 

Note also that, throughout this paper, we are considering 
static extended objects. 

Since the total Hamiltonian H does not depend on x, it 
does not contain Q; in other words, H contains P only. Then 
the relation 

Q = i[H,Q] 

shows that Q depends on P only, implying 

Q = i[H,Q] = O. 

Furthermore, 

P = i[H,P] = O. 
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Thus, Q and P are independent of time. We can thus write 

Q(t) = Q(O) + tQ, 

which leads to 

Q(t ') = Q(t) + (t ' - t )Q. 

Making use of(5.6) and (5.7), we can calculate tf;t) 
(x + Q,P,t). 

(5.6) 

(5.7) 

Let us begin with ¢?) in the tree approximation. Equa
tion (3.6) gives 

¢?)(x) = f d 4a G (X,O)F'2l ¢Au) ](¢Y)(aW, (5.8) 

where 

[A (a) - F' I '[¢Ax)] I G (x,a) = o(x - a). (5.9) 

According to (3. lOa), we have 

¢,?)(a) = (Q(tO"),V¢Au») + Xo(a) (5.10) 

= (Q(t ),V¢f(U») + (to" - t )(Q.V) ¢Au) + Xo(a). 
(5.11) 

Here t means tx ' Now (5.8) gives 

¢?)(x) = f d4aG(x,a)F'2l~~(u)][(Q(t).V~~(uW 

+ 2 (Q(t ),V¢Au»)Xo(a) + (fo(aW 

+ (to" - t)! (Q(t )-V¢Au»)(Q,V¢Au») 

+ (Q,V¢Au»)(Q(t ).V~~(u») I + (ta - t? 

x (Q,V¢AuW +2(ta - t)(Q,V¢Au»)Xo(a)]. 
(5.12) 

On the on the hand, operating on both sides of the Euler 
equation (3.1) with derivatives we obtain 

[A (a) - F' Il¢f] jV¢Ax) = 0, (5.13a) 

[A (a) - F' Il¢f] jaA¢Ax) = F'2'[~~ ]ai¢f·aj¢f' (5.13b) 

The latter equation gives 

f d 4a G (x,a)F'2'[¢Au)]ai¢Au)aj¢Au) = aA¢Ax). 

(5.14) 

This determines the first term on the right-hand side of 
(5.12). To calculate the second term, we recall (3.5), which 
gives 

[A (a) - F' I )[¢f] lxo = O. (5.15) 

Operating on both sides of this with ai> we obtain 

{A (a)-F'IT¢f])ado =F(2)[¢f]ai¢fXO, (5.16) 

which gives: 

f d 4aG(x,a)F,2)[¢Aa)]ai¢Au)Xo(a)=ado(x). (5.17) 

This determines the second term. These calculations of the 
first and second terms were already presented in Ref. 7. 

Let us now calculate other terms. We have 

[A (a) - F(\ '[¢f] I f d 4a G (x,a)(ta - t) 

xF' 2)[ ¢Au) ]ai¢Au)-aj¢Au) 
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= 2 ~ f d 4aG (x,a)F'2,[¢Au) ]ai¢Au).aj¢Au) 
at 

a A 

= 2 - (aA ~f(x») = 0, (5.18) 
at 

[A (a) - F<ll¢f]) f d 4a G(x,a)(ta - t)2 

xF' 2)[ ¢f(U) g¢Au).aj ¢Au) 

= 4~fd4 aG(x,a)(ta - t) 
at 

xF' 2l ¢Au) ]ai¢Au).aj¢Au) 

+2 f d 4aG(x,a)F'2l¢f(U)]ai¢Au).aj¢Au) 

= 2aA¢Ax). (5.19) 

On the other hand, it is easy to find that 

[A (a) - F' I'[¢f] j (xA¢Ax») = 2aA¢f' (5.20) 

Thus, (5.19) gives 

f d 4aG(x,a)(ta - t)F'2'[¢f(U)]ai¢Au).aj ¢Au) 

=xA¢Ax). 

Finally, we note that 

[A (a) - F' 11 ¢f ] j f d 4a G (x,a)(ta - t) 

XF'2'[¢f(U ]ai¢Au),xo(u) 

= 2 ~ f d 4a G (x,a)F'2)[¢Au) ]ai¢Au)Xo(a) 
at 

= 2aiXo(x), 

where (5.17) has considered. Since 

[A (a) - F(\ '[¢f] J(xdo) = 2aiXo, 

(5.22) leads to 

f d 4a G (x,a)(ta - t )F'2'[¢f(u) ]ai¢Au)'Xo(a) 

=xiXo(x). 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

When (5.14), (5.17), (5.18), (5.21), and (5.24) are used, 
(5.12) gives 

¢?)(x) = (Q(t ).V)2¢Ax) + 2 (Q(t ).V)Xo(x) 

+ (Q.x)(Q'V)¢Ax) + 2(Q.x)Xo(x) 

+ f d 4aG(x,a)F,21¢f(a)](fo(a))2. (5.25) 

Repeating the same calculation process, we can in prin
ciple determine how Q and Q appear in all of the ¢}n). How
ever, since such a calculation is very tedious, we use another, 
shorter route. 

Since we are studying the tree approximation, we can 
ignore the contributions of commutator [Q(t ),Q]. Then, 
since the quantum coordinate Q appears only through the 
combination (x + Q) and since Q is independent of time, we 
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have 

(S.26) 

where the symbol at means that the time derivative operates, 
not on Q, but on the time coordinate of x only. Let us use the 
symbol ap' =(ajJat ). Then the Heisenberg equation (1.1), 
with A (a) = - a 2 

- m 2
, becomes 

-a -m -2at Q; -- Q; - ¢ =F[¢ ]. [ -2 2 _. a (. a )2] A f A f 

aQ; aQ; 
(S.27) 

Since x and Q appear through the combination xQ 
(x + Q), (S.27) becomes 

[-a;+V2-m2-2(Q.V)at _(Q.V)2]¢f=F[¢f]. 

(S.28) 

For any vector V, we define the transverse part V T and longi
tudinal part V L with respect to Q as follows, 

I . . 
V T = V - Q 2 Q(Q'V), (S.29a) 

1 .'. 
V L = Q2 Q(Q.V), (S.29b) 

where 

When we introduce 

x' = XT + 1/(1 - Q 2)1/2XV 

t' = (1 - Q 2)1/2t + 1/(1 _ Q 2)1/2(Q.X), 

we have 

(S.30) 

(S.31a) 

(S.31b) 

V2 - (Q.V/ = V'2 + Q2(a;)2 +2(Q.V')J;, (S.32a) 

a; +2(Q.V)at = (a;)2 + Q2(a;)2 +2(Q.V' )a;. (S.32b) 

Then (S.28) becomes 

[ _a'2_m2]¢f=F[¢f]. (S.33) 

It is not surprising that (S.31) is not a Lorentz transforma
tion, because we are studying a static extended object so that 
the motion of the object is only Brownian motion caused by 
quantum fluctuations. 

As has been p~inted out, when we replace ¢Y) in the 
dynamical map of ¢fby io [cf. (S.lO)], then x should be 
replaced by xQ = x + Q, including the replacement of x' 
and t ' by X and T, respectively 

X = x QT + 1/(1 - (2)1/2 XQL , 

T = (1 - Q 2)1/2t + 1/(1 _ Q 2)1/2(Q.XQ). 

(S.34a) 

(S.34b) 

The rule for calculation of the dynamical map ¢f(x) in 
the tree approximation is now clear; first, follow the steps in 
~ec. 3 to obtain ¢f(x) with Q = P = 0 (and therefore, with 
¢Y)-+X 0)' and then replace (x,! ) by (X, T) in order to take into 
account Q and Q. The quantum coordinate appears only 
through Xp. = (X,T). 

As a check of consistency of the calculation, we now 
show that the expansion of ¢f in powers of Q and Q leads to 
(S.2S). To do this, we note that 

1767 

X = x + Q + ~Q(Q.x) + "', 

T= t+ (Q.x) + .... 
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(S.3S) 

(S.36) 

We thus have 

¢f = ¢iX) + io(X) + ... 

= ¢ix) + io(x) +2(Q,V)¢ix) 
+ ! [(Q.x)(Q,V)¢f(X) 

+ (Q.Vf¢ix) +2(Q,V)io(x) +2(Q.x)Xo(x)] + .... 
(5.37) 

The terms in the square brackets are the contributions of the 
quantum coordinate to ¢j2) when we use ¢jl) = (Q,V)¢f + in 
[cf. (S.lO)] rather than ¢jl) = io. Thus (5.37) agrees with the 
result, (S.2S). This explicitly shows how X and Ttake care of 
the quantum coordinate when ¢Y) = in is used. 

Note that ifJf(X) = (OI¢f(x)IO) is not a c-number, but 
an operator, because it contains the quantum coordinate. 

To consider the quantum corrections, we need to know 
how Q and Q are ordered, because Q; Qj is not equal to Qj Q;. 
For this purpose, let us note that the dynamical map of ¢f 
has the form 

¢f = ~ f dU1 ... dUn g(x;ul .. ·un):¢Y)(ul) .. ·¢Y)(un):, 

(S.38) 

where ¢Y) = (Q.V)ifJf + Xo· Sinceg(x;ul· .. u n ) is symmetric 
in ul ... un, we see that the ordering among Q and Q are sym
metrized. In other words, any power consisting of Q and Q 
in ¢f contains all of the possible permutations among Q and 
Q. This will be called the symmetrization of the quantum 
coordinates. 

The ¢f with full quantum corrections can be obtained 
by the following method: first calculate ¢f without the quan
tum coordinates by following the method in Sec. 4, replace x 
and t by X and T, and then symmetrize the ordering among 
Q and Q. 

For example, the calculation of ifJf with quantum cor
rections proceeds as foll<?ws: first calculate ¢j") by solving the 
equations in (3.8) with ¢Y) = Xo(x). Then, the dynamical 
map of;jl in the tree approximation is given by 

(S.39) 

in which the quantum coordinate is ignored. The classical 
field ifJix) with quantum correction is given by 

(S.40) 

To take into account the quantum coordinate, we replace x 
by X and symmetrize the order among Q and Q. The result 
ifJf(X) describes both the classical and quantum mechanical 
properties of the extended object; when we ignore Q and Q 
we obtain a classical object, while a quantum mechanical 
object appears when x is disregarded. 

Let us now calculate the ground-state energy in pres
ence of the extended object in the tree approximation. When 
we assume A (a) = - a 2 

- m 2
, we have 

H [Q,Q] = (OIH 10) 

= f d 3
x !H¢;(X) + (V¢f(X»2 
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+ m2t,b}(X)] + V [t,biX)]], (S.41) 

where V is the derivative with respect to x, and 

8V ' 
--,,- = F [¢J]. 
8¢JJ 

(S.42) 

The H (Q,Q ) is the quantum mechanical Hamiltonian of the 
extended object. We have 

t,bJ(X) = (X.Vx)t,biX) 

= 1/(1 - Q 2)1/2(Q.V x )t,biX), (S.43) 

where V x is the derivative with respect to X. In deriving 
(S.43) we used (S.34a) and the relations QT = 0 and QL 
= Q. Since 

[(Q.Vx)t,biX)]2 = Q2(VXL t,bJ(X»Z, (S.44) 

we have 

(S.4S) 

Similarly, we have 

(Vt,biX»Z = (Vxt,bJ(X»Z + Q2/(1- Q2)(VXLt,biX»Z. 
(S.46) 

From the variable change of the integration in (S.41), 

d 3x = (1 - (2)1/2d3X, (S.47) 

we obtain 

H(Q,Q = (1 - Q2)1/2Mo + Q2/(1- Q2)1/2MI(Q), 
(S.48) 

where Mo is the constant defined by 

Mo = J d 3X I H (Vt,biX»2 + m2t,b }(x)] + V [t,bJ(x)] J 

(S.49) 

and M) is given by 

M)(Q) = J d 3x (VL ·t,bix»Z. 

In particular, when Mo = MI we have 

H(Q,Q) = MoI(1- (2)1/2, 

(S.SO) 

(S.Sl) 

which has the relativistic energy expression and leads to 

H = (p2 + M~)1/2 (S.S2) 

and 

Q = p/(p2 + M~)1/2. (S.S3) 

In one-dimensional models, t,bix) satisfies 

d 2 , , " 

dx2 ¢ix) = m2¢Jix) + 8 V [¢JJ(x) ]/8¢Jix). (S.S4) 

Multiplying (d Idx)t,bix) on both sides of (S.S4), we have 

-.!..~(~t,biX»)2 =~[!m2¢}(x)+ V [t,bix)]], (S.SS) 
2 dx dx dx 
which leads to Mo = MI. Therefore any relativistic one-di
mensional model leads to (S.Sl) in the tree approximation. 
The result (S.S2) has been conjectured in aA¢J4-model and 
was shown in the lower order expansion of p2 in Ref. 8. In 
general cases, MI depends on Q, and therefore Mo = MI is 
not always expected to hold. This is not surprising because 
we are considering the static extended objects. 
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6. SUMMARY 

A general formulation of quantum field theory for a 
system with extended objects was presented. It was shown 
that creation of extended objects does not upset the renor
malization. We also showed that when we specify the solu
tion of the classical Euler equation, the entire form of the 
dynamical map of ",Jin the tree approximation can be deter
mined. Furthermore, this dynamical map in the tree ap
proximation determines the dynamical map of ",J with quan
tum corrections. A general method for the treatment of the 
quantum coordinate Q was given. It was shown that a static 
extended object exhibits Brownian motion due to the quan
tum fluctuation effect. When this fluctuation effect is negli
gibly small, the object behaves as a classical object. We found 
that, in the dynamical map of ",J (and therefore, of the Ha
miltonian) appearance of Q and Q is symmetrical. This leads 
us to the commonly used quantization method in which the 
arrangement of Q and Q is symmetrized [e.g., QQ-+(1/2) 
X (QQ + QQ)]. This traditional method is now justified by 
our study in which the classical theory comes out of the 
quantum field theory. 

Let us close this section by making a comment on the 
quantum coordinates of many extended objects. Whenf(x) 
has the form 

f(x) = i f(l)(x - a(i», 
i= I 

in which eachf(/) satisfies (1.S), i.e., 

A (a}f(l)(x) = 0, 

(6.1) 

(6.2) 

the boson transformation with thisf(x) creates n extended 
objects, the positions of which are given by a i . When we 
make the transformation (a(l)-+a(l) + a,a(I}-+a(I}; io:/-1), the 
new f(x) also satisfies (1.S) becausef(l)(x - a l - a) satisfies 
(6.2). The ¢ J depends on a j and the Euler equation for ¢J Jis 
invariant under the above transformation, implying that 
(a faa' I J)¢ J(j = 1,2,3) appear to be wavefunctions of zero
energy quantum modes. This mode is called the translation 
modes of the first extended object. Following the consider
ation in the previous sections, we find the quantum coordi
nate Q' I ) which is associated with the translation modes of 
the first object. In a similar manner, we find the quantum 
coordinate for each object. The Q (I) is the quantum coordi
nate of the ith object and it appears in ",J through the combi
nation (a(1) + Q(I). When the quantum fluctuation of Q(I} is 
observable, the ith object behaves as a quantum-mechanical 
object. 

Note added in proof The analysis of the quantum co
ordinates in multi-soliton system (such as multi-vortices sys
tem) is more involved than the one illustrated in the sum
mary. The linear independence of wave functions must be 
considered and independent canonical variables (and their 
canonical momenta) must be identified. The study of this 
subject is in progress. 
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Nondiffractive scattering: Scattering from kaleidoscopes a) 
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We introduce and exactly solve a series of multidimensional scattering problems. The potential is 
a generalization of the delta function potential and has the symmetry of a kaleidoscope. The 
solution demonstrates the property of nondiffractive scattering. The bound state energies are 
calculated exactly for all cases. We prove a remarkable identity for certain finite groups. 

10 INTRODUCTION 

This paper generalizes existing exactly soluble models 
for nondiffractive scattering. Such phenomena has been of 
interest for years; we trace our own line of investigation back 
to an early paper of H. Bethe. 1 In this paper, Bethe investi
gated a model of magnetism by means of a particular form 
for the wavefunction-a form now called "Bethe's an
satz"-which embodies the assumption of nondiffractive 
scattering. 

Subsequent developments of this concept have been 
made by an investigators; we mention the work of McGuire, 2 

Lieb,3 Yang,4 Sutherland,s and Baxter6 as indicating the 
range of development. A brief summary of work to date is 
contained in a recent review by the author. 7 

An alternate line of investigation of nondiffractive phe
nomena is through the study of "soliton behavior." Increas
ingly these two areas are seen to be essentially the same. 

This paper will introduce and solve a multidimensional 
scattering problem, which may be considered as a general
ization of the delta function potential. 

110 THE PROBLEM AND A GUESS AT THE SOLUTION 

(A) We are in d-dimensional space and consider a dis
crete set H of hyperplanes h such that the set is invariant 
under reflection about anyone of the hyperplanes; such a set 
we call a Coxeter set. If the set is finite, we will use the more 
descriptive term kaleidoscope in recognition of the most 
common example. Let a" be a unit normal to the hyperplane 
h. We then wish to solve the equation: 

(1) 

subject to the homogeneous boundary condition that the dis
continuity of the normal derivative of ¢ across the hyper
planes is proportional to the value of ¢ on the hyperplane. 
Further, the constant of proportionality is the same for all 
hyperplanes. 

The equation of hyperplane h we write as: 

x·a" = h. (2) 

Let x" = a" h + Xl be a point on the hyperplane h. Then our 
boundary conditions say: 

lim [ahoV¢(x" + Ea.,,) - ahoV¢(xh - cah )] 
E ·0 + 

(3) 

"'Work supported in part by the National Science Foundation under grant 
DMR77-08474. 

(B) We now look more closely at the action of the reflec
tions in the hyperplanes. These reflections we denote by a h' 

and they generate a group G ' called a Coxeter group, defined 
by the relations (and these relations alone): 

(4) 

where p(h,h ') denotes a positive integer. The action of a h is 
given by 

ah(x) = x' = x - 2ah(ahox) +2hah' (5) 

For a vector (translation) however, 

ah(k) = k' = k - 2ah (ah "k). (6) 

Thus parallel hyperplanes have the same effect on a vector k, 
and this smaller group we denote by G; it is a finite Coxeter 
group. It will be generated by a representative set of nonpar
allel hyperplanes which we assume to meet at the origin. If T 
is the normal subgroup of translations ofG', then G = G'IT. 
In general, G' will be infinite while G will be finite. In case 
G = G " we have a finite Coxeter group, and it is this situa
tion we largely deal with in this paper, beginning with case 
(E) of Sec. III. The geometry of these transformations is 
indicated in Fig. 1. 

(C) the hyperplanes partition space into cells. Let gEG 
and g'EG'. We chooS&,one cell to be the "fundamental cell" 
and let the normals be directed outward from the cell. Let Xo 

be a point in the fundamental cell, and then label the cells so 
that g'(xo) is contained in cell g'. 

Our basic guess for a solution to the problem as posed is 
that ¢(x) in cell g' is given by 

¢g' (x) = LA (g' ,g) exp(ixokg). (7) 
gEG 

A (g' ,g) are numbers, dependent on k, to be determined by the 
boundary conditions. The symbol kg denotes the image of 
the vector k under the group element g. 

This form may be considered as a generalization of the 
method ofimages. It is also a statement of the nondiffractive 
property. 

Ife = 0, 

A (g' ,g) = A (g). (8a) 

If e = + 00, 

A (g',g) = A (g')( -1)g. (8b) 

(D) Suppose we are near the hyperplane h which divides 
cellg; fromg; = ahg;. We suppress the subscript h for now. 
Let a be directed from 1 to 2. Then 
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FIG. 1. Geometry of a reflection about a hyperplane. 

v¢ = i L kg A (g)/X.kg
• (9) 

g 

Let Xo be a point on h. Then continuity requires 

g 

while the boundary condition requires that 

Lia.kg [A2(g)-A[Cg)] e,k,x"=2c¢(xo)' (lOb) 
g 

Let us consider two particular k 's in this sum: 

k=kg • 

k' = kag = ka = k -2a(a·k). (ll) 

We now seek cancellations of such corresponding pairs of 
terms in Eqs. (lOa) and (lOb). 

First. let 

Xo = ha + Xl' xl'a = O. (12) 

Then in the exponentials. 

k'·xo = [k - 2a(a·k)].xo = k·xo - 2h (a·k). (13) 

Factoring out the common exponential factors of pairs 
of terms in (lOa) and (lOb) we find 

Al(k)-A2(k)+e-2ih(u.k)[Al(k')-A2(k')] =0. (14a) 

and 

i(a·k)(AzCk) - Al(k) - e- 2ih 
(a·k) [A 2(k') -Al(k ')]) 

= 2c(A2(k) + e -2ih (a.k)A 2(k '». (l4b) 

III. CONDITIONS FOR CONSISTENCY 

(E) We now assume that G' is finite so that G' = G. and 
h = 0; we call this situation a kaleidoscope. 

Conditions (14a) and (14b) may then be put into the 
matrix form: 

IA1(k')1 1 11 
A2(k) = - 1 + ix ix 

iXIIA1(k)1 
1 A 2(k')' 

(15) 
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with 

x=(a·k)/c. (16) 

The picture of such a scattering is indicated in Fig. 2. The 
matrix is unitary. provided k is real. as is appropriate for a 
scattering problem. 

(F) Let us define the following object belonging to the 
group ring: 

A(g)= LgI-1A(gI.ggl-I). (17) 
glEG 

The action of a on this object is 

glEg 

(18) 
g]Eg 

Then our pairwise connections may be put in the concise 
form 

(19) 

where 

xg,a = (a·kg)/c. (20) 

(G) We may finally state the condition for consistency 
in the determination of the A's: 

If arCr = 1 ..... d) are the generators of G. let 
aij = 1 ..... N) be a sequence of generators aT,. aT, , .... aT, 
such that 

(21) 

Define 

(22) 

-a 

In 

Out 

FIG. 2. A binary scattering from a hyperplane. 
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- Thus, we need only verify that 

l-ixla l+ixla 
---'- X = T,,(a)Ta(I) 
-l-ixl -l+ixl 

1 + xia2 

---- =1. 

IV. PROOF OF A THEOREM 

(J) We now need to verify the dihedral relation: If 

(27) 

a 2 = {]2 = (/3a) N = I, (28) 

- then 

FIG. 3. Geometry and coordinates of a dihedral kaleidoscope. 

Then the following is an identity for all k: 

Tu\ (gN) Tu\ , (gN _I ) ... Tu , (g2)Tu , (gl) 

where 

1 + ixNaN 

-1 + iXN 
1 + iXP2 
-1 + iX2 

k 

(23) 

~=~~~. ~ 
(H) The problem of determining all finite G-very simi

lar to determining all regular polytopes in d dimensions or 
all compact Lie groups-has been solved by Coxeter. 8 The 
results are most easily expressed in graphical notations as 
follows: 

Let a point represent each of the d generators aT' If 
p( r, r') in the defining relation 

(25) 

(i) is equal to 3 we place a line between points rand r'; (ii) is 
equal top> 3, we place a line with afover it between points r 
and r'; (iii) is equal to 2, we do nothing, and note that the two 
generators commute. 

With this notation, we list in Table I all finite Coxeter 
groups or kaleidoscopes, eliminating unconnected graphs. 

(I) To say the group G is generated by the generators 
a I, ... ,ad and defined by the relations ofEq. (4), implies that 
all such "words" as Eq. (21) are a consequence of the defin
ing relations Eq. (4). Thus we need only prove case (G) Sec. 
III for the defining relations. 

First, let us consider a 2 = 1. 

gl = I, XI = (a·k)/e, (26a) 

g2=a, x 2 =(a·k,,)!e= [a·[k-2(k·u)u]JIe 

= - (u·k)le = - XI' (26b) 
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1 + iX2N /3 
1=----

-1 + iX2N 

where 

1+ix2/3 l+ix la 

- 1 + iX2 - 1 + ix I 
(29) 

{
a, j odd, 

a j = /3, j even, (30) 

and Xj' gj are as previously defined by Eqs. (22) and (24). 
We first make a parameterization of the Xj as follows: 

Let a and/3 reflection planes be separated by an angle 1TIN, 
the normals u, 13 be directed outward from this wedge, and 
the positive sense of rotation be from a to /3. We then choose 
¢J to be the angle ofk with respect to the /3 plane bounding the 
wedge. The length ofk is k. This geometry is shown in Fig. 3. 

With this notation, 

kl = ka' XI = (u·kl)le = (k Ie) sin(¢J + 1TIN), 

k2 = k pa , X2 = (u·k2)1e = (kle) sin(¢J + 21TIN)(31) 

Subsequent xj's are obtained from these by rotation by 
21T1N. Thus we have the general formula 

Xj = (k Ie) sin(¢J + j1TIN)=(xlZ)¢Jj , 

with X = ik Ie, and 

¢Jj(¢J) = sin(¢J + j1TIN). 

(32) 

(33) 

We remark the following properties of the functions 
¢Jj(¢J): 

T ABLE I. Coxeter graphs and binding energies for all the finite Coxeter 
groups. The symbol n designates the number of vertices of the graph and the 
dimensionality of the scattering problem. 

Symbol Graph Binding Energy = - E" 

A" - .......... n(n + I)(n + 2)/6 

B" - ... - n bn2 
- 3n + 4 + 3 Y2(n - I) ] 

D" 
_ ... -1.. n(n - 1)(2n - 1)/3 

Eo • .1 •• 156 

E7 
, 

• ••• •• 399 
• 

Ex · ... .. -. 1240 
• 

4(14 +9V2) F • ........ 
H, ........ 31 + 12Y5 

H • ........ 4(83 + 36Y5) 

I,(p) .... sin'(IT/2p) = 1,2,4,2(2 + Y2), 

2(3 + Y5), 4(2 + Y3), ... 
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(34) 

(b) tPj(tP + 1TiN) = tPj + I (tP)· 

These will be very important in our subsequent discussion. 
(K) By multiplying Eq. (29) on the left by the inverse of 

the left-hand factor, then again on the left by the inverse of 
the next factor, etc., until we have eliminated N factors, we 
may put our dihedral relation into the equivalent form: 

[ 1 + XtPN~)] ••. (1 + xtP:J1)(1 + xtPla) 

= [ 1 + XtPl(~)] ··.(1 + XtPN _I a)(1 + XtPN{3)· (35) 

In fact, we will prove the more general result: If a 2 = {3 2 = I, 
then 

[ I + XtPN ~)] .•. (1 + xtPp)(1 + xtP:J1)(1 + xtPla) 

- [ I + XtPl (~)] ... (1 + XtPN _2{3)(1 + XtPN _I a) 

X (I + XtPN{3) = x
N 
jtl tPj [(;) .··a{3a - (~) "'{3a{3]. 

N factors N factors 

(36) 

The upper choice is for N odd, the lower choice is for N even. 
We may simplify the final form by 

N I tPj = - sinNtP 12N - I . (37) 
j~ I 

We write our expression as G (x,tP ) and say it is a sum of a first 
term and a second term. 

Let us pick a particular product of K factors: 
K 

(/J K = tPjl tPj2 ···tPjK = II tPjI =(/J K (tP ), (38) 
/~ I 

with 1< jl <;1 < ... <jK <N. This multiplies a particular 
product of K a's and{3 's in the first term which we denote by 

0( (/J K) = O"jk "'O"j2 O"jl , (39) 

and another product of K a's and{3 's in the first term which 
we denote by 

tP ( - (/J K) = O"jl + NO"j2 + N"'O"JK + N' 

where as before, 

{
a if j odd, 

O"j = {3 if j even. 

Then we may write G in the concise form: 

N 

G = I xK I (/JK [o«/J K) - 0( - (/JK)l 
K~O <pK 

N 

= I xK I (/JKo«/JK). 
K=O ±cpK 

(L) We first prove the following: 

(40) 

(41) 

(42) 

Lemma 1: For N even, odd powers ofx vanish; while for 
N odd, even powers of x vanish. 

Proof Upon repeated use of a 2 = {3 2 = I, we see that 
o«/JK) will be of the form: 
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{
a{3a ... {3a {a{3a ... a{3 

0( (/J K) = K odd, or Keven. 
{3a{3 .. ·a{3 {3a{3 ... {3a 

(43) 

In all cases, the number of factors will be <K. 
However, for N even, K odd, we find 

o«/JK) = 0( - (/JK), (44) 

while when N odd, Keven, Eq. (44) is also true. 
Inserting these results into the concise form for G, we 

prove the Lemma. 
(M) We now wish to prove a second Lemma 
Lemma 2: 

G(tP + 1TIN) = - G(tP)· (45) 

Proof We need only to prove the statement for even K, 
even N or odd K, odd N; we henceforth restrict ourselves to 
these terms. 

Let us begin with a particular (/J (tP) (K suppressed): 

(/J = ± rrf~ I tPj/' and transform it by 
K 

(/J-(/JL (tP )=( - I)L II tPjl + L (tP) 
/= I 

K 

= ( - I)L II tPj/(tP + L1TIN) 
/~ I 

= ( _I)L(/J (tP + L1TIN). (46) 

This relationship, for arbitrary L, defines an equiv
alence relation and thus partitions the (/J 's into classes. 

Let us consider 

(47) 

where the sum is over all members of a class. We have the 
relation 

If/(tP + 1TIN) = - If/(tP)· (48) 

For L = even, o«/JL) = o«/J); while for L = odd, 
7{(/JL) = 0( - (/JI) = o«/J). Thus o«/JL) is the same for all 
nembers of a class, and we thus write 0(1f/). (Remember K, 

N = even tlrroughout this Lemma.) 
This allows us to write G in the form: 

G(x,tP)= I xKIf/(tP)o(¢)· 
classes 

Using the periodicity properties of If/ we then have our 
Lemma. 

We are now ready to prove our Theorem. 
Theorem: 

(49) 

G (x,tP ) = x
N 

[ ~} .. a{3a - (~) .. ·{3a{3 ] (- ~~~). 
(50) 

Proof Since G(tP + 1TIN) = - G(tP), we have the 
Fourier expansion, 

+00 
G = I ei(2/ + I)Nd> AI' (51) 

1= - 00 

with A r = A _ (I + I) • But G is a polynomial in e i
</> with no 

power greater than N nor less than - N. 
Thus, we need only evaluate the coefficients of eiN

</> and 
e- iN</> in 
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Binding Energy versus Dimensionality 
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FIG. 4. Binding energy as a function of dimensionality in a log-log plot. The 
values are listed in Table I. We have included the family J of n unconnected 
points as a reference. Points of a family are connected by line segments. 

But 
N (mIN)N(N + 1)/2 e( - i1TIN)N(N + 1)/Z IT ¢ = e 'N</> e + e - iN</> -----:---

J ~ 1 J (2z)N ( - 21) N 

+ ,,' = _ (1/2z)(eiN</> _ e- iN</» + "'. (53) 

Thus, the theorem. 

V. BOUND STATES 

(0) If the strength of the interaction c is negative, then 
there is a unique solution which is bound at the origin. That 
is, we seek the energy Eo of the state for which 

I/J(x)-O as \x\_oo. (54) 

The solution given in Eq. (7) will only satisfy this condition 
provided the k is pure imaginary 

and only exponentials occur for which 

K/?·X>O. 

(55) 

(56) 

Within each cell there will be only one Kg which satisfies this 
inequality. 

The lowest energy state is always symmetric, and thus 
we may suppose that the generators acting on theA's of the 
ground state belong to the symmetric representation a = 1. 
The coefficients in the connection formulas are then simply 
numbers, 

1774 J. Math. Phys., Vol. 21, No.7, July 1980 

1 + iXg 
---"---- = T (g). 
-1 + iXg 

(57) 

In order that our boundary conditions not generate ad
ditional exponentials which will increase at infinity, the k 
must then be a zero of the coefficients in the connection 
equations. Thus, we have the d equations for the vector K: 

K'Uj = - 1, j = 1,2, ... ,d. (58) 

We have taken c = - 1, since the energies are trivially nor
malized by c2

• 

(P) It is convenient to seek a solution for K as an expan
sion in the u j , 

K = - KjUj' (59) 

The scalar products of uj's are elements of the Coxeter ma
trixM 

uj'u/ = - COS1T/Pi/=Mjl = Mlj' (60) 

The integer Pjl is of course, the integer in the defining 
relation 

(ap/til = 1. (61) 

Values of - COS1T/p for P = (1,2,3,4,5,6) are 
(1,0, -1/2, -1/112, - (1 + 115)/4, - 113/2). 

Thus, we seek a solution to the matrix equation 

MjlK/ = 1, (62) 

in order to calculate the bound state energy 
d 

- Eo = (K/u/f = K/MljK/ = I K/. 
/~ , (63) 

As the Coxeter matrices are very simple in structure, the 
easiest procedure for solving this equation is probably to suc
cessively solve for the K 1,K2,", and then sum the results for 
the bound state energy. We illustrate this for the most impor
tant case of An. 

(Q) For the case of An' which has the Coxeter graph
........ ........... , the Coxeter matrix is 

_1 

° 2 

_1 _1 
2 z 

° _1 1 2 

M= . (64) 

-! 
The matrix equation is then equivalent to 

K2 - !Kz = 1 or Kz = 2(K, -1), 

K1 -!<K,+K3)=1 or K3 =3(K,-2), 

K, - ~(K2 + K4) = 1 or K4 = 4(Kl - 3), (65) 

Kn_, -!(Kn+ Kn_z)=1 or Kn =n(K 1 -n+l). 

We then have one equation remaining: 
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Kn - ¥<"n _} = 1 or 0 = (n + l)(K} - n). (66) 

This equation then determines K} = n, and 

n _n~(n_+-'----..:l )~(n_+-,--2),- __ (n +3 2) . -Eo= Ij(n-j+l)= 
j=} ~ 

(67) 

Further results are only slightly more complicated, and 
the method is essentially the same, so we do not reproduce 
the calculations. The results are tabulated in Table I and 
graphed in Fig. 4. 

There are states bound in some directions, but not all; 
these cases reduce to Coxeter groups oflower order. In the 
corresponding scattering problems involving the bound 
states one upon another, there is no production nor 
disassociation. 
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The Lie derivative approach to the Cauchy problem in general relativity is applied to the 
evolution along an arbitrary timelike vector field for the case where the dynamical degrees of 
freedom are chosen as the (generally anholonomic) metric of the hypersurface elements 
orthogonal to the vector field. Generalizations of the shear, rotation, and acceleration are given 
for a non unit timelike vector field, and applied to the three-plus-one breakup of the Riemann 
tensor into components parallel and orthogonal to the vector field, resulting in the anholonomic 
Gauss-Codazzi equations. A similar breakup of the Einstein field equations results in the form 
of the constraint and evolution equations for the anholonomic case. The results are applied to the 
case of a space-time with a timelike Killing vector field (stationary field) to demonstrate their 
utility. Other possible applications, such as in the numerical integration of the field equations, are 
mentioned. Definitions are given of three-index shear, rotation, and acceleration tensors, and 
their use in a two-plus-two decomposition of the Riemann tensor and field equations is indicated. 

I. INTRODUCTION 

It has been known for some time that the Cauchy prob
lem for various field theories could be formulated covariant
ly in terms of the evolution of some initial data, given on an 
initial spacelike hypersurface of space-time, along an arbi
trary contravariant vector field. The problem thus falls into 
two parts: 

(1) determination of the necessary and sufficient initial 
data to fix a unique solution to the field equations; 

(2) calculation of that solution in terms of the evolution 
of the initial data along the vector field. 

While the problem for field theories in a given "back
ground" space-time could always be formulated in terms of 
covariant derivatives of the field quantities along the vector 
field, in general-relativistic field theories this was impossible 
since the metric affine connection was also to be determined 
by the field equations. In Refs. 1 and 2, it was shown how to 
formulate the Cauchy problem for general-relativistic field 
theories in terms of Lie derivatives along the vector field. 1,2 

The choice of an initial hypersurface and vector field results, 
by dragging of the initial surface along the vector field, in a 
foliation of the space-time together with the fibration given 
by the vector field; this yields a correspondence between 
points on different slices of the foliation but on the same fiber 
(i.e., trajectory of the vector field). In Ref. 1, the analysis was 
first carried out for the case when the foliation resulted in a 
geodesically parallel family of spacelike hypersurfaces and 
the vector field was the timelike geodesic normal field. This 
was then generalized to the case of an arbitrary foliation and 
vector field. But then in both cases the field variables in 
terms of which the initial data was given and the evolution 
analysis made were the induced metric on the hypersurface 

"On leave from Department of Physics. Boston University 

(first fundamental form or intrinsic metric of the hypersur
face), and the extrinsic metric or second fundamental form 
of the hypersurface (which is-up to a numerical factor
the Lie derivative in the unit normal direction of the first 
fundamental form). 

More recently O'Murchadha/ basing himself upon ear
lier unpublished work of York, and using the Lie derivative 
technique; and Kulhanek: using a more coordinate-depen
dent approach, have pointed out that, instead of the induced 
metric on the family of hyper surfaces one could use the pro
jection of the metric tensor onto the hypersurface-element 
orthogonal to the given field, even though these projections 
do not in general fit together hoionomically to form the in
duced metric on any hypersurface. Of course, if the vector 
field is hypersurface orthogonal, and one chooses to use this 
family of orthogonal hypersurfaces for the foliation, the two 
approaches coincide. But in the general case, where the vec
tor field is not hypersurface orthogonal-or, even if it is, we 
choose another foliation-the two approaches are distinct. 
We shall refer to them as the holonomic and anholonomic 
cases, for short. 

In coordinate language, if we adapt a coordinate system 
in which the vector field takes the form ~ and the hypersur
faces of the foliation are given by XO = const. (always possi
ble locally) this is the difference between using gab (a,b 
= 1,2,3) on the hypersurface (induced metric tensor of the 

hypersurface), and using 3gab = gab - goagob/goo (dcr 
= 3g dxo dxb being the infinitesimal interval on the hyper-

ab 5 
surface element orthogonal to the vector field). M011er, 
among others, has given an extensive discussion of the possi
ble physical interpretation of the latter choice in terms of 
measurement with rods and clocks. 

O'Murchadha,3 in particular, carried out an extensive 
analysis of the Cauchy problem in general relativity for a 
unit vector field, discussing (following Schouten6

) the in
duced connection and covariant differentiation on the ortho
gonal hypersurface element, the Riemann tensor and the 
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Gauss-Codazzi equations; as well as the breakup of the Ein
stein equation into constraint and evolution equations. 

However, he (as well as Kulhanek4
) confined himself to 

unit vector fields. While in a sense this constitutes no real 
restriction, since the evolution of any gravitational field sat
isfying the Einstein equations may be analyzed along such a 
vector field; in another sense, it does constitute a restriction, 
analogous to that resulting in the holonomic case if we were 
to confine ourselves to the case of a unit vector field. 

In the latter case, as Smarr and York7 have recently re
emphasized, this is often not only a theoretical inconve
nience, but a practical hazard in numerical computation of 
the evolution of the gravitational field, since the focusing 
effect of gravitation on the timelike trajectories of the con
gruence must be compensated for by moving different dis
tances along the trajectories from hypersurface to hypersur
face of the foliation to avoid coordinate singularities. In this 
paper, we shall remove the restriction to unit vector fields. 
Of course, there is an additional restriction implied by the 
choice of orthogonal hypersurface elements in our analysis. 
We could drop this restriction as well; but (we are not de
manding that the hypersurface elements fit together holono
mically into a hypersurface, anyway) the simplification re
sulting from the use of orthogonal hypersurface elements 
outweighs the generality that could be introduced by drop
ping this restriction. In the language of the holonomic case, 
we can say that we are going to allow arbitrary lapse func
tions, but no shift functions. 8 

Our interest in this generalization is twofold. First of 
all, as indicated above, this generalization provides an inter
esting and potentially useful alternate approach to the 
Cauchy problem in general relativity (or any other field the
ory, for that matter). Secondly, it provides a useful guide to 
generalization of the work on the Cauchy problem in general 
relativity, based on a three-plus-one breakup of tensors into 
components parallel and orthogonal to a timelike vector 
field, to a two-plus-two breakup. This type of breakup has 
recently proved its value in the analysis of a number of other 
types of initial value problem in general relativity.9 

In the next section we shall discuss a generalization of 
the standard breakup!O of the covariant derivative of a unit 
timelike vector field to an arbitrary timelike vector field. In 
Sec. 3, we shall discuss the three-plus-one parallel-ortho
gonal breakup of the metric, affine connection and Riemann 
tensor with respect to a timelike vector field. In Sec. 4, we 
shall discuss the breakup of the Einstein equations and the 
Cauchy problem for the empty-space gravitational field. 
Section 5 will consider a simple application of the methods 
developed: The analysis of a space-time with a timelike Kill
ing vector. We then conclude with a brief discussion of other 
possible applications, and of the generalization to the two
plus-two breakup. 

II. DECOMPOSITION OF THE COVARIANT DERIVATIVE 
OF A VECTOR FIELD 

Our aim is to parallel as closely as possible the standard 
decomposition!O of the covariant derivative of a unit timelike 
("velocity") congruence into rotation, shear (including ex
pansion) and acceleration terms. Let if, represent an arbi-
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trary contravariant vector field. Instead of its covariant 
components vI', we shall use the parallel covariant vector VI" 
normalized so that 

(2.1) 

Thus, if if = pnl', where nl' is the unit vector along the 
congruence, VI' = (lIp)nl" so that if =p2 VI'. The advan
tage of this normalization is apparent when we project along 
and normal to the vector field. This is done with the aid of the 
breakup of the identity matrix: 

8,~ = B~ + C~, (2.2) 

where C~ = ifVv' Evidently, C~ projects onto the direction 
of if or Vv for contra- or covariant indices, respectively; 
while B ~ projects out any components along the vector field, 
and thus, is the orthogonal projection operator. 

Before we begin our decomposition of VI' Vv ' it is useful 
to compute the Lie derivative of VI' with respect to VK: 

Lv VI' = VKaK VI' + VKal'VK = vK(aK VI' - al' VK), (2.3) 

using (2.1), where Lv f/> denotes the Lie derivative of the geo
metrical object f/> with respect to if. If VI' were the unit 
vector field nl' (i.e., p = 1) this would be the acceleration al' 
of the unit congruence. This is easily seen by replacing ordi
nary by covariant derivatives in (2.3), and noting that nK VI' 
nK = O. So Lv VI' is a generalized acceleration of the congru
ence, anf has the same property of orthogonality 

if Lv VI' = O. (2.4) 

as the acceleration vector al" 
We could also introduce another generalization of the 

ordinary acceleration, which we denote by AI': 

AI' = vKV K V;,. (2.5) 

This is related to Lv VI' by the following equation: 

Lv VI' = AI' + (llp)aI'P· (2.6) 

This shows that AI' is not orthogonal to if; indeed, 

Al'if = - (lIp)Lvp; (2.7) 

in this sense, Lt. V has a better claim to be called the general
ized acceleration of the congruence, and we shall so denote 
it. 

We are now ready to proceed with our decomposition of 
VI' V". First we break it up into symmetric and antisymme
tric parts, and then project each ofthem into the parallel and 
orthogonal directions as often as we get a non vanishing re
sult. In this way, we are led to define 

ill'v = !B~~(aa VfJ - afJ Va) (2.8) 

(here B ~~ is just shorthand for B ~ B ~; similar shorthand 
will be used, following Schouten,6 throughout for projection 
operators). ill'" is the generalized rotation of the vector field; 
it is easily shown that 

(2.9) 

when wafJ is the rotation of the unit congruence. Thus, the 
vanishing of ilafJ is the necessary and sufficient condition for 
the congruence to be hypersurface orthogonal. Similarly, we 
define 

(2.10) 
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This is the generalized shear tensor of the vector field; again 

(2.11) 

where h/1v is the shear of the unit conguence (including the 
expansion, its trace in this term. More properly, it should be 
call the generalized rate of deformation tensor). It is now 
easy to show that 

V/1 Vv = {J/1V + H/1" + (Lv VJV/1 - (lIp)LvpV/1 V" 

_ V /avp _ V" /a/1p (2.12) 
/1 P P 

where'a/1 =B;aa' 
Note that this decomposition is much like the usual one for a 
unit vector field, to which it reduces, of course, if p = 1. 
Then the last three terms vanish and the other terms reduce 
to the corresponding expressions for the unit congruence, as 
is evident from (2.6), (2.9), and (2.11). In Sec. 5, we shall 
further illustrate the usefulness of this decomposition in ana
lyzing the case of a timelike Killing vector field. 

For our later work, it is helpful to discuss what proper
ties of the congruence could be given on an arbitrary cross 
section of the congruence (i.e., a hypersurface transvecting 
the streamlines of the congruence), assuming that we were in 
a bare manifold without metric or connection: Suppose we 
are given the vector field vV in such a bare manifold, together 
with a cross section. What can we specify about the covar
iant vector field V/1 on that cross section without implying 
any restriction on a possible metric? Clearly, we can pick V/1 
itself on the cross section, subject only to the condition (2.1) 
which involves no metrical relations. We can also clearly 
give Lv V/1 on the cross section, subject to (2.4); and its Lie 
derivatives to all orders, since the definition of the Lie de
rivative involves no metrical relations. Thus, the generalized 
acceleration can be arbitrarily specified along the entire con
gruence (since this is equivalent to giving the Lie derivative 
to all orders on a cross section). 1,2,6 Similarly, p and its Lie 
derivatives with respect to if to all orders can be given arbi
trarily on the cross section: Although their ultimate inter
pretation may be metrical, they merely serve here to define 
the n/1 field; to say that n/1 is a unit field has no meaning until 
a metric is introduced. Alternatively, specification ofp along 
a trajectory of the congruence can be considered to give an 
intrinsic metric along each fiber; but all metrizations of a 
one-dimensional manifold are trivial, so this constitutes no 
restriction on the possible metrical properties of the mani
fold in which the congruence is embedded. Given V/1 and 
L V on the cross section, then au Vv is determined on the v 11 r--

cross section; Eq. (2.8).then shows that {J/1V is thereby fixed. 
Indeed, taking the Lie derivative of (2.8), we find 

(2.13) 

Thus, additionally giving the Lie derivative of the general
ized acceleration on a cross section determines the Lie de
rivative of the generalized rotation, and so on to higher or
ders of Lie derivatives. 

Thus, if we give V/1 and all its Lie derivative on a cross 
section, and p and all its Lie derivatives, we can determine 
the generalized rotation {J'Ll' [and from (2.9) even Will'] ev
erywhere along the congruence. Even though its definition 
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involves the covariant derivative, (2.6) shows that this fixes 
A/1 everywhere along the congruence: The projection of the 
covariant derivative along if is fixed by nonmetrical quanti
ties in our sense. H!J'" however, cannot be similarly reduced; 
and in that sense constitutes the only genuinely metrical 
term in the decomposition (2.12) of the covariant derivative 
of V/1' We shall not be surprised, therefore, to see the funda
mental role that it plays in the Cauchy problem for the Ein
stein field equations. Indeed, our results demonstrates that, 
without even looking at any field equations, we can decide 
which parts of the covariant derivative of the vector field 
cOl\ld possibly carry dynamical information about the metri
cal field. Our result is then seen to be quite independent of 
the exact form of the field equations. For example, it would 
hold for field equations derived from any Langrangian 
formed from invariants of the Riemann tensor. Another, and 
perhaps simpler way to convince oneself of this result is to 
consider the contravariant vector field if in a bare manifold 
as one vector of a tetrad, whose other three vectors we shall 
label B ~ (a = 1,2,3 indexes the three vectors). Any such tet
rad field will have a dual tetrad field, which we shall denote 
by (~, ,B ~). Then if V/1 = 1 will be automatically satisfied, 
as one of the defining relations of the dual tetrad. We can 
now compute the curl of the V/1 field, av ~, - a/1 V"' and 
project it onto the contravariant tetrad vectors. In this way 
we get B ~if(a/1 V" - av V/1) and B~;(a/1 Vv - a" ~,). All of 
these are perfectly nonmetrical operations-indeed, the pro
jections listed are just some components of the object of an
holonomicity6 for the tetrad fields. But once we introduce 
any metric in such a way to make the B ~ orthogonal to if, 
they become the generalized acceleration and rotation of the 
~, field, as reference to Eqs. (2.3) and (2.8) shows at once. 
But in this way we have exhausted all the nonmetrical infor
mation about V/1' As for if, the comparison of its length with 
that of a parallel vector field nil is given by p. Once we me
trize in any way that makes nil a unit vector field, the rest of 
our results follow. 

III. DECOMPOSITION OF METRIC, AFFINE 
CONNECTION, RIEMANN TENSOR 

Next we shall consider the three-plus-one decomposi
tion of the metric tensor. It only has double projections onto 
and double projections orthogonal to if, since we originally 
chose to project orthogonally to the vector field. Thus 

gill' = /g'll' + P2~, V"' 

where /g,,,,, given by 

'g,l>' = B :~gaf3 

(3.1) 

(3.2) 

is not only the double orthogonal projection of the metric, 
but also the induced metric, or first fundamental form, on 
the orthogonal surface element. This surface element, rigged 
with the vector field if, also has an affine connection induced 
on it, which is the "natural" projection of the metric affine 
connection of the 4-space onto this rigged hypersurface6

: 

The anholonomic components of this connection are nu
merically equal to the corresponding anholonomic compo
nents ofthe four-dimensional connection in an anholonomic 
coordinate system adapted to the rigging field v". This means 
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'V Wl' = B Up V V wP, where 'V stands for the surface element Il Il U 
covariant derivative, and wP is a vector in the surface element 
(Wl'Vl' = 0). 

It is also necessary to define the extrinsic curvature of 
the surface element. The usual extrinsic curvature, or second 
fundamental form of a surface element is defined by project
ing the symmetrized covariant derivative of the unit normal 
vector twice onto the surface element. But in our case, since 
we are not using the unit normal, we can form two such 
tensors,6 depending on whether we use the covariant deriva
tive of if or VK • Of course, the two will be related to each 
other by the factor p2, so it is merely a question of picking one 
of them as our definition of the second fundamental form. 
Since we have decomposed the covariant Vil in the last sec
tion, we choose to define the second fundamental form by 

(3.3) 

so that it coincides with our previous definition of the gener
alized shear tensor (note that we here reverse the sign of 
Schouten's definition,6 which we used in our previous 
papers 1-2). 

This definition of the second fundamental form has one 
inconvenience, which will not bother us much in this work, 
but is important for the generalization to the two-plus-two 
decomposition. Namely, while 'gill' is invariant under a 
change of length of if (so long as we preserve the normaliza
tion zf'Vf.t = 1, the projection operators are invariant), Hill' 
obviously is not [see Eq. (2.11)]. This can be remedied, fol
lowing Schouten,6 by introducing a three-index tensor 
Hill' \ defined in our case by 

Hill' K = HllvVK = hllVnK
, 

which is clearly invariant under such a change. A similar 
three-index rotation tensor flllv K = flllvVK could also be in
troduced. Schouten calls Hf.t" K + flf.t"K the curvature tensor 
of valence three. We shall call them the three-index shear 
and three-index rotation and we shall use them occasionally 
in this paper, even though they could be eliminated, because 
this will facilitate comparison of our work here with the two
plus-two decomposition. 

Schouten shows how to define the Riemann tensor of 
the surface element, in such a way that it depends only on the 
rigging of the surface element and the displacement within 
the surface element of vectors lying in that element, and not 
on any other features of the connection in the enveloping 
manifold. Following O'Murchadha,3 the expression for the 
three-Riemann tensor is most easily found by noting that the 
commutator of the second order three-covariant derivatives 
ofa 3-vector wA (such that WAif = 0) is not linear in wf.t 
unless a term is subtracted from it. This leads to the follow
ing definition of the Riemann tensor' Rlll'K A ofthe orthogonal 
surface element lOa: 

- 'RllvK ,tWA = 2'V rll 'Vvl WK + 2illlvL"w,.. (3.4) 

Direct computation of the commutator then gives Gauss' 
equation for the components of the Riemann tensor project
ed four times into the surface element: 

'R'll'K A = B ~~::RuPa r - p2(flllK + Hf.tK)(fl" A +'Hv A) 

+ p2(flvK + Hl'K)(flll A + HI' A) 
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(3.5) 

Note that (3.4) and (3.5) reduce to the more familiar holono
mic forms when fllll' = O. We have here used the nonvariant 
two-index rotation and shear in Gauss' equation; the invar
iant three-index rotation and shear could be used just as 
easily: 

'Rf.t l'K A = B:~::RuPaT - (flilK U + HIlK U)(fl v:!' +H v:!') 

+ (fll''' U + Hl'K ~(fl Il~a + H Il~) 
- 2flf.tv a(fl /a + H /0)' (3.5a) 

In this form it is evident that all terms in the right-hand side 
are invariant under a change in the length ofif (i.e., a change 
of p), so that the left-hand side must be too. 

The components of the Riemann tensor projected three 
times onto the surface element and once onto the vector field 
are given by the Codazzi equations. These are found most 
easily by computing the commutator of the second 3-surface 
covariant derivatives of the Vf.t' vector, giving 

'VIl(flvK +HVK)-'Vv(flIlK + Hf.tK) 
= -B:~:Rap/VA -2flllvB~[LvV" -(l/p)a"p] 

+ (flw + HIlK )(lIp)B ~a"p 

- (fll''' + Hl'K)(l/p)B ;a"p. (3.6) 

Again, this could be expressed interms of the three-index 
rotation and shear quite simply. 

The only remaining nonvanishing projected compo
nents of the Riemann tensor are the components projected 
twice onto the surface element and twice along the vector 
field. But these are expressible in terms of the orthogonal 
components of the Ricci tensor: 

BIlApR -BIlA,.,p"R , a f.tA - uPl5 pf.tA<7 
= B~~;~Rrf.tAu'g"v + (l/p2)B~vrvaRrIlA'" (3.7) 

As we shall see, in the next section, it is just these compo
nents of the Riemann tensor which occur when we try to 
calculate the evolution of the Hill' -the dynamical terms in 
the decomposition of V f.t Vv ' 

We shall now discuss an alternate way of arriving at 
some of our previous results, which proves to be of great 
importance because it can be generalized, leading to defini
tions of the shear, rotation, and acceleration of "congru
ences" of two and higher-dimensional subspaces. Equation 
(3.1) is essentially a breakup of the metric tensor into the 
metric of a three-dimensional subspace 'gill" and the metric 
of an orthogonal one-dimensional subspace" gill' = p2 Vil V,,: 

(3.8) 

We shall show that it is possible to carry out the analysis 
entirely in terms of these two orthogonal subspaces without 
any need to further break up one of them, as we previously 
broke up "glll' into p2 Vil V". 

To do this we need a decomposition of the covariant 
derivative of"gf.tl" (which, of course, is equal to minus the 
covariant derivative of'gf.tl' ) rather than ofV

Il 
V

l" 
It turns 

out that it is simplest to use that particular linear combina
tion of covariant derivatives which has the formal structure 
of the Christoffel symbol of the first kind. To denote this, we 
introduce 1 1 the symbol 
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AtAKJLI =!(-AAKJL +AJLAK +A .. JLA )· (3.9) 

With its aid, we can write the combination we want as 

(3.10) 

as is easily checked. Now the important thing is that we can 
extract the three-index generalized shear and rotation from 
"gtKJL;vl by operating on it with 'glLv and "glLv alone. Namely 

, r-,K 'nil " VA" H A 5 a 5 /3 g glKJL;vl = a/3' 
"nKA1rJl ' VII n A (311) 

5 5 a g/3 glKJL;vl = J~a/3 ' . 

where HJLv A and ilJLv A have just the meanings defined earlier 
in this section. 

We can also define an acceleration 3-tensor: 

(3.12) 

The most noteworthy feature of the definitions of H, il, 
and A is that they can be applied to a subspace of any number 
of dimensions. Elsewhere12 we have shown that the vanish

ing of the trace of the acceleration tensor "~/3 Aa/ is equiv
alent to the condition that the 2-surfaces formed by holono
mic congruences of two-dimensional subspaces obey the 
string equations of motion. In space-time of course, only 
one-, two-, and three-dimensional subspaces are possible; 
but the mathematical generalization to m-dimensional sub
spaces of an n-dimensional Riemannian space is quite possi
ble, and will be discussed in a joint paper with J. Plebanski 
now in preparation. Applications to the two-pIus-two break
up of the Einstein equations will also be discussed elsewhere. 

IV. DECOMPOSITION OF THE FIELD EQUATIONS AND 
THE CAUCHY PROBLEM 

As mentioned in the Introduction, the field equations 
GJLV = 0 break up into two sets: The four projections onto the 
vector field, which as we shall see can be expressed in terms 
of initial data and are therefore called the constraint equa
tions; and the six projections onto the orthogonal 3-surface 
elements, which as we shall see contain the information 
about evolution of the dynamical degrees of freedom of the 
metrical field. 

In order to compute GJLA VVvA most simply, it is useful to 
have the following expression for R, which is also needed for 
a Lagrangian or Hamiltonian formulation of the field equa
tions in three-plus-one breakup.1.2 

R = g"ARpA = g"Ag"vRKIIAV 

= ('g"A + (l/p2)tfIVA] ['g"v + (lIp2)v'V]R K/d " 

= 'g(1(J'gTC7B~:~~:;RKI'AV + (2/p2)R,,,,U""vv. 

With this result it is easy to show that 

GIIAtf'vA = - !p2B~~~~RKI'A,.'~(J'gTa. 

A similar elementary calculation gives 

G B JL A - B I'KV R A' Ta 
I,). aV - am KJLAVV g . 

(4.1) 

(4.2) 

(4.3) 

Reference to the Gauss and Codazzi equations (3.5) and 
(3.6) shows that they enable the right-hand sides of(4.2) and 
(4.3), respectively, to be expressed entirely in terms of the 3-
surface Riemann tensor and the elements of the covariant 
derivative of the vector field V", 

1780 J. Math. Phys., Vol. 21, No.7, July 1980 

GJLAifv" = }lI2 [ - 'R + p2(H2 - Ha/3 Ha/3) 

+ 3p2ila/3il a/3], (4.4) 

Gi'AB~VA =p2['V /3 (Ha/3 + ila/3) - 'aaH - H'aa(lnp) 

+ (3ila/3 + Ha/3)'a/3(lnp) - 2ila/3Lv V/3 ]'(4.5) 

We have seen in the last section, Eq. (3.7), that the re
maining projections of the Einstein tensor---or rather the 
equivalent projections of the Ricci tensor-are equivalent, 
modulo terms given by the Gauss equation, to the compo
nents of the Riemann tensor projected twice onto the vector 
field and twice onto the orthogonal three-surface element. 
As we shall now show, these are just the components that 
occur when we compute the evolution of the metric along the 
vector field if. 

To do this, we need to compute the Lie derivatives of 
g"" with respect to if. The breakup (3.1) of the metric tensor 
shows that we shall need the Lie derivatives of p and VJL to 
compute this, as well as the Lie derivatives of'gpl" But, as we 
discussed in Sec. 2, the former are arbitrarily specifiable, 
since they involve only nonmetrical information. Thus, only 
the evolution of 'gill' remains to be determined. 

Now 

(4.6) 

since all other terms in the difference between the Lie deriva
tives of gill' and 'gl'v vanish. Thus, 

L/gJLv =B~~(Vav/3 + V/3va) 

= 2p2H'll" (4.7) 

Thus, we see that Lu 'gJLl' is essentially the generalized shear 
of the vector field, up to the factor 2p2. By using the three
index shear, we can transform this equation into a form in
variant under changes of length of the vector field: 

(4.8) 

Now we take the crucial step, and compute the second Lie 
derivative of the 3-metric. The Lie derivation of Eq. (4.6) 
shows that 

(4.9) 

A brief calculation shows that second term on the right of 
(4.9) reduces to 

L"B~~Lvgll\' = - 2(L,,va)(Lv V/3)' (4.10) 

Thus, only the first term on the right of(4.9) remains to be 
determined. By writing it as 

B ~~L 2ugJLV = B ~~(VKV "L"gJLv + LUgKV VI' v
K 

+ L"gJLK V V v,,), ( 4.11) 

and using the commutation relations between covariant and 
Lie differentiation (see Schouten,6 p. 152), the right-hand 
side of (4.11) is easily reduced to 

B~~L 2"glll' = 2B~~VKv"RAIIK" + 2B~~(V"v") 
X (V" VK) + B ~~ [V,,(vKV "vv) 

+ Vv(VKV"VIJ). (4.12) 

The last two terms on the right of(4.12) may now be readily 
evaluated using the decomposition of VI' V" given in Eq. 
(2.12). Combining this result with (3.10) we finally get 
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L 2/ga{3 = 2B~fivKrlR;'I'KV + 2p4(H{3K + f1{3K)(Ha K + f1a 1 
+ p2('Va Lv V{3 + 'V (3Lv Va) + 2p2(' a apLv V{3 

+ 'a{3pLv Va) - 2p'Va{3P - (2Lv Va)(Lv V(3) 

+ (Lvp2)Ha{3' (4.13) 

Thus, the evolution of the metric along the vector field VV is 
essentially governed by the projections of the Riemann ten
sor twice onto the vector field and twice onto the orthogonal 
surface element. But, as shown at the end of the last section, 
these are equivalent, modulo the six terms B~fiRl'v' to the 
contraction of the components of the Riemann tensor given 
by Gauss' Eq. (3.5). So if, we assume these six field equations 
B~fiRl'v = 0 to hold, it follows from (3.7) that 

B ~fiVKV;' R;'I'KV = p2 ['Ra{3 + 3p2f1Ka (f1{3 K + H{31 

+ p2HaK(f1 K{3 + HK(3) 

-p2H(f1a{3 + H a(3)]. (4.14) 

Inserting (4.14) into (4.13), we see that the six field equations 
B ~fiRl'v = 0 are equivalent to the six evolution equations for 
'ga{3: 

L 2v 'ga{3 = 2p2'Ra{3 + 4p4(Ha KHK{3 + f1a Kf1K(3) 

- 2p4(f1a{3 + Ha(3)H + p2('VaL v V{3 

+ 'V[3Lv Va) + 2p2('aapL v V{3 + 'a{3pLv Va) 

- 2p('Va{3p) - 2(Lv Va)(Lv V(3) + (Lvp2)Ha{3' 

The remaining four field equations Gl'vifvv = 0 and 
G,'vB~vv = 0 are equivalent to 

(4.15) 

- 'R + p2(H2 - Hu[3Ha(3) + 3p2f1a{3il u[3 = 0, (4.16) 

and 
'V{3(Ha{3 + f1a(3) - 'aaH - H'aa(lnp) 

+ (3f1a{3 + Ha (3)a{3 (lnp) - 2 f1a {3Lv V{3 = 0, (4.17) 

by Eqs. (4.4) and (4.5), respectively. 
Thus, looking at (4.15)-(4.17), we can see that if, on the 

initial cross section of the vector field if, we are given the 
non metrical data Va' p, Lv Va' Lvp (from which il a{3 fol
lows, as pointed out in Sec. 2), plus the metrical data 'ga{3 and 
Hufl (which, together withp is equivalent to Lv 'ga(3)' all this 
data being subject to the constraints (4.16)-(4.17) on the 
initial cross section, then (4.15) enables us to compute 
Lv 2'gafl' and thus L ~ga{3' Iteration of this procedure, at least 
in the analytic case, enables us to calculate the metric tensor 
on each cross section of the vector field resulting from drag
ging the initial cross section some parameter distance. More
over, the well-known consequence of the Bianchi identities 
that the system is in involution in the sense of Cart an IJ means 
that once the constraints (4.16)-(4.17) are satisfied on the 
initial cross section, they will be satisfied on any other cross 
section if the six evolution equations (4.15) are satisfied on 
the initial and all intervening cross sections. 

Thus we have found the required anholonomic general
ization of the Cauchy problem for the orthogonal surface 
elements of an arbitrary vector field. 

V. A SIMPLE APPLICATION: TIMELIKE KILLING 
VECTOR FIELDS 

As a simple illustration of how these results may be used 
to build into a space-time satisfying the Einstein equations a 
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timelike vector field with given properties, let us consider the 
case of a stationary space-time, i.e., one with a timelike Kill
ing vector field. That is, we specify that the vector field if is 
to be a Killing vector when the metric ga{3 has been con
structed by our prescription. The first thing to do is to see 
how to express the fact that if is a Killing vector in terms of 
the decomposition of VI' VI" Eq. (2.12). A short calculation 
shows that 

B;e(Vav{3 + V{3va) = 2p2Hl'v' 

vavf3(Vav[3 + V (3va) = Lvp2, 

B;vf3(Vav{3 + V{3vu) =p2Lv VI" 

(5.1a) 

(5.1b) 

(5.1c) 

(p is, of course, the length of the Killing vector.) Thus, each 
component of Killing's equations finds a simple expression: 
The vanishing of the orthogonal components is equivalent to 
Hl'v = 0 (the condition for a Born-rigid congruence), while 
the vanishing of the other components requires that Lvp 
= Lv VI' = O. Thus, a Killing congruence can only have ill'v 

and 'aI'P=/=o. If f1l'v = 0 in addition, the congruence is hy
persurface orthogonal, as we have seen; so the metric is stat
ic, of course. In addition, of course L 2 v 'gl'V will vanish for a 
Killing vector. We thus get the following system of equations 
for a stationary space-time: 

p'Ru[3 - 'Va{3P + 2p3f1
Ka

f1[3 K = 0; 

- 'R + 3p2f1a{3il u{3 = 0; 

'Vflila{3 + 3f1ufla{3(lnp) = o. 

(5.2a) 

(5.2b) 

(5.2c) 

These are equivalent to the form of the field equations for a 
stationary metric given by Lichnerowicz. 14 

If one confined oneself to the case of a unit vector field, 
these equations would assume a much more complicated 
form. Indeed, the fact that the generalized acceleration, de
fined as Lv v", vanishes for any vector field whose Killing 
form has vanishing projections once along the vector field 
and once orthogonal to it, provides a strong argument for the 
utility of this definition. We can see that in this sense a Kill
ing vector field is a generalization of a shear-free geodesic 
field. 

VI. CONCLUSION 

As the last section shows, the approach of this paper 
may facilitate the construction of space-times possessing 
timelike vector fields with preassigned properties, either 
such properties as limit the class of space-times having such 
vector fields; or properties which constitute no limitation on 
the space-time (other than satisfying the field equations), 
but which may simplify the form of the field equations. In 
either case, the use of this method may result in forms of the 
field equations useful for their actual integration in the evo
lution form into which they have been cast. Smarr and York 7 

have discussed this question for the holonomic case, where 
'g,,{3 is actually the induced metric on a family of spacelike 
hypersurfaces. 

Finally, as mentioned in the Introduction, we are par
ticularly interested in the generalization of the techniques of 
this paper to the case where two commuting vectors fields, 
spanning a family of timelike 2-surfaces are introduced and 
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the evolution of the metric tensor along both fields is to be 
determined. This problem provides the nonholonomic gen
eralization of the dO!lble-null and Bondi-Sachs type ofinitial 
value problem, as well as several other possible types.9 Con
sideration of the spacelike 2-surface element spanned by the 
two vector fields leads to a two-plus-two breakup of the co
variant derivatives of the vector fields, of the metric and 
Riemann tensor and of the field equations. However, it is 
obvious that we cannot, without loss of generality, both de
mand that the two vector fields commute and that they be 
unit vectors. Since commutation of the two vector fields en
ables us to materially simplify the analysis, we prefer to keep 
this condition, and are led to the study of non unit vectors. 
Thus, the analysis in this paper provides the background for 
the step from the three-pIus-one to the two-pIus-two 
breakup. This problem will be discussed in a paper with Ben 
Rosen, based on his Ph.D. thesis. The discussion at the end 
of Sec. 3 also suggests that the two-plus-two breakup of the 
field equations can be done entirely in terms of orthogonal 2-
spaces, without explicit introduction of the two commuting 
vector fields which span the timelike 2-space. This problem 
will also be discussed in a separate paper. 

I J. Stachel, "Lie Derivatives and the Cauchy Problem in the General The
ory of Relativity," Ph.D. dissertation (Department of Physics, Stevens 
Institute of Technology, I 962)(unpublished). 
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2J. Stachel, Acta Phys. Polon. 35, 689 (1969). 
3N. O'Murchadha, "Existence and Uniqueness of Solutions to the Hamil
tonian Constraint of General Relativity," Ph.D. dissertation (Department 
of Physics, Princeton University, 1973)(unpublished). 

4J.D. Kulhanek, Lett. Nuovo Cimento 10, 389 (1974). 
5C. MQlller, The Theory of Relativity (Oxford, Clarendon, '1972), 2nd ed. 
6J.A. Schouten, Ricci Calculus (Springer, Berlin, 1954). 
7L. Smarr and J.W. York, Phys. Rev. D 17, 2529 (1978). . 
8For definitions of the lapse and shift functions, see C.W. Misner, K.S. 
Thome, and J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973). 

9R.A. D'lnvemo and J. Stachel, J. Math. Phys. 19,2447 (1978). 
IOFor the definitions of the shear, expansion, rotation, and acceleration of a 

unit timelike congruence, see J. Ehlers and W. Kundt, "Exact Solutions of 
the Gravitational Field Equations," in Gravitation: An Introduction to 
Current Research, edited by L. Witten (Wiley,New York, 1962), p. 58. 

10 aNote that as a result of this definition' R"YKJ. does not have all of the 
symmetries of a metric Riemann tensor when n" .. does not vanish. It is 
not antisymmetric in the last pair of indices, nor symmetric under inter
change of the first and second pair of indices. As a consequence, 'R,,,, 

= 'g"J. 'R,,.).,. is not symmetric unless n",. = o. 
II We follow the idea of Schouten in Ref. 6, p. 132; but note that we adopt a 

different definition. The semicolon used hereafter stands for covariant 
differentiation, and is thus equivalent to V. 

12 J. Stachel, "String Dusts, Fluids and Subspaces," to appear in Proceedings 
of the Third Latin American Symposium on Relativity and Gravitation. 

\3See for example, A. Lichnerowicz, Theories Relativistes de la Gravitation 
et de I' Electromagnetisme (Masson, Paris, 1955), p. 32. 

14 A. Lichnerowicz, Theories relativistes de la gravitation et de I' electromag
netisme (Masson et Cie, Paris, 1955), p. 120. Note his tensor H is one-half 
ofn. 
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In this paper the existence of simultaneous points, in the Landau sense, in the neighborhood of an 
observer P is studied. It is shown that the set of such points has the structure of a regular 
submanifold of the space-time manifold. 

1. INTRODUCTION 

Let us consider the space-time as a connected pseudo
Riemannian manifold V, of Hausdorff type and four dimen
sions, in which a metric tensor field of hyperbolic signature 
(3,1) has been defined. The coordinate X4 of a point, belong
ing to a coordinate neighborhood of a given local chart F, 
coincides with the coordinate time in the system described 
by F. It is assumed that the measure units have been chosen 
such that the constant light velocity in the vacuum has the 
value 1. 

In these measure units, the velocity 4-vector u of a mov
ing point P in V has the contravariant components, in the 
proper system of P, given by 

ui = (0,0,0,1). (Ll) 

We notice that the indices represented by latin letters 
take values from 1 to 4 and the greek indices are restricted to 
the values 1, 2, 3. 

The components of the Minkowski tensor are repre
sented by 1Jij' given by 

1J'j = diag(1,I,I, -1), (1.2) 

leaving the notation g to denote the metric tensor field of V. 
Landau and Lifshitz l established a method to synchro

nize nearest points with P. This nearness is understood in the 
sense that the coordinate differences between P and one of i ts 
nearest points Q are infinitesimals {Llx i

}. The method to 
synchronize such points consists in that the time for a light 
signal to travel from P to Q is determined in the proper sys
tem of Pby 

Llx4 = _ g4a dx
a 

. , 
g44 

another, equivalent, relation is 

g4idxi = 0. 

(l.3a) 

(l.3b) 

Eq. (1.3) will be taken by us as the Landau-Lifshitz simulta
neity condition. 

Finally, we represent by Tp V the tangent space of Vat 
P, and by fjJ.rn the derived linear function at mE V of a differ
entiable function defined in V. The concepts of differential 
geometry necessary to develop the following calculations 
may be found in Brickell and Clark. 2 

2. PHYSICAL SPACE AND LANDAU MANIFOLD OF AN 
OBSERVER 

Definition: The physical space E p of an observer P is the 
hyperplane orthogonal to its velocity 4-vector u. From its 

own definition, as u is a time-like vector 

g(u,u) <0, 

the vectors of Ep are space-like, 

g(v,v»O, 

because a time-like vector is orthogonal to neither another 
time-like vector nor to a light-like vector (Synge). 3 

Theorem 2.1: Let P be a moving point, u its velocity 4-
vector and E p the physical space of P. There is a unique 
submanifold L of dimension 3 such that E p is tangent to L at 
P and its points are simultaneous with P in the local inertial 
proper system of P. 

Proof As the space-time V is a linear connected mani
fold, at each point pE V there exists a neighborhood W diffeo
morphic to a neighborhood ofOETp V by the function expp. 
Taking Wopen, with the velocity 4-vector u of P and the 
metric tensor field g, we define the submersion 

fjJ: W _R, m _g(expp-l m, u). 

As 

(2.1) 

is fiber of fjJ, it is a regular submanifold of V of dimension 3. 
We prove that PEL. Take c as a geodesic starting from P 

c(O) = P. 

There exists a vETp V such that 

exppsv = c(s), VsER, 

and therefore 

expp(O) = c(O) = P. 

As expp is a diffeomorphism in W, 

expp-lp= 0, 

with the result that 

fjJ (P) = g[expp- l(p),U] = g(O,u) = 0, 

leading to 

PEfjJ - 1(0) = L. 

We prove that E p is tangent to L. Let us consider the 
foliation 

n(m) = kerfjJ.rn' VmEW, (2.2) 

in which L is an integral manifold. The natural injection 

i: L_W 

is, therefore, a~ immersion which satisfies 

(2.3) 
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On the other hand, let us consider the geodesic local chart 

G= h.expp l (2.4) 

of coordinate neighborhood W, with h the isomorphism of 
Tp V in R 4, such that the components of the metric tensor 
are 

(2.5) 

and such that a vector vEEp would be expressed in this local 
chart by 

v = vu
( ~ ) , (2.6) axu 

p 

and the velocity 4-vector by 

a 
U= -. (2.7) ax4 

Equation (2.7) gives to G the property of being the proper 
system of P. 

To an element XE W there corresponds the vector of 
TpV 

exp-1x =Xi(~) , 
ax' p 

expressed in the local chart G. Then 

,p (x) = g(exp -I x,u) = 1Ji4 Xi = - X4 • (2.8) 

If we call a I at the corresponding vector field on R of the 
identity chart on R, one has 

that is, 

VE ker,pop , 

and therefore 

EC ker,pop , 

As 

dim E = dim ker,p.p , 

we have proved that 

E = ker,p.p , 

and, using (2.3), 

i. (TpL) = Ep; 

i.e., Ep is tangent to L. 

(2.9) 

We prove that the points of L are simultaneous with P. 
We have seen that, for a geodesic coordinate system 

,p (x) = - X4, "VXEW, 

X4 being the fourth coordinate of x in that system. Let us take 
mEL; using (2. 1 ) 

X4 = -,p (m) = 0, 

that is, 

G(m) = (X i ,X2,x3,0); "VmEL. (2.10) 

We prove the uniqueness. Let us assume that, apart from 
L, there is another submanifold L" which satisfies the condi-
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tions of the theorem. The uniqueness will be proved if one 
shows that L, is an open set of L. 

Take m ,EL ,; as m i is simultaneous with P in the geode
sic coordinate system the use of (2.1 0) says that 

G (m ,) = (x: ,xi ,xi ,0). 

From the definition (2.4) of G we obtain 

expp ' (m,) = h -.I(X: ,x~ ,xi ,0)EEp , 

hence 

,p (m l) = g(expp I ml,u) = 0, 

and therefore 

mlE,p -1(O)=L~Ll C L. (2.11 ) 

On the other hand, as L, is a submanifold of W, the 
natural injection 

il: L I -+ W 

is an immersion, therefore a differentiable map. From (2.11) 
we know 

Imil-L I C L, 

and L is a regular submanifold of W. The functionj induced 
by i l 

j: L,-+L, 

is differentiable and with rank 

rankj = rank i l = dim LI = 3; 

therefore j is an immersion. With this result, one has that L I 

is a submanifold of L. Furthermore, as 

dim LI = dim L, 

one sees that LI is an open set of L. This completes the proof 
of our theorem. 

For reasons to be justified below and which are the cen
tral subject of this work, we introduce the following 

Definition: We call the Landau manifold of a point P to 
the submanifold L tangent to Ep , in agreement with the 
above theorem (2.1). 

Theorem 2.2: The connected Landau manifold of a 
point P can be implemented with a Riemannian structure. 

Proof Given a Landau manifold L, one can extract an 
open sub manifold of L with the property of being connected 
and containing P. It is enough to take the connected compo
nent Lc which contains P. This connected component Lc is 
also a submanifold of V tangent to E p at P. 

From the natural immersion 

we define in Lc the metric r as 

r= i*g. 

We must prove that r is a positive definite metric for 
each point of Lc' Let us consider two arbitrary vectors v, 
wETpLc' Using (2.9), i*v, i.wEEp, and 

y(v,w) = i*g(v,w) = g(i. v,i* w) > 0; v,w#O, 

r is a positive definite metric at P. Therefore, as Lc is con
nected, the signature is conserved at all points of the 
manifold.4 
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3. STUDY OF THE POINTS RELATED WITH THE 
LANDAU-LIFSHITZ SIMULTANEITY CONDITION 

With the objective of proving that the points joined by 
the Landau-Lifshitz simultaneity condition belong to the 
Landau manifold, we now show the following proposition. 

Theorem 3.1: Let Fbe a local chart of P with the condi
tionF(P) = 0. ForeachvETp V, thereisanE> Osuch that for 
all sER with Isl';;;E, it satisfies p.p. F·exppsv = F.psv, with 
p.p. the first order approximation of the corresponding 
function. 

Proof We know that 

exppsv = c(s) (3.1) 

is a geodesic starting from P such that 

C(O) = v, 

with c denoting the canonical lift of c. 
The curve of R 4F.c(s) starts from OER 4, and its canoni

cal lift at ° is 

(3.2) 

Following (3.1) we develop the expression F.exppsv to 
first order in s 

dF·c I F·exppsv = F·c(s) = F·c(O) + -- S + 02(S) 
ds S~O 

dF·c I = -- s + 02(S), 
ds S~O 

and, using (3.2) 

dF·c I . -- =F.p'c(O) =F.pv, 
d·s S~O 

we obtain 

F·exppsv = sF. v + 02(S) = F.sv + 02(S) 

=> p.p. F·exppsv = F.sv (3.3) 

as the result of the Theorem. 
In agreement with the "nearness" discussed in the In

troduction, a "nearest" point Q to P has the coordinates 

F(Q) = (.::1xI, .::1x2
, .::1x3

, .::1x4
) 

and therefore 

dx = p.p. F(Q). (3.4) 

On the other hand, we can consider QE W, so there is an 
sVETp V such that 

Q = exppsv, Isl';;;E. 

Using (3.4) and (3.3) 

dx = p.p. F(Q) = p.p. F·exppsv = F.psv. 

Due to the isomorphism F. p , we identify dx and sv. 
This identification allows us to write 

Q= exppdx 

=>dx = expp-lQ. (3.5) 

From Eq. (3.5) we get 

g(expp- I Q,u) = g(dx,u) = gijdxiu j , 

and (1.1) is verified, since the Landau-Lifshitz simultaneity 
condition is expressed in the proper system of P. Using (1.3) 
and the definition of ¢ 
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¢ (Q) = g (expp- lQ,U) = g4i dxi = 0, 

from which together with Eq. (2.1), QEL. 
With this result we show that the points related with P 

by the Landau-Lifshitz condition belong to the Landau 
manifold of P. Finally, in the literature of Relativity the stan
dard time is sometimes mentioned, as it is, for example, by 
Tonnelat,s and defined by 

dT = - g( u,dx). 

It indicates the time of an event as measured by an observer, 
who corresponds to P in our case. With this new concept, we 
can say that the points of the Landau manifold are not only 
simultaneous with P in the proper inertial local system of P 
but also simultaneous in any system with the condition to 
measure the simultaneity with the standard time. 

4. DISCUSSION 

First we must notice that it is usual to express the com
ponents of the velocity 4-vector in the proper system as ui 

= (0, 0, 0, u4
) instead of (1.1). 

This does not change anything in the procedure of the 
proofs and conclusions of the above sections, because the 
metrics of both are related by the factor u4

• This corresponds 
in physics to choosing the measure units. 

The existence of submanifolds tangent to hyperplanes 
of the tangent space at a point can be proven for pseudo
Riemannian manifolds following a similar procedure to the 
one used in the Theorem 2.1. The uniqueness of these sub
manifolds has been obtained by imposing the simultaneity 
condition among its points. 

On the other hand, we have seen that the synchroniza
tion established by Landau-Lifshitz is equivalent to the si
multaneity of the synchronized points if the standard time is 
taken as the time measure. 

The description of the synchronization process leads us 
to say that the synchronized points are arcwise connected. 
This implies that such points belong to the connected Lan
dau manifold, because any arcwise connected manifold is 
connected. 

To conclude, by virtue of our Theorem 2.2, the local 
simultaneity in Relativity, with respect to a point P, remains 
restricted to a Riemannian submanifold L c tangent at P to its 
physical space. 
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It is shown that the Einstein-Maxwell and generalized Einstein-Maxwell field theories 
essentially agree to first order at null and spatial infinity. 

1. INTRODUCTION 

Let (£l,gab) be a spacetime; i.e., a four-dimensional 
manifold £l with a Lorentzian metric tensor gab of signature 
+2. In the generalized Einstein-Maxwell theory 1 of gravi

tation and electromagnetism the source-free equations gov
erning gab and the electromagnetic field tensor ~b are2 

(fab = 81Tyab, 

V F ab + lkV F *R*abcd - 0 b 2bcd -, 

and 

ViaF"c 1 = 0, 

where 

yab: = Tab + kAab, 

Aab. = _l_(F F e*R*acbd + V *Faav *Fbc) . 81T ce d cd' 

(1.1) 

(1.2) 

(1.3) 

and k is a constant with units of length squared. Following 
Ref. 3, yab will be interpreted as the energy-momentum 
tensor of the electromagnetic field in the generalized Ein
stein-Maxwell theory. 

When (£l,gab) is Minkowski space, Eqs. (1.2) and (1.3) 
reduce to Maxwell's equations, while yab does not reduce to 
Tab, which is Maxwell's energy-momentum tensor for the 
electromagnetic field. However, in Ref. 3 it is demonstrated 
that near spatial infinity in Minkowski space yab is domi
nated by Tab when evaluated for either static or outgoing 
multipole radiation solutions to Maxwell's equations which 
originate from spatially bounded sources. (By yab being 
dominated by Tab near spatial infinity, I mean that with 
respect to a Lorentzian coordinate system for Minkowski 
space the leading term in an r 1 series expansion of yab 
comes from Tab.) The results presented in Ref. 3 can also be 
employed to show that yab is not dominated by Tab near 
null infinity when evaluated for outgoing multipole radi
ation solutions to Maxwell's equations in Minkowski space. 
In fact, in this case A ab and Tab have the same order near 
null infinity. 

The purpose of this paper is to extend the investigation 
of the asymptotic behavior of yab in Minkowski space to a 

"'Work completed while visiting the Enrico Fermi Institute at the Universi
ty of Chicago, September, 1979-May, 1980. 

study of the asymptotic structure of the asymptotically flat 
solutions of the source-free generalized Einstein-Maxwell 
field equations. Now there exist two regimes in which a 
spacetime representing an isolated system can be regarded as 
being asymptotically flat; viz., at null and at spatial infinity. 
We shall discuss the properties of the asymptotically flat 
solutions to the source-free generalized Einstein-Maxwell 
field equations in both of these regimes. The main conclusion 
of our analysis will be that asymptotically, the Einstein
Maxwell and generalized Einstein-Maxwell field theories 
are essentially indistinguishable to first order. We shall also 
find that the behavior of yab for outgoing multiple solutions 
to Maxwell's equations in Minkowski space extends to the 
asymptotically flat generalized Einstein-Maxwell space
times, in the sense that yab agrees with Tab to first order at 
spatial infinity while yab differs from Tab to first order at 
null infinity, due to a contribution from Aab. 

Our treatment of null infinity will be based upon Ger
och's notion of an asymptote4 for a spacetime, and our treat
ment of spatial infinity will be based upon Ashtekar and 
Hansen's work.s We assume that the physical spacetime 
metric and electromagnetic field are smooth when discuss
ing null infinity, and of class C 4

, C 3, and C 2 respectively, 
when discussing spatial infinity. 

2. BEHAVIOR AT NULL INFINITY 

By an asymptote for the physical spacetime (£l,gab) we 
shall mean a triple, (M,gab ,fl), consisting of a four-dimen
sional C 00 manifold M, with boundary I, a smooth Lorent
zian metric gab on M, and a smooth real-valued function fl 
on M, which is such that6

: 

(i) There exists a diffeomorphism ¢ of £l onto the interi-
or of M (by means of which we shall identify £l with M '\/); 

(ii) gab = fl2gab on £l; and 
(iii) 1 = fl-I(O) with dfl #0, at any point of 1. 
Suppose that (M,gab ,fl ) is an asymptote for the phys-

ical spacetime (£l,gab)' and ~b is a generalized Maxwell 
field on (£l,gab)' i.e., a solution to the source-free generalized 
Einstein-Maxwell field equations. We say that ~b is asymp
totically regular [with respect to the asymptote 
(M,gab ,fl )] if Fab: = ~b admits a smooth extention to I. 
Ideally, one would like to be able to show that if (£l ,gab) 
admits an asymptote, 1 is a null hypersurface, and the 
source-free generalized Einstein-Maxwell field equations 
are satisfied, then ~b must be asymptotically regular. Un
fortunately, such a result has not even been established for 
the Einstein-Maxwell field theory, although comparable re-
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sults can be proved for this theory if a few more assumptions 
are added to the hypothesis. 7 At present it is not clear wheth
er these weakened results concerning the asymptotic regu
larity of the electromagnetic field in the Einstein-Maxwell 
theory can be extended to the generalized theory since their 
proofs seem to hinge upon properties of the Einstein-Max
well equations which are not possessed by the generalized 
Einstein-Maxwell equations. For example, Geroch's resule 
depends heavily upon the deterministic nature of Maxwell's 
equations in a curved space, and it appears as though the 
generalized Maxwell equations (1.2) and (1.3) will not enjoy 
this property.s Thus, the only motivation I can offer in de
fense of the assumption that asymptotic regularity is the 
"correct" boundary condition to be imposed upon F"b is that 
the electromagnetic field is asymptotically regular for the 
"asymptotically flat" solutions to the generalized Einstein
Maxwell field equations presented in Refs. 9 and 10. 

In passing, I would like to point out that the assumption 
of asymptotic regularity implies that F"b has the usual peel
ing-offbehavior (see pp. 42-46 of Ref. 4, or Sec. 13 of Pen
rose's article cited in Ref. 7). 

We shall now demonstrate that if the generalized Max
well field F"b is asymptotically regular with respect to the 
asymptote (M,gab,n), then n -4Ya b admits a smooth exten
sion to I. This, in tum, will imply that I must be a null 
hypersurface. 

In order to simplify the form of the ensuing expressions 
we let 

-b I - - - d Ba : = -pcepde*R*ac b , 
811" 

- b 1 - - -d-b 
Ca : = - (Vc*Pad)(V *P <). 

811" 

(2.1) 

We also adopt the convention that indices on tilded quanti
ties (untilded quantities, respectively) will be raised and low
ered by ~b and gab (by ~b and gab' respectively). 

Employing the results presented in Sec. 28 of Ref. 11, 
one easily finds that 

and 

if b = n 6B b _ n 5 {jbdmpcep Vln 
a a 811" acl de m 

n
4 

m [F Fbc r>:bp pcd] - -nmn ac -Ua cd , 
811" 

C b = n 6c b + n
5 

[2*P n VC*F bd 
a a 811" ac d 

- *Pcdna vc*pbd + *Pacnd Vd*pbc 

+2*pbdncVd*Pac - *pCdnbVc*Pad 

+ *pbdncVc*Fad - *FacncVd*pbd 

(2.2) 

(2.3) 

_ *pbdnd VC*Pac] + n 4 [2*Pac nc*F bdnd 811" 
+ na*Fbc*Pcdnd + nb*Fac*pcdnd 
- nanb*Fcd*PCd + 4nc nc*Fad *pbd], (2.4) 

where na: = Van, and no use has been made of the field 
equations. In view ofEqs. (2.2)-(2.4), it is clear that n -41: b, 
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n -4~ b, and n -4~ b admit smooth extensions to I. Since 
Y a b = 1: b + k(~ b + Ca b), we must haven-4Ya badmit
ting a smooth extension to I. 

Following Geroch4 we define Sab: = Rab - t,gabR and 
La b: = Ra b - ttJ:R: Equation (1.1) implies that on M 

L b = 811"(Y b _ Jijb Y C) (2.5) a a 3 a c· 

Thus, due to the above work, we know that n -4Lab admits a 
smooth extention to I. Under the conformal transformation 
gab = n 2gab we find that Sab and Lab are related by 

nSab +2Vanb -n-Inmnmgab =n-1Lab . (2.6) 

Upon multiplying this equation by n and taking the limit as 
we approach I we see that n m nm = 0 on I. Thus I must be a 
null hypersurface when the generalized Maxwell field F"b is 
asymptotically regular, and hence we can think of I as repre
senting "null infinity" in this case. 

In passing we note that Eq. (2.6) can be used to con
clude that 

(2.7) 

on I. This result will prove to be quite useful when we exam
ine Eqs. (1.2) and (1.3) on I. 

Since n -4Ya b admits a smooth extension to I (when 
F"b is asymptotically regular) all of the results concerning 
the asymptotic geometry of I presented in Secs. 3,4, and 5 of 
Ref. 4 apply to I in the present situation. In fact, these results 
of Geroch only require that n -2 Y a b admits a smooth exten
sion to I. 

Remark: An asymptote (M,gab ,n ) for the spacetime 
(M,gab) is said to be Minkowskian if it satisfies the following 
four conditions: 

(i) I is a null hypersurface; 
(ii) The vector field na induced on I by na is complete; 
(iii) Each component of I is a principal fibre bundle over 

S 2 with structure group R and group action given by the flow 
ofna

; and 
(iv) £n ikp = 0, where ikp is the pull-back of gab to I. 
It turns out that the "asymptotically flat" solutions to 

the generalized Einstein-Maxwell field equations presented 
in Refs. 9 and 10 admit Minkowskian asymptotes. The rea
son why Minkowskian asymptotes are important is due to 
the fact that if (M, gab) admits a Minkowskian asymptote 
(M, gab ,n ), and the generalized Maxwell field F"b is asymp
totically regular, then the W ey 1 tensor of (M,g ab) vanishes on 
I. (This fact follows immediately from Theorem lIon p. 47 
of Ref. 4.) Thus under these assumptions we see that it is not 
unreasonable to say that "the physical spacetime is asymp
totically flat at null infinity". 0 

We shall now tum our attention to the asymptotic field 
equations and the behavior of n -4Ya b on I. To this end 
suppose that the generalized Maxwell field F"b is asymptoti
cally regular. We let F ap and * F ap denote the pullback to I 
of Fab and *Pab with the natural injectionj:I_M. F ap and 
*F ap are regarded as representing the asymptotic electro
magnetic field at null infinity. 

Since j commutes with exterior differentiation it is clear 
that Eq. (1.3) implies that d F = 0 on I. We shall presently 
demonstrate that Eq. (1.2) implies that d*F = 0 on I, and 
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hence F ap and *F ap satisfy the same equations on I as do 
asymptotically regular Maxwell fields. As a result we arrive 
at the usual expression for the total electric and magnetic 
charges for (M,gab) (see p. 58 of Ref. 4). 

A straightforward calculation shows that 

V Fab + lkV F *R*abcd 
b 2 b cd 

= fl4[Vb FQb + !k(flVbFcd + 2Fcd nb 

+2Fbdnc - 2gbcneFed)(fl*R*abed 
- gaegbf{j~;hV'nh + fl -Inm nmgaegbf{j~'j)]. (2.8) 

Due to Eq. (2.7) we see that Eqs. (1.2) and (2.8) can be used 
to conclude that on I, V bFab = 0, or equivalently, VIa *Fbc I 
= 0 on I. Upon pulling this equation back to I with j we find 

that d*F = 0, as claimed. 
Consequently on I we cannot distinguish (F,*F) pairs 

which arise from asymptotically regular Maxwell fields 
from such pairs which arise from asymptotically regular 
generalized Maxwell fields. 

Using Eqs. (2.2)-(2.5) we see that when the generalized 
Maxwell field F:b is asymptotically regular12 

limfl -4Lab = 2(Fae Fb c - UJabFed FCd ) 
~/ 

+ k (2*Facnc*Fbdnd + na*Fbc*Fcdnd 

+ nb*Fac*Fcdnd - nanb*Fcd*FCd). (2.9) 

Since j* dfl = 0, the pullback of the second term on the 
right-hand side of (2.9) is 

2k*FaynY*Fpon°, (2.10) 

which is nonzero (in general) and vanishes if there is no radi
ation incident upon null infinity. Thus 
L: = j*(lim ./fl -4Lab dxa ® dxb) will differ from its counter
part in the Einstein-Maxwell theory due to the presence of 
the term given in (2.10). However, it is conventional to re
gard LapnP as the flux of the electromagnetic field through I 
(see p. 56 of Ref. 4), and this quantity is given by the usual 
expression since *FponPnD = O. Consequently the new term 
in LaP which arises in the generalized Einstein-Maxwell the
ory leaves no impression upon the usual quantities of phys
ical significance on I, such as the flux of the electromagnetic 
field, the News tensor, or the Bondi energy-momentum 
vector. 13 

Thus, in summary, if (M, gaP) admits an asymptote, 
and the electromagnetic field F:b is asymptotically regular, 
then the geometry and physics of I are essentially the same 
irrespective of whether the Einstein-Maxwell or generalized 
Einstein-Maxwell field equations hold on M. 

3. BEHAVIOR AT SPATIAL INFINITY 

Following Ashtekar and Hansen,5 we say that the phys
ical spacetime (M, gab) is asymptotically fiat at spatial infin
ity (abbreviated by AFASI) if there exists a quadrupole 
(M,iO,gab ,fl ) consisting of a four-dimensional manifold M 
with a C > I differentiable structurel4 at z{JEM, a Lorentzian 
metric gab of class C >0 at z{J, and a real valued function fl on 
M of class C > 2 at P, which are such that: 

(i) There exists a diffeomorphism'" of Minto M (by 
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means of which we shall identify Mwith ",(M) eM); 
(ii) The boundary of M as a subset of M consists of the 

null cone of [(JeM; 

(iii) gab = fl 2gab on M; and 
(iv) fl (z{J) = 0, dfl (P) = 0, and Va V bfl (z{J) = 2gab (z{J). 
The quadrupole (M,Z{J,gab ,fl ) will be referred to as the 

completion of the AFASI spacetime (M,gab)' and /{J will be 
considered as representing spatial infinity for (M,gab)' 

Suppose that (M,/{J,gab ,fl ) is a completion of the 
AFASI spacetime (M,gab)' and F:b is a generalized Maxwell 
field on M. We set Fab: = F:b on M and say that F:b is as
ymptotically regular l5 (with respect to (M,gab,/{J,fl» if flFab 
admits a regular direction-dependent limit at /(J. This in turn 
implies that lim~i,flFab gives rise to a direction-dependent 
tensor Fab on the hyperboloid ~ of unit spacelike vectors at 
P and that for k = 1,2 

aa, ... aa, Fob = li~fl 1/2Va, [ .. -efl 1/2Va, flFab)"'] . (3.1) 
~l 

We shall now demonstrate that if F:b is an asymptotically 
regular generalized Maxwell field then the constraints im
posed upon Fab by Eqs. (1.2) and (1.3) are the same as those 
which arise from Maxwell's equations. 

To begin with let us consider Eq. (1.2). Since 

V bFcd = fl -3/2 [fl 1/2v b (flFcd) - 2flFcd V bfl 1/2], 

we see that Eqs. (1.2) and (2.8) imply that on M 
fl 1/2V b (flFab) - 2flFobV b fl 1/2 

+ !kfl [fl 1/2Vb(flFed ) +2flFcdVbfl 1/2 

+ 4flFbd Ve fl 1/2 -4gbc flFed vefl 1/2] 

X [fl*R*abcd - g"egbf{j~'jtv/v hfl 

+4(V mfl 1/2)(vmfl 1/2)g"egbf{j~J] = O. 

(3.2) 

Upon taking the limit of the above equation as we approach 
/{J, noting Eq. (3.1), along with the fact that fl 1/2Robcd is a 
direction-dependent tensor at [{J, and lim~i' vafl 1/2 = 1Ja 
(the unit tangent vector at /(J to the spacelike curve used to 
evaluate the limit), we find that 

abFab (1J) -2Fab(1J)1Jb = O. (3.3) 

A similar argument applied to Eq. (1.3) (expressed in the 
form Vb*Fab = 0) shows that 

ab*pb(1J) -2*FOb (1J)1Jh = O. (3.4) 

Equations (3.3) and (3.4) are identical to the equations 
which F ab must satisfy on ~ when F:b is an asymptotically 
regular Maxwell field. Consequently, whenF:b is asymptoti
cally regular, the first order asymptotic behavior of the elec
tromagnetic field at spatial infinity is governed by the same 
set of equations in the Einstein-Maxwell and generalized 
Einstein-Maxwell theories. In particular this implies that 
both theories can use the same expression for the total elec
tric and magnetic charge of (M,gab) (see p. 1555 of Ref. 5). 

We shall now study the behavior of the energy-momen
tum tensor Y a hat /{J for an asymptotically regular general
ized Maxwell field. 

An examination of Eqs. (2.2)-(2.4) shows that due to 
Eq. (3.2) 

(3.5) 
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-" "'- "'-
where Ta b,Ba b, and Ca b admit direction-dependent limits at 
P. Hence, Y a b = 1: b + k (if" b + ~ b), is dominated by 1: b 

as we approach spatial infinity. This observation appears to 
be a bit surprising in view of our previous work with Y a b 

near null infinity, but it is in keeping with the behavior of 
Y a bin Minkowski space discussed in the introduction. In 
order to explain this behavior, recall that the difference be
tween the pullbacks of fl-4Ya c gcb and fl-4 1: cgcb to I (in 
the case of null infinity) is due to the term presented in Eq. 
(2.10), which vanishes if there is no radiation incident upon 
null infinity. Thus the essential difference between the be
havior of Y a b at null and spatial infinity can be attributed to 
the fact that radiation fields can impinge upon null infinity, 
while they cannot reach spatial infinity. 

The equations governing the gravitational field at spa
tial infinity in the generalized Einstein-Maxwell theory can 
be derived from the identity (see Eq. (13) of Ref. 4) 

V[a(fl-1Cbc/e) 

= 2fl-2{j[dV (fl-1L e[) _ 2fl-4{j[d{je)L Vffl (3.6) 
[a b c [ [a b elf ' 

where La bisgiven byEq. (2.5). DuetoEq. (3.5), wehaveLab 
= fl2'Pab' where 'Pab admits a regular direction-dependent 

limit at 1(J, and therefore 

li~ [20i~Vb(fl-ILc)e)-2fl-2{ji~{j~)Lc)fVffl] =0. (3.7) 
~l 

Consequently we may employ Eqs. (3.6) and (3.7) to con
clude that the field equations governing the asymptotic 
gravitational fields are the usual ones, 16 viz., 

O[aCbc) de (''1) = 317[a Cbc) de (17), 

on 2, where Cbcde (17): = lim~,.,fll/2Cbcde' Thus the pres
ence of the generalized Maxwell field has no effect upon the 
first order behavior of the asymptotic gravitational field at 
spatial infinity. 

In summary we see that as far as the properties of fields 
at spatial infinity is concerned, there is absolutely no differ
ence between the Einstein-Maxwell and generalized Ein
stein-Maxwell field theories to first order. 
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We develop the necessary equations for the production of an infinite hierarchy of potentials for 
stationary Einstein-Maxwell spacetimes. Specific knowledge of these potentials are essential to 
the Kinnersley-Chitre method of solution generation. To elucidate their meaning we investigate 
the particular case of Reissner-Nordstrom. 

1. INTRODUCTION 

The discovery of various symmetries in nature has been 
instrumental in reinforcing the essential belief of the simplic
ity and unity of the universe. Thus, when it was determined 
that the inclusion of the Maxwell equations into the station
ary Einstein equations not only maintained the original sym
metry group but actually increased it, one had to sense that 
this could not be merely fortuitous. 

In a remarkable series of papers, 1-4 Kinnersley and 
Chitre have explored some of the inherent ramifications of 
these symmetries. In particular, they have found a represen
tation of the infinite parameter group of the Einstein-Max
well equations through an infinite hierarchy of potentials. 
Recently, as a reward for Kinnersley's persistent faith that a 
perusal of these symmetries must lead to a method of solu
tion generation, they have developed a method of generating 
new stationary solutions which are guaranteed to be asymp
totically flat! 

Instructive examples in the aforementioned papers 
have tended to relate to the details of the potentials for vac
cum solutions. In this paper we will develop the pertinent 
functions which will enable us to deal with the complete set 
of Einstein-Maxwell equations and related potentials. In 
Sec. 2 we will derive the general form for the generating 
functions of the electromagnetic and gravitational poten
tials. Section 3 will be devoted to an examination of the 
Reissner-Nordstrom metric in order to consider the details 
of a specific example. In Sec. 4 the problems of gauge free
dom and their relation to solution generation will be consid
ered. Sections 5 and 6 will be devoted to specific results for 
the Reissner-Nordstrom metric, one of which will be consis
tent with the Harrison transformation. 5 

2. GENERATING FUNCTIONS FOR THE POTENTIALS 

From paper II of the series we note the fundamental 
equations for the electromagnetic and gravitational poten
tials ifJ ~n) and H ';;~ : 

V ifJ ~n) = i P - 1 I A Xv ifJ <:) , (2.1) 

V H ';;~ = - i P - 1 I A Xv H <:1 . (2.2) 
The recursive definitions were given as 

"'Former address. Now affiliated with the Shell Oil Company, Pacific Divi
sion Exploration, Entex Room 2244, Box 527, Houston, Texas 77079. 

ifJ ~' t I) = i(M~ln) + 2ifJAK(ln) + HAXifJ (n)X) , (2.3) 

H~n/ I) = i(N~I;) + 2ifJAL ~n) + HAXH<;)X) , (2.4) 

where 
V(mn)K = ifJ ~m)'VifJ (n)X , 

vmn L B = ifJ ~rn)'V H <;)X , 

(2.5) 

(2.6) 

vmnMA = H~"2'VifJ (n)X, (2.7) 

vmnNAB =H<;J·VH<;)x. (2.8) 

In paper III a generating function for the H ~"h was derived 
for a vacuum spacetime. We will now derive the equations 
for the general generating functions of H~"h and ifJ ~n). Since 
H ~"h and ifJ ~n) are coupled, four generating functions are 
required: 

Q(t)= I t nK(1n) , (2.9) 
n=O 

SA(t)= ItnL~ln), (2.10) 
n=O 

FAB(t) = It nH';;1 , (2.11) 
n=O 

D A (t ) = I t nifJ ~n) . (2.12) 
n=O 

Differentiate Eqs. (2.3) and (2.4), multiply both sides of each 
equation by t n + I) and sum. The result is 

VFAB = it {[H~A + H AX + 2ifJAifJ ~ ]VF X
B 

+2SBVifJA + FXBVHAX } , (2.13) 

VDA = it {[H~A + H AX + 2ifJAifJ ~ ]VD X 

+ 2QVifJA + DXVHAX }' (2.14) 

Regrouping the terms and defining 

G A
X = 8A

X - it [H~A + HAX + 2ifJAifJ ~] 

= 8,1 X [1 - 2t z 1 - 2it I A X , 

we obtain 

GAxVF x
B - itFX

B VHAX = 2it SB VifJA, 

G A xV D X - it D Xv H A X = 2it QV ifJ A . 

(2.15) 

(2.16) 

(2.17) 

It will be convenient to decouple these equations as far as 
possible. To initiate this result we abandon covariance and 
use the generalizations of Eqs. (2.1) and (2.2) which are 

VF . -II XV-F AB = -IP A XB' (2.18) 
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VDA = - ip-I/AxVDx , (2.19) 

thereby obtaining (setting the index A = 2) 

G 2 [VF2 -ip-II VF 2 ] 
I B 12 B + G 2 VF 2 + itFI VH . _ II Z B B II 

Ip II 
+itF2

BVHI2 = -2itSBV¢I' (2.20) 

G\ [VD2-ip-I/12VD2] +G2 VD2+itDIVH 
. _ II 2 11 
Ip II 

+ itD 2VHI2 = - 2it QV¢I . (2.21) 

Using Eq. (2.15) in Eqs. (2.20) and (2.21), we obtain 

(1-2tz)VF 2
B +2tpVF2

B +itFIBVHII +itF2
BVHlz 

= - 2it SB V¢I , (2.22) 

(1 -2t z)V D Z +2tpVD z + itD IVHII + itD 2VHI2 

= - 2it QV ¢I . (2.23) 

Choose B = 1 in order to focus on FII [D2 1: 
- (1 -2t z)V FII -2t pVFII + itF21 VH11 - itFII VH12 

= - 2itSI V¢l , (2.24) 

- (1 -2t z)V Dl -2t pVDl + itDz VHll - itDI VHIZ 

= - 2it QV ¢l . (2.25) 

We have two choices: Eliminate FZl [Dz ] algebraically and 
obtain 

F11 ,x[(1-2tz)Hll,y +2t(xZ-l)Hll .x ] 

+ Fll,y [2t (1 - y2)H11 ,y - (1 -2t z)H11 ,x] 

= itFll [Hll,xH12,y - H ll ,yH12,x] 
+2it Sl [¢l,xHII,y - ¢l,yHll •x ] , 

Dl.x [(1 - 2t z)HII,y + 2t (XZ - I)HIl .x ] 

+Dl,y[2t(1- yZ)HIl,y -(1-2tz)HIl ,x] 

= it Dl [HIl,XHlZ,y - HII,yHIZ,x] 

+2it Q [¢l,xHll,y - ¢l,yHII,x] 

or eliminates Sl [Q ] and see that 

Fll,x [2t (x2 - 1)¢l,x + (1 - 2t Z)¢I,y] 

+FIl ,y[2t(1- yZ)¢I,y -(1-2tz)¢I,x] 

= it Fll [¢1,x H I2,y - ¢l,yH12,x] 

(2.26) 

(2.27) 

+ it FZI [¢l, yHII,x - ¢l,xHII, y] , (2.28) 

Dl,x [2t (x2 -1)¢l,x + (1 - 2t z)¢I,y] 

+ Dl,y [2t (1 - y2)¢l,y - (1 - 2t Z)¢l,x] 

= itDl [¢l,x H 12,y - ¢1,yHIZ,x] 
+ itD2 [¢l,yHll,x - ¢1,xHll,y] . (2.29) 

Similar equations follow for the other FAB and DA. Note 
that, given FIB [Dl ], one may produceF2B [D2] usingEqs. 
(2.18) and (2.19). 

Consider the above equations for FIB [DI ]; either they 
are coupled to S B [Q ] or to FZB [D2]. This dilemma is trou
blesome in general, but fortunately the coupling term van
ishes for cases where Hll and ¢l (Ernst's € and ¢ )6 are func
tionally dependent, e.g., Reissner-Nordstrom, Kerr
Newman, and charged Tomimatsu-Sato solutions. In order 
to see this, consider the coupling term 
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¢l,xHll,y - ¢l,yHll,x rx VHll'V¢, 

Now, for the above cases, 

2 ' S - 1 
H11 = € = I - I cP I + ltp = --, 

q 
¢l =cP= --, 

S+l 
so 

VHII,V¢I rxVS·VS=O 

since 

Vu·Vu _0 

S+1 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

for any potential u. Ergo we are left with an equation involv
ing only FIB [DI 1 to solve in the instances of greatest phys
ical interest, 

3. REISSNER-NORDSTROM POTENTIALS 

Referring back to Eqs. (2.30) and (2.31), we note that 
Ernse has demonstrated that if So is a vacuum solution to 
Einstein's equations, then 

S = So(1- qZ)IIZ, 

q_e/m 

(3.1) 

(3.2) 

is a solution to the Einstein-Maxwell equations. Specifically, 
using prolate spheroidal coordinates, So = x represents the 
Schwarzschild solution and 

S = x(1 - qZ)1I2 

represents the Reissner-Nordstrom solution. 
Using prolate spheroidal coordinates, where 

r-m 
X=--

k ' 

y = cosO, 

k = (mZ _ e2)1/2 , 

(3.3) 

(3.4) 

where k has been chosen so as to given the familiar result of 
e/r for the electromagnetic potential ¢I' 

Defining 

{3 = (1 - q2) - 112 = mk - 1 , (3.5) 

then for the Reissner-Nordstrom metric 

1= (XZ - 1)(x + {3)-2, (3.6) 

¢ = O. (3.7) 

Using the equations in Sec. I of paper II, we discover 

HAB = [lAB -AAAB -BABB +€ABK ] 
+i[¢AB +AABB +BAAB1, (3.8) 

where 

VBA =p-ll/VAx ' (3.9) 

Then, specifically, we derive the following: 

(3.10) 

(3.11 ) 
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(3.12) 

(3.13) 

Next, we apply the method of characteristics to Eq. (2.26) 
and find 

it [H12.yHII.x - H 12.xH ll •y ] 

dx 

(1 - 2t z)HII .y + 2t (x2 - I)HII •x 

dy 

2t(l- y2)HII .y - (1-2tz)H ll •x 
(3.15) 

Using Eqs. (3.13) and (3.14) for the particular example of the 
Reissner-Nordstrom metric, we obtain 

dy 

dx 
(- 1 + 2t xy) 

2t(x2-1) 

dFII -dx 
-- = ---
F II X + {3 

The solutions are 

a
l 

= (2ty -x)(x2 - 1)~ 1/2, 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

where a l and a2 are constant along each characteristic 
curve. The general solution is given by 

FII = (x + /:1) ~ I y[ (2t Y - x)(x2 - 1) ~ 112] , (3.20) 

where y is an arbitrary function of (2t y - x) (x2 - 1) ~ 112. 

In order to determine the particular form of y, use Eq. (2.18). 
Rewriting Eq. (2.18), we have 

(3.21) 

We will use the vector identity V2 ·Vu _ 0, where u is 
any potential. Taking advantage of this gives 

V2·(p~lfAXVFxB)=0, (3.22) 

V2 -(p ~ IfAXVDx ) = O. (3.23) 

Inserting Eq. (3.20) into (3.22), we obtain 

FII = t [K(t)[x - 2ty]S ~ I +KI (t)](x + {3)~ I, 
(3.24) 

where 

S 2 = 1 - 4tx y + 4t 2(X2 + y2 - 1) . (3.25) 

Notice that K and KI are functions of the expansion 
parameter t. Their particular form is to be determined by the 
specific choice of gauge imposed. 

F12 [D I ] satisfies the same characteristic equations and 
Eqs. (3.22) and (3.23) as did F II , so 

FI2 = i[C(t)[x - 2ty]S ~ 1+ CI (t)](x + {3)~ I, 
(3.26) 

DI = t [E(t)[x - 2ty]S ~ 1+ EI (t)](x + {3)~ I. 
(3.27) 

Notice that FII has an initial multiplier of t where F12 
does not. This is to place them into conformity with the nota
tion that H~o1 = iEAB so FII = 0 + t HW + ... , while 
FI2 =i+tHi~+ .. ·· 

Using Eqs. (3.21), (3.24), (3.26), and (3.27) to deter
mine F2B [D2 ], we obtain 

F21 = - ~{K(t)[1 - 2ty(x - {3) - 4t 2(X{3 + 1 - y2)]S ~ 1_ [2K2(t) + 2KI (t)ty]) , 
2 

(3.28) 

F22 = ~{C(t)[ 1 - 2ty(x - {3) - 4t 2(x{3 + 1 - y2)]S ~ 1_ [C2(t) + 2CI (t )t{3y]} , 
2t 

D2 = - i {E (t )[ 1 - 2t y(x - {3) - 4t 2(X {3 + 1 - y2)]S - I - [2E2 (t ) + 2E I (t ) Y ]} , 
2 

where K2 (t ), C2 (t ), and E2 (t ) are additional integration constants. 

(3.29) 

(3.30) 

Excluding particular gauge conditions, we have now obtained the specific forms of the generating functions for the 
potentials ¢ ~n) and H<;~ of the Reissner-Nordstrom metric. 

4. GAUGE CONDITIONS 

Since the main application of this work lies in the area of solution generation, our foremost concern should be that the 
gauge conditions we choose are compatible with those used in equations which played essential roles in developing the method 
of solution generation. 

In fact, Eqs. (3.14)-(3.20) of paper II were so used, and the associated selection of integration constants imply certain 
gauge conditions. We will now derive the specific relationships among the electromagnetic and gravitational potentials which 
are in agreement with those gauge conditions. 

The equations in question are 
K (mn) _ K (nm)· = ¢ <;F). <p (n)X , 

L ~mn) _ M<;m). = ¢ ~m)·H~ , 

N~~n) - N~~m)· = H<;Fj"H<;)X + EABO~O~ , 
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K(m,n + I) _ K(m + I,n) = 2iK(ml)K(ln) + iL <;'I),p (n)X + ~ 6;;'6~ , 

L hm,n + I) _ L hm + I,n) = 2iK(ml)L ~n) + iL ~ml)H<;)x, 

M~m,n + I) _ M~m + I,n) = 2iM~ml)K(ln) + iN~~),p (n)X, 

(4.4) 

(4.5) 

(4.6) 

N~"Jin + I) _ N~~ + I,n) = 2iM~ml)L ~n) + iN~";/>n<;)X - 3EAB6~ 16~ . (4,7) 

Again, the most efficient procedure to ensure compliance with the above will be by means of a series of generating 
functions, i.e., 

K _ I K (mn)r"'t n, 'K = IK(ln)t n = Q, K' = IK(ml)r"', 

LA = I L ~mn)r"'t n, 'L = I L (In)t n - S A - A - A' L~ = IL~ml)r"', 

MA = I M~mn)r"'t n, 'MA = IM~n)tn, M~ = I M~ml)r'" , 

N = I N(mn)r"'t n AB - AB , 'N =IN(ln)t n AB - AB, N' - IN(ml)r'" AB = AB . 

Multiply Eqs. (4.1)-(4,3) by r"'t n and then sum. We acquire the following: 

K -K* =D~(r)DX(t), 

LA -M~ =D~(r)pXA(t), 

NAB - N~A = P~Ar)pXB(t) + EAB 

Equations (4.4}-( 4.7) yield 

t -I( K + ~) - r- I( K - i~) = 2iK'(r)Q(t) + iL ~(r)DX(t) +!i, 

t - ILA - r- ILA = 2iK '(r)SA (t) + iL ~(r)pXA (t) , 

t - IMA - r- I [MA + iDAt)] = 2iM~(r)Q(t) + iN~x(r)DX(t), 
t - I(NAB - EAB ) - r- I [NAB + iPAB(t)] = 2iM~(r)SB(t) + iN~X<r)pXB(t). 

The recursive definitions given by Eqs. (2.3) and (2.4) give 

DAt) = it ['MAt) + 2ifJAQ(t) + HAXDX(t)] , 

PAB(t) - iEAB = it ['NAB(t) + 2,pASB(t) + HAXPXB(t)]. 

(4,8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

We now wish to eliminate unwanted primed quantities, e.g., 'NAB andN~B' Therefore, inEq. (4.1), setm = 1, multiply by An, 
and sum. 

or 

Thus, 

Q (t) - K '(t)* =,p ~D x (t) . 

In a like manner Eqs. (4.2) and (4.3) produce 

SA(t) - M~(t) =,p ~PXA(t), 

'NAB(t) - N;At) = H~APXB(t). 

Setting n = 1, multiplying by A m, and summing over Eq. (4.2) yields 

L ~(r) - 'M~(r) = D ~(r)HXA . 

This was the final bit of new information we were able to extract from Eqs. (4.1)-(4.7). 
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Using Eqs. (4.15), (4.17), (4.19), and (4.20), we obtain 

(r ~ t )NAB = t - IEAB + 2iSB(t )S~(r) - 2iSB(t )t/Jzp"ZAr) - r- IpXB(t )P~Ar) 
- 2i,p ~S~(r)pXB(t) - i(Hzx + H~Z)PXB(t )p"ZAr). 
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Equations (4.14), (4.17), (4.19), and (4.20) yield 

(r ~ t )MA = 2iQ (t)S ~ (r) - 2iQ (t )¢ZF"ZA (r) - 2iS ~ (r)¢ ;D Z (t) 

- r-IDX(t)F~A(r) - i(Hzx +H~z)F·zA(r)DX(t). 

Equations (4.13), (4.16), (4.18), and (4.21) give 

(r ~ t )LA = 2iSAt)Q *(r) - 2iSA (t )¢zD 'Z(r) - r- IF x
A (t)D ~(r) 

- 2i¢ ~FxA (t)Q *(r) - i(H~z + Hzx)D ·Z (r)F xA (t). 

Equations (4.12), (4.16), (4.18), and (4.21) produce 

(
r - t ) i -- K = -(1 - tr- 1_ rt - I) + 2iQ(t)Q *(r) - 2iQ (t )¢zD 'Z(r) 

rt 2 
- 2iQ *(r)¢ ;Dz(t) - r- ID ; (r)D z(t) - i(H~z + Hzx)D 'Z(r)D x (t). 

(4.23) 

(4.24) 

(4.25) 

If we now set r = t on both sides ofEqs. (4.22)-(4.25), there remains only algebraic combinations of the FAB , DA, Q, and 
SA in addition to the known quantities ¢ A and H AB . Perforce, these results must have the same gauge conditions as the initial 
equations (4.1)-(4.7) contain. 

It must be remarked that Eqs. (4.23) and (4.24) are complex conjugates while the choices of A = 1, B = 2 and A = 2, 
B = 1 result in another complex conjugate pair from Eqs. (4.22). 

In conclusion, Eq. (4.22) yields three unique equations, Equation (4.23) [or Eq. (4.24)] yields two distinct equations, and 
Equation (4.25) gives one. We determine that, while we have a total of six distinct equations, a perusal ofEq. (3.24) and Eqs. 
(3.26)-(3.30) produces nine functions of the expansion parameter t, namely, [K,KI ,K2,C,CI ,C2,E,EI ,E2 ] . In addition, SA 
and Q contain three constants of integration; thus, while we have derived six constraint equations, we have a total of 12 
functions of the expansion parameter. 

Consider Eqs. (6.25) and (6.26) of paper I: 

¢A - ¢A + aA (two gauge functions), 

HAC -HAC - a~¢c - ¢Aa~ - a~ac + iaAC (four gauge functions). 

(4.26) 

(4.27) 

So we see that we have exactly the correct number of gauge freedoms in our equations. In order to determine in a complete 
fashion the specific form of the functions of the expansion parameter, we must choose six additional constraints which are to 
be fulfilled. 

5. REISSNER-NORDSTROM POTENTIALS 

An examination of the basic potentials for the Reissner-Nordstrom metric reveals thatS2,DI, ¢I' H II , H 22 , F II , andF22 
are real while F 12 , F21 , SI' D2, ¢2' H\2' H 21 , and Q are imaginary. Therefore, our six basic equations reduce to 

-FIIF2It -1-iSi +2iSI¢IF21 +2iSI¢2FII = -iHIIFil +iH22 Fil +i(Hlz -H2I)FIIFzl' (5.1) 

t -I -FIIF22t -1-FzIFlzt -1- 2iSIS z + 2iS2¢IFZI + 2iSz¢zFII + 2i¢ISIF22 + 2i¢zSIFlz 

= -i(H2I -Hlz)FnFII +i(H\2 -H2I)F\2Fzl -2iHIIF22F21 +2iH22FI2F2I' 

F 12 Fzz t -1+iS~ -2iS2¢IF22 -2iSz¢zFlz =iHIIF~z -i(HI2 -H2I )F12 Fz2 -iH22 Fi2' 

F 12 Dzt -I + F22DI t - 1+ 2iQSz - 2iQ¢IF22 - 2iQ¢zF12 - 2i¢ISzD2 - 2i¢2SZDI 

=2iHII F22 D2 -2iH22FI2DI -i(Hlz -Hzl)F22DI +i(Hzl -HI2)FI2Dz' 

- FIIDzt -I - F21DI t - 1_ 2iQSI + 2iQ¢IF2I + 2iQ¢zFII + 2i¢ISIDz + 2i¢zSIDI 

= -2iHIIFzID2 +2iHzzFIIDI +i(HI2 -Hzl)F2IDI -i(H21 -HIZ)FIID2' 

- 114 + iD ID2t -I - Q2 + 2Q¢I D2 + 2Q¢2 D I = - HIID~ + H22Di + (Hlz -H21 )DIDz . 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Consider the latter equation. We choose to make the D A as simple as possible and also to require that ¢ ~n) - 0 as x - 00; 
therefore, set E (t ) = Ez (t ) = o. then we find 

Q = iE3(t) + it EI (t)q {3 y(x + (3)-1, (5.7) 

DI =tEI(t)(x+ {3)-I, 

Dz = iEI (t )t Y . 

Using Eq. (5.6), we determine E3 (t ) and EI (t) as 

E3(t) = 112[1 + 4t 2«(32 - 1)] -I/Z, 

EI(t)= -q{3[l +4t2({32_1)]-1I2. 
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The particular selection of signs was determined by the fact that D A = <P A + t <P Ij) ... . Five equations remain in which to 
determine the other eight unknowns, consistent of course with the above E (t )'S. 

In order to exploit the rest of the gauge freedom, a combination of the FAB found advantageous in paper IV for the 
generation of new solutions, i.e., FA I + it FA 2' will be made as simple as possible. Equations (3.24), (3.26), (3.28), and (3.29) 
result in the following: 

FI1 + itF12 = (K - C){t (x - 2t y)S - I(X + 1:1) - I} + (KI - CI ){t (x + In - I}, (5.12) 

. .( - C2 ) . - i(C - K) { } F21 +ltF22 =1 K 2 - T +lty(KI-CI)+ 2 S-I 1-2ty(x-[3)-4t 2(x[3+1- y2). (5.13) 

SettingK = Cwillgreatly reduce the complexity of the above. In addition, requiring C I = [3C andKI = - [3K will ensure a 
close similarity to the vacuum solutions given in paper IV. 

The situation remains much too complicated algebraically until it is noticed that if the equations are correct for all x, y, 
they must hold in particular for x = y = O. Luckily, this reduction still retains enough information for a complete determina
tion of the remaining unknowns. Acting on this we obtain 

K = C = C I [3 - I = - KI [3 - I = [1 - 4t 2] - 112 [1 + 4t 2( [3 2 _ 1)] - 1/2 

K2 = 1/2 [1 + 4t 2( [3 2 - 1)] - 1/2 - 1/2 [1 + 4t 2( [3 2 _ 1)] - 1/2 [1 _ 4t 2] - 112 - 1/2 , (5.14) 

C2 = [1 + 4t 2([32 - 1)] -112 + [1 + 4t 2([32 _ 1)]112[1_ 4t 2] -112 - 1 . 

Various signs have been determined by noting the first term in the series FAB = iCAB + .... 
The above results do not represent the only possible specific representation of the potentials, or even the most interesting 

one. In fact, one could well wish to examine the results when agreement with the Harrison transformation is enforced. 

6. THE HARRISON TRANSFORMATION 

In finite form the Harrison transformation is given by 
Eq. (7.20) in paper I. 

(6.1) 

G -H _ H11 
11 - 11 1 2cA. 2H 

- '1'1 - e 11 

(6.2) 

We wish to maintain the form of the Reissner-Nordstrom 
metric after the Harrison transformation is performed, e.g., 

f - f' :(,-2 - 2mr + e2)r - 2 _ (r'2 - 2m' r' + e'2)(r')2 . 

Let us define the following: 

m' = [1'(1 - e2) ~ 2ce] [1 _ e2 ] - I, 

e' = [e(l + e2) - 2me][ 1 - 2] - I , 

r' = [1'(1 - e2) - 2ee _ 2me2][1 _ e2] -I. 

(6.3) 

(6.4) 

(6.5) 
Then 

,-2 - 2mr + e2 = r'2 - 2m'r' + e'2 (6.6) 

and 

f - f' = [r'2 - 2m'r' + e'2][(l _ e2)r'] - 2, (6.7) 

<PI -<P 'I = [e + e'/r'] [1- e2
] -I, (6.8) 

, 2 2m' [1-e2 ] 
HII _H II = l-e - -- (6.9) 

r' l+e2 

Referring back to Sec. 3, we see that for the Reissner-Nord
strom metric the results should have the form 

f' = [r'2 - 2m'r'2 + e'2]r' - 2, 

(6.10) 

(x' - [3') 2m' 
Hll = (x' + [3 ') = 1 - T' 
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We must, in general, be concerned with various changes 
and scale and gauge transformations if we are to achieve the 
appropriate final forms. We must also keep in mind that the 
Harrison transformation does not commute with the gauge 
transformations. 

We will now elucidate the situation via an example: 

H11 = 1- 2m = xk-m , (6.11) 
r xk+m 

<PI = ~ =e(xk+m)-I. 
r 

(6.12) 

The above are potentials for the Reissner-Nordstrom met
ric. They reduce to the potentials for the Schwarzschild solu
tion if we set e = O. 

Using Eqs. (6.3)-(6.5) and prolate spheroidal coordi
nates, we obtain 

r-m =r' -m', 

x=x' , 

k=k' , 

y=y' . 

So, under the Harrison transformation 

Hl1 - [X'k'-

applying the appropriate scale changes, we have 

(6.13) 
(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.19) 

Hll _ [1-e2][x'k' - (l-e
2
)m'][X'k' +m'] -I, 

1 + e2 

(6.20) 
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e/ 
¢I- e + ---

x'k'+m' 

Referring back to Eq. (4.26), we note that if 

then 

(6.21) 

(6.22) 

e/ e/ 
¢I - x'k / + m/ r/ (6.23) 

This determines the necessary gauge transformation. From 
Eq. (4.27) we have 

so 

x'k'-m' 

x'k'+m' 

x/- {3/ 

x/+ {3/ 

This is the result obtained in Eq. (3.14). 

(6.24) 

(6.25) 

If we refer back to Sec. 3 of paper II, we find the infini
tesimal transformations of the potentials for which the Har
rison transformation is but a specific case. We may exponen
tiate these, as outlined in paper III, to acquire the finite form 
of the action of the Harrison transformation on the H ~1 and 
¢ ~n) • In addition, we may also procure finite forms of the 
gauge action. As a caveat we note that the e~) infinitesimal 
transformation should be summeds = 1, ... ,k on thefirsl sum 
ands = l, ... ,k - Ion theseeond sum. This avoids producing 
any extra linear terms. 

Weare now in a position to apply the Harrison transfor
mation to the Schwarzschild potentials and acquire the re
sults of Sec. 2. 

Setting e = 0 (or equivalently {3 = 1) in Sec. 5, we have 

1 [(x - 21 y)S - I - 1] 
FII = ---=--'-----~~--~ 

(x+ 1)[1_412]112 
(6.26) 

i[(x - 21y)S -I + 1] 
F12 = ----=--'-------=--"-------=--

(x+ 1)[1_412]112 
(6.27) 

Since e = 0, we may write the Harrison transformation for 
H \~) and ¢ \n) as 

H(n) 
H(n)_ II 

II 1- 2H e 11 

H (n) 
(n)_ e II 

¢ I 1- 2H e II 

therefore, 

Now 
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(6.28) 

(6.29) 

(6.30) 

(6.31) 

so 

or 

(6.32) 

L 1 nH\'!} - (ie2/1) L H\~ + 1)1 n + I 

L 1 nHW - -------------
l-e2HII 

F12 - ie2t - IFII 
F 12 -------

1 - e2HII 

(6.33) 

(6.34) 

The gauge transformation for H \~ + I) is 

H\~+ I) _H\~+ I) + 2e¢\n+ I) + ie2H\'!}; 

thus, 

(6.35) 

FII -FII + 2eDI + ie2
1 F12 . (6.36) 

Combining Eqs. (6.3) and (6.4) with e = 0 yields 

e/ = - 2m'e/(1 + e2
) (6.37) 

or 

(6.38) 

so 

1 - e2HII _ (1- e2)[x/ + {3/] [x' + 1] -I. (6.39) 

Applying Eqs. (6.30), (6.31), and (6.34) and using the appro
priate scale changes, we find 

F _ 1(I-e
2
) [(X'-2tY') _1][1_412]-112 

II [x/+ {3/] S/ ' 
(6.40) 

D _ te [ (x/ - 21 yO) _ 1] [1 _ 41 2] - 1/2 , 
I [x' + {3/] S/ 

(6.41) 

F _ i [ (x/ - 21 yO) ] [1 _ 412] - 112 , 
12 [x' + {3/] S/ 

+ i(l+e
2

) [1_412]-1/2. (6.42) 
(x/ + {3')(1 - e2

) 

Next we use Eq. (6.36) and the result is 

F _ 1 [(X'-21y') _ {3'][1_41 2 ]-1I2. 

11 x/ + {3/ S/ 
(6.43) 

Using a similar procedure for DI , we find 

D _ t / q/ {3 / [1 _ 4t 2] - 112 . 
I x/ +{3/ 

(6.44) 

At this point we will, for convenience, drop the primes. Us
ing Eqs. (2.9) and (2.19), we may derive 

D2 = it q {3 y(1 - 41 2) - 1/2 + constant (t), (6.45) 

Q = it ({3 2 - 1) Y (1 _ 41 2) - 112 + constant (t). 
x + {3 

(6.46) 
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Following the procedure of the previous section, we insert DI , D2 , and Q into Eq. (5.6) and obtain 

D2 =iqf3ty(1-4t 2)-1I2+ iqf32 [(1-4t 2)-I/2_1], 
2 

Q= ity(f32-1) [1_4t2]-1I2+..!...- [f32[(1-4t2)-1I2_1] _(1_4t2)-I/2]. 
X + f3 2 

(6.47) 

(6.48) 

Our methods have ensured that these are consistent with both the Harrison transformation and the required gauge conditions. 
Proceedings as before in Sec. 5, we obtain the specific forms of the FAB and SA : 

FII = _t_[(X-2t y ) -f3][1-4t 2]-1/2, (6.49) 
x + f3 S 

F12 = _i_[ (x - 2ty) +f3] [1- 4t 2] -1/2, (6.50) 
x + f3 S 

F21 = ..!...- [f3 2 - 1 - f3 2 [1 - 4t 2] - 1/2] - i f3t Y [1 _ 4t 2] - 112 

2 

_ _1_' [1 _ 2t y(x _ f3) - 4t 2(X f3 + 1 _ y2)][ 1 _ 4t 2] - 112 , 

2S 

F22 = ~ [ f3 2 - 1 - f3 2 [1 - 4t 2] - 1/2] - f3 Y [1 _ 4t 2] - 112 

2t 

+ _1_ [1 _ 2t y(x - f3) - 4t 2(X f3 + 1 - y2) ][ 1 _ 4t 2] - 1/2 , 

2tS 

S = iqf32 (1- [1_4t2]-1I2)_ it q f3
2
Y[1_4t 2]-1I2 

I 2 x+f3 

+ 2it 2q f3x [1 _ 4t 2] - 1/2 _ it q f3 y(2t y + f3) [1 _ 4t 2] - 112 , 

S (x + f3)S 

f3 2 1 f32 
S2 = _q_(1_[1_4t 2]-1I2)_ 1 q Y[1_4t 2]-1I2 

2t x + f3 

+ 2it 2q f3x [1 _ 4t 2] - 112 _ it q f3 Y (2t y + f3)[ 1 _ 4t 2] - 112 • 

S (x + f3)S 

7. CONCLUSIONS 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

We now have in hand the particular equations necessary for the calculation of the generation potentials. We have gained 
experience in applying these equations to specific situations and have elucidated a few of the ramifications of the inherent 
gauge freedom that exists. Thus, we are now ready to apply the methods of paper IV to produce new asymptotically flat 
solutions. The results could be of great interest since the Harrison transformation and the procedures in paper IV do not 
commute. Thus, Schwarzschild - rotating_ charged should not be equivalent to Schwarzschild- charge - rotating! Yet 
it is difficult to imagine what the result could be except the Kerr-Newman solution. In addition, since gauge transformations 
do not commute with Harrison transformations, how will the final solutions be affected by our choice of gauge? 
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2W. Kinnersley and D.M. Chitre, J. Math. Phys. 18, 1538 (1977) (referred 
to as paper II). 

'w. Kinners1ey and D.M. Chitre, J. Math. Phys. 19, 1926 (1978) (referred 
to as paper III). 
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·W. Kinnersley and D.M. Chitre, J. Math. Phys. 19,2037 (1978) (referred 
to as paper IV). 

'B.K. Harrison, J. Math. Phys. 9,1744 (1968). 
6FJ. Ernst, Phys. Rev. 168, 1415 (1967). 
7Reference 6. 
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A solution of the Cauchy initial value problem in the nonsymmetric theory of 
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The Cauchy initial value problem in a theory of gravity based on a non symmetric Hermitian 
metric is investigated. The field equations are solved in terms of a series expansion of the metric 
g,-,,' In the nth order the equations take the form of either second-order hyperbolic partial 
differential equations for gij (i,j = 1,2,3) or a first-order equation for the vector gauge field Wi' 

Given initial data on a space-like surface S (XO = 0), the integration forward in time of the 
equations can be performed, assuming that the field variables are reasonably smooth and analytic. 

I. INTRODUCTION 

A new theory of gravitation has been proposed 1.2 based 
on a nonsymmetric metric g/lv' It was shown that a rigorous 
spherically symmetric solution of the free-field equations ex
hibits world-line completeness if test particles move along 
paths in the non-Riemannian geometry. In addition to the 
energy-momentum tensor there occurs a new source in the 
form of a conserved fermion number current density, which 
plays a role in determining the structure of space-time. The 
cosmological solutions obtained in the theory3.4 display dif
ferent analytic properties from general relativity when t-G. 

In Sec. II we shall give a derivation of the field equa
tions with sources based on a Lagrangian density L. A solu
tion of the Cauchy initial-value problem is presented in Sees. 
II-V, using a general iterative solution of the vacuum 
equations. 

II. DERIVATION OF THE FIELD EQUATIONS 

We shall begin with a derivation of the field equations in 
the presence of phenomenological sources. The basic nota
tion will be the same as in Ref. (1). We raise and lower suf
fixes by using the relation 

(2.1) 

A nonsymmetric affine connection W;v is related to a (Her
mitian) connection r;v by the equation 

W A -rA 2~AW 
JLl' - l1V - '3 Up.. v' (2.2) 

where Wv = !(W~a - W~J is a purely imaginary vector 
gauge field. From (2.2) we have 

(2.3) 

A curvature tensor can be formed from the W connection: 

R ~,.p(W) = (W~v.P - W~v W~p) - (W~P.v - W~p W~v) 
(2.4) 

and the contracted curvature tensor is 

A"v(W) = (W~v.(3 - W~v W;(3) - (W~(3.v - W~(3 W;v)· 
(2.5) 

We can symmetrize A/lv(W) with respect to J-l and v in the 

"'Supported by the Natural Sciences and Engineering Research Council of 
Canada. 

term W~(3.v to giveS 

Rl'v(W) = W~v.(3 - ~(W~(3.v + W~(3./l) 
- W~v W;(3 + W~/3 W~v . (2.6) 

This can be written as 

R/lv(W) = A/lJW) + ~(W~/3.v - W~(3./l)' (2.7) 

A study of the contractions of (2.4) with respect to (7 and J-l 
reveals that R/lv(W) is a tensor. 

By substituting (2.2) into (2.6), we get 

R/lv(W) = R/lv(F) + ~ WI/l.vl ' (2.8) 

where WI/l.v I = ~(WI"" - WV 'I') and 

Rl'v(F) = r~v./3 - !(r~/3).v + rf,,/3)./l) 

- r~,,r~/3 + rra/3)r~V . (2.9) 

Our Lagrangian density is 

L = g'vR/l"(W) + Lm , (2.10) 

where Lm is the Lagrangian density for the phenomenologi
cal matter sources given by 

Lm = -(81TG/c4)gIl"T/lV + (81Ta2/3)W/lSl'. (2.11) 

Here T/lv and SI' are the sources oftheg/lv field and we have 
used the notation X/lV = ( - g)1/2X/lv' Moreover, SI' is a 
purely imaginary source vector density given by 

(2.12) 

where a is a new universal coupling constant (dimension of a 
length). The Hermitian tensor density T/lv is 

( 

C4 ) aLm 
T/lv = - 81TG at'v' 

(2.13) 

We can now use the Palatini method, varying g and W 
as independent field variables (such that og and 0 W vanish at 
the boundaries of integration). The W variation gives 

',r.a + gPvW~a + g'PW~p - g'vW~p 

+ ~ o~g'pWfp/3 I + (41Ta2/3)(SV~ - Sl'o~) = O. 
(2.14) 

Contracting over v and (7 and antisymmetrizing gives the 
field equation 

(2.15) 
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By varying gI"' in (2.10), we get 

G,ll,(W) = (81TG /c4 )T{tv , 

where G{tv(W) is the generalized Einstein tensor 

G{tv(W) = R{tv(W) - ~ g{tvR (W), 

with R{t" = g{tag(3vR a(3 and R = gl"vR{tv . 

(2.16) 

(2.17) 

We introduce another Hermitian connection A ~v: 

A ~v = r~v + D~v(S), (2.18) 

where D ~v is defined by the equation 

gpvD~a + g{tpDr:,." 

= - (41Ta 2/3)SP(g"agpv -g"pgav +g"vg[ap)' (2.19) 

In terms of A ~" [and using (2.1)], the field equations (2.14) 
can be written 

(2.20) 

When the sources T"v and S{t are zero, the field equa
tions reduce t06 

g,LV,a - gp"r~a - g"prr:,.v = 0, 

g[{t")", =0, 

(2.21) 

(2.22) 

(2.23) 

The variational principle yields the four generalized 
Bianchi identities 

[gavGp,,(r) + gvaGvp(F) L + gI"",pG"v(r) = o. 
(2.24) 

In terms of (2.16), these are equivalent to 

~'TP" +gVaTvp),a +gI"v,pT{tv + i W[p,v)Sv=O. (2.25) 

The field equations are invariant under the gauge 
transformation 

W" = W{t + A,,, ' (2.26) 

where A is an arbitrary (pure imaginary) scalar field. Using 
this in the variational principle, we obtain a fifth identity 

(2.27) 

In the absence of sources, the identities (2.24) can be written 
in the covariant form 

(2.28) 

where we used the Einstein + and notation for covar-
iant differentiation with respect to r.6 

For a macroscopic system the conserved four-vector 
density S'" can be written 

(2.29) 

where n is the number density offermions and u{t is a velocity 
four-vector. In terms of Dirac spinors, S'" is 

(2.30) 

The new constant of integration 12 that occurs in the 
static, spherically symmetric solution of the vacuum equa
tions, discussed in Ref. (1), is given by 

12= -ia2 f S4d 3x=a2N, (2.31) 

where N is the number of fermions in a body. 

The theory is based on two basic premises: 
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(i) The Hermitian length of a vector A " given by 
(g{t',A {t IV) is preserved under parallel transfer with respect 
to A ~" (or r~" in free space). 

(ii) A local inertial frame of reference exists such that at 
a point x{t = x''': 

A t,v) Ix~x' = O. 

The general solution to the initial value problem would 
consist of finding a global solution of the partial differential 
equations (2.21 )-(2,23) on a real manifold V4 • A solution can 
only be determined if the functions g"v and W" satisfy regu
larity conditions and obey boundary conditions. In the pre
sent work, we shall assume that V4 is a differentiable mani
fold and that g,LV is sufficiently analytic to allow a series 
expansion of g{tv in a parameter E to converge to a solution in 
V4 • The equation ds2 = 0 defines at each point of V4 a light 
cone of directions tangent to V4 and the signature is of nor
mal hyperbolic form (- - - +). At certain singular 
points the metric ds2 may change sign. I We will not consider 
this possibility in the present study of the Cauchy problem. 

III. STRUCTURE OF THE FIELD EQUATIONS 

The field equations of empty space (2.23) could be writ
ten in the form6 

R(p,v)(r) = 0, (3.1) 

(3.2) 

In addition to the four identities (2.24), these equations satis
fy the identity 

~vapR[ILV,a)(r),p = 0, (3.3) 
It is easy to show that the system of equations (2.22), (3.1), 
and (3,2) is compatible. There are 18 field equations but, 
owing to the existence of 6 = 4 +2 identities (2.24), (2.27), 
and (3.3), only 12 of the field equations are independent On 
the other hand, only 12 of the 16 field variablesg{tv are inde
pendent, owing to the existence of four arbitrary coordinate 
transformations: x' " = (ax'" / axa)xa

. 

We shall not work with (3.2), for the antisymmetric 
part ofEq. (2.23) is more fundamental; it retains the impor
tant role played by the vector gauge field W{t' Equations 
(2.22) and (2.23) constitute 20 field equations but, because 
these equations have 5 = 4 + 1 identities (2.24) and (2.27) 
among them, only 15 of the equations are independent. Of 
the 20 field variables g"" and W{t only 15 are independent, 
owing to the existence offour arbitrary coordinate transfor
mations and the gauge transformation (2.26). Therefore the 
system of partial differential equations (2.22) and (2.23) con
stitutes a compatible system of equations. 

IV. FORMULATION OF THE INITIAL-VALUE PROBLEM 

We shall be given a three-dimensional hypersurface S 
oriented in space. A coordinate system is chosen such that 
the hypersurface S is described by the equation X O = o. We 
are given the initial Cauchy data g"v' g"v,o, and Wi 
(i = 1,2,3) on Sand goo > O. This allows us to compute all the 
interior derivatives g{tv,i' Wi,j' etc, in S. 

V. SEPARATION OF THE CAUCHY PROBLEM 

As we are unable to find a simple closed-form solution 
for r ~v from the system of differential equations (2.21), we 
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shall solve the initial-value problem using a recursion solu
tion of rl~v' based on a weak-field expansion ofg and r A 

/-IV f.LV 

(see Appendix). Equation (2.22) can be written in nth order 
as 

(5.1) 

where C ~n) contains products of g's of order n - 1 and lower. 
In the nth order of approximation the field equations (2.23) 
take the form (see Appendix) 

R L~:,) (r) = ! rfa(g~~),v,p + gi~~)'Il,a - g~~),p,a - gi~a)'Il'v) 
+ K~~,) = 0, (5.2) 

R\~"I(r)= - !1Jpag\~v],p,a+K\~vl+ 1Wj;'!.vl=0, 
(5.3) 

where the K ~:') and the K [~v I contain products of g's and 
their derivatives of order n - 1 and lower. Separating the 
spatial and time components of (5.2), we get 

R iZ~ = - ~i~~.'O.o + Ni~~ + Ki;;~ = 0, 

R i~l) = Ni7J) + Ki7J) = 0, 

R g;j = ~~;,~,o + Ng;j + K~ = 0, 

(5.4) 

(5.5) 

(5.6) 

where the N(f'V) can be expressed in terms of the initial data 
on S. Similarly, from (5.3) we have 

R jij)J = - ! gjijl,o.o + ! V2
gj7l1 + K iVI + 1 wm I = 0, 

(5.7) 

R (["'0) 1= - -21 g([n,·O)I,O.O + 1 v2
g(n) + K(n) + 2 Win) - 0 2: [,0 I riO I 3 [i.O I - , 

(5.8) 
while (5.1) becomes 

(n) _ (n) + c(n) 
g[iO]''O - glijl,j i (5.9) 

The Cauchy separation of the set of equations (5,4)-(5.6) is 
familiar from general relativity.7,s A calculation of Ni~) 
gives 

Ni~) = - ~ gf;6),i,j + ~ V2gi3h + ~ gi1~,i,0 - ~ giib,o,j , (5,10) 

Thus Eq, (5.5) represents only a constraint on the initial data 
and the interior derivatives of g~~) in S. We also have for the 
combination 

7]0oR ~ - 7]ijR ~n) = R ~ + R j7) 
= Ng;j + Nii

n
) +Kg;j + Kii

n
) = O. (5.11) 

Ifweconsider the Einsteintensor GIlV = Rllv - !gllyR, then 
to nth order 

G 6n)0 = R 6n)'O - ~ R (n) = R g;j - !( - R j7) + R ~) 

=!(Ng;j+Ni7)+K~+K~7»=0 (5.12) 

and 
G~n)O = R ~n)O = N~n)O + K~n)O = O. 

We see that the four equations 

G~n)O = G6nH = 0 

depend only on the initial data, 

(5.13) 

(5.14) 

Since there is a one-parameter gauge freedom of the 
field equations under the gauge transformation (2.26), we 
can fix the gauge using the condition 

(5.15) 

We thereby arrive at the set of dynamical equations in nth 
order: 
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gin) _ 2N (n) + 2K (n) 
(i)).O.O - (ij) (ij) , 

g in) V2 (n) + K(n) + 1 W 
liji,O,O = g1UI lUI '3 Wi' 

Wj,';i = ~ g\~,O,j - ~ V2
gj76I + L \76 I . 

(5.16) 

(5.17) 

(5.18) 

where we have used Eq. (5.9) andL \76 I contains terms from 
C ~.'!1 and K j7J I that are known from the lower orders of 
approximation. 

Let us again consider the compatibility of these equa
tions. Equations (5.16)-(5.18) total 12 and together with 
(5.1) and (5.14) there are in all 20 equations but only 15 of 
these are independent, owing to the existence of the five iden
tities (2.24) and (2.27). There are 20 unknown functions 

(n) (n) d Win) H 1 15 f h f . gill v) , gill" I' an I" owever, on y 0 t ese unctions 
are free to be determined in view of the four arbitrary choices 
of coordinates and the one gauge condition (5.15). Thus the 
system of equations (5.16)-(5.18) forms a compatible dyna
mical scheme. 

VI. SOLUTION OF THE CAUCHY PROBLEM 

We observe that the right-hand sides of (5.16)-(5.18) 
are known from the initial data in nth order: gizj, giZj,o, g\VI' 
g\V],o, g\7ci I' and Wjn) [gj7ci]'o can be found from Eq. (5,9) and 
the interior derivative of g\VI]. Equations (5.16) and (5.17) 
are both hyperbolic second-order partial differential equa
tions in "normal form." They can be integrated forward in 
time, given reasonable smoothness and analyticity proper
ties. Equation (5.18) is a first-order differential equation in 
time and it can be solved in every order to determine Wi' 
Thus, if the series expansions of the gllY and WIl converge, 
then the time-evolution problem leads to a solution of the 
original system of equations (2.22) and (2.23), provided that 
the four compatibility conditions (5.14) converge and re
main true once they are fulfilled for the time Xo = 0. 9 

The proof of the existence and of the uniqueness of the 
solutions of(5.16)-(5.18) can be given if we use the Cauchy
Kowalewski theorem. Of course, we must still solve the 
Cauchy problem for the rigorous equations not using a series 
expansion about the flat-space metric 7]llv' as is done in gen
eral relativity.7 Work is in progress to solve this problem 
employing the theory of characteristic hypersurfaces 10 and 
the bicharacteristics of these hypersurfaces, determined 
from the equation 

dxll dx" 
gll"-- =0. (6.1) 

ds ds 

The basic dynamical structure contained in the equations 
solved by the series expansion about flat space can still be 
seen to be preserved in the rigorous geometrical form of the 
field equations (2.21)-(2.23). We therefore expect that a 
Cauchy initial-value solution exists for the rigorous system 
of equations. 

APPENDIX 

We shall now give a description of the weak-field expan
sion of the field equations (2.21)-(2.23). This has been stud
ied previously in the literature. 6,11 In the weak-field approxi
mation the gllv are expanded in the series 

(AI) 

J. W. Moffat 1600 



                                                                                                                                    

where 77
ft

v is the Minkowski metric. We have also 

r). = €r).(I) + €2r)'(2) + ... 
pv ~v ~v , 

Wft = €W~I) + ~W~2} + .... 
Ifwe expand gf'v similarly, 

(A2) 

gf'v = 77ftv + €g(l}ftV + ~g(2}ftv + ... , (A3) 

then the g(l}ft
V and g(2)ft

V
, etc., can be found using the ortho

gonality condition (2.1): 

g<1)ft
v = _ ifar/vg~2 , 

g<2)ft
V = _ 77ftar/vg <j2 + 77fta77f}Yrfug~~g~~ , 

g(3)ft
V = _ 77fta77f}vg JJ2 + rfa77f}vrrg~~g~2 

+ ifP77
aY

77f}Vg ?2g<j] - rfP77vf}77a<77~Yg~~g~~g<j2 

It follows that 

g(l)[ftvi = _ ,.,fLa.../3v
g

(l) 
'/'1 [f}a I' 

g
(2)[ft V I = _ nftanf}vg(2} + nfta.../3vnY~(g(l) g(l) 

., ., [f}a I " '/ " (ya) [f}ol 

+ g\~a Ig~~», 
Up to the first approximation we find 

V -g = 1 + InftVg(1) 
2 " (flv)' 

so that to second approximation 

g
(2)[ftv l = _ (,.,fLan f}v

g
(2) ) _ [1 n y/j,.,fLa.../3v

g
(l) g(l) 

,v 'I " [,Ba I ,v 2 " '/ '1 (yo) [,Ba I 

(A4) 

(A5) 

(A6) 

- 77ftar/v77y/j(g~~a)g\~~ I + g\~a IgVJ/j»))'v ' (A7) 

In the nth order of approximation Eq, (2.22) becomes (5.1). 
Let us now consider Eq. (2.21). Cyclically permuting 

the indices ,uvu twice in (2.21) and solving, we get 

g( p(7)r~v = [u,uv] - g[ftP Ir~u - g[ pv Ir':rft ' (AS) 

where 

[u,uv] = ! (g(7y,ft + gft(7,V - gyft.u )· (A9) 

Substituting the expansions (AI) and (A2) into the left-and 
right-hand sides of (A8) yields the recursion solution in the 
nth order 

n -I 
r (nj). = n).U[u/,v] (n) _ n).a '" (g(m) r(n - m)p 

ftv ",.., ., L (pO') ftv 
m= 1 

+g(m) r(n-m)p +g(m) r(n-m)p ) 
[ftpl vu [pvl aft • (A 10) 
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In the first and second order this formula gives 

r(I»)' (flv) = !77).u~!!..).ft + g~a).v - g~~~).a)' (All) 

r(2»)' (flv) = ! 77).a(g~;>v).ft + g~U).v - g~0,).a) - 2g\~vlr(I),B[uft I 
-2g\~,B Ir(I),B[V<71 -2g~:;,B)r(l),B(flV»' (AI2) 

r (I)\ftv I = ! 77).a(gj!!..I.ft + g\Ja],v - g\~ftl.a)' (A 13) 
r(2»)' 

[ftV I 

_ In).a(g(2) + g(2) g(2» 2g(l) r(l),B 
- 2" [avl.ft [ftu],v - [vftl. a - [,Bv I (aft) 

-2g\~,B Ir(I),B(va) -2g~~,B)r(I)f}[ftvl)' (AI4) 

In the calculation of the R ftv (r) we can use the equa
tion rft = r lfta I = 0, equivalent to Eq. (2.22), to obtain 

R (I) - r(l)a r(l)a 
(flv) - (flv).a - (fla).v , (AI5) 

R (2) - r(2)a r(2)a r(l)a r(l),B 
(flv) - (flY).a - (fla).v - (fl,B) (av) 

_r(l)a r(l),B +r(l),B r(l)a 
[ft,B I [ay I (af}) (flv)' (AI6) 

R (1) - r(l)a 
[ftvl -. [ftvl.a' (AI7) 

R (2) - r(2)a r(l)a r(l)f} 
[ftV I - [ftvl.a - (fl,B) ray I 

r(l)a r(l)f} + r(I)f} r(l)a (AI8) 
- [ft,B I (av) (af}) [ftv I . 

Using (A 10), we see from (A16) and (AI8) that the field 
equations (2.23) can be written in the nth order of approxi
mation as Eqs. (5.2) and (5.3). 
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In this paper we study a two-dimensional wind-tree model where the diffusors are rectangles 
periodically disposed. One shows that the motion of the light particle depends strongly on the 
arithmetic properties of a number a. The light particle returns near its departure position at times 
which are in geometrical series; it is proved the particle escapes to infinity, but not faster than 
logt loglogt, where t is the time. 

1. INTRODUCTION 

In the recent years, there has been considerable pro
gress in understanding the equilibrium mechanisms of statis
tical mechanics. In a few cases one has proved properties 
such as ergodicity, K, or the Bernoulli property for realistic 
systems. The same success has not been obtained for the 
moment in transport theory: the onset of stochasticity is not 
sufficient in itself to fit the hydrodynamicallaws with statis
tical mechanics. In fact, in this paper we present an example 
of abnormal diffusion in a model of Lorentz-gas, although it 
presents good equilibrium properties. 

The lack of results in transport theory derived without 
approximations comes from several reasons; one is that there 
is no transport in finite systems. This can be explained easily 
by noticing that any transport coefficient occurs in a diffu
sion equation: 

aF = OtJ.F 
at ' (1.1) 

where F can be a concentration, a vorticity, or a temperature, 
and 0 a diffusion coefficient, a viscosity, or a heat diffusivity, 
respectively. Equation (1.1) implies that if a perturbation is 
done in a dissipative media it (a particle or a vortex or an 
energy) diffuses to infinity according to the law 

d~vt, (1.2) 

where d is the distance from the departure position at time 
zero, and t is the time. If the distance is bounded above, one 
can have any transport. 

Do infinite systems mean infinite degrees of freedom? 
To deal with such systems involves a lot of technical difficul
ties. The functions and measures are defined by iterative pro
cesses just like the real numbers by iteration of an algorithm. 
One can produce measures which are not always absolutely 
continuous with each other or discontinuous functions. This 
fact could perhaps explain why very little is actually known 
about systems with infinite degrees of freedom, even for the 
equilibrium properties. 

The periodic models provide a powerful means to get 
around the difficulties of infinite systems: they are infinite 
although their dynamical properties can be deduced from 
motion on finite tori. The choice which is made in this paper 
is to deal with a periodic Lorentz-Ehrenfest 1 model on a 

moves freely on the plane, except when it collides with a 
rectangle; in this case it is reflected according to the usual 
law of light reflection. The disposition of the rectangles is 
such that no trajectory can escape to infinity directly. The 
main results of this paper are 

(i) The position reached by the wandering particle de
pends on the arithmetic properties of its position at time 
t = 0 and of the ratio of the sides of the rectangles. 

(ii) If this ratio is rational, the particle either has a peri
odic bounded motion or escapes to infinity with a constant 
mean velocity. 

(iii) If this ratio is irrational the particle escapes to infin
ity but comes back near the departure position at times (q;, 
i = 1,2 .. ··, 00), the time qj being grosso modo in geometrical 
series. 

(iv) In this case the wandering particle moves in a do- " 
main with a diameter increasing like logt loglogt ) (where tis 
the time). This means, of course, that there is abnormal 
diffusion. 

plane. The obstacles are fixed identical rectangles located FIG. I. Position of the diffusors: After four collisions one comes back to the 
periodically on a plane square lattice, and a light particle Jame rectangle in case I and escapes in case II. 
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2. DEFINITION 

The model used is this paper belongs to the general class 
of Lorentz-gas. ' There are two kind of particles. The heavy 
ones, or trees, which consist of fixed parallel rectangles with 
sides oflength [(1 - a)/4, (1 + a)/4, lal < 1] centered on a 
square lattice of the plane with a period two, as shown on 
Fig. 1. The light particles move freely between these obsta
cles with velocities of moduli V2, parallel to the bisectors of 
the lattice; the only interaction is the elastic scattering by the 
side walls of the rectangles. Actually, one may just consider a 
single light particle, the motion of the light particles being 
independent of each other. The light particle starts from a 
departure position with a definite velocity and will collide at 
times tj (i an integer) with the rectangles R j centered at even 
coordinates (xj,yJ; the curvilinear coordinate of the impact 
point on R j is denoted by Sj (O';;;Sj < 1). Clearly the wander
ing particle cannot escape directly to infinity, which means 
that the index i is not bounded above. Since the motion be
tween two collisions is of no particular interest, we replaced, 
following Sinai'2 and GallavottV the continuous dynamical 
set I ret ); A (t) I (the position and velocity, respectively, of the 
test particle at time t) by a discrete one 
{(x;.yJ,sj; A (tJl~ ' ..... 00· 

The direction of the velocity A (t), which can take only 
four different values (velocity is along the bisectors of the 
lattice) denoted 1,2,3,4, changes suddenly at times t; owing 
to the collisions. To avoid any ambiguity, we mean by A (t j ) 

the direction of A just after a collision has occurred. 
The time evolution law of the continuous model in

duces a time evolution for the discrete dynamical system. 
One can make two remarks which greatly simplify the 
dynamics. 

First, the model being periodic, the curvilinear coordi
nate Sj +, and velocity Aj +, at time tj +, do not depend on 
the coordinates of the rectangle where the particle is located 
at time t;, say (x;.yJ. In the same way, the displacement 
(Xj +, - X;'yj +' - yJ depends on [Sj,A (tJ] but not on 
(xj,yJ. This means that the dynamics can be studied on the 
torus [s,A] and the positions (xj,yJ calculated as the sum of 
the displacements. 

The second remark permits the elimination of velocity 

1/2 C1-o()/4 

o 
C3-o()/4 
FIG. 2. Position of the four intervals 11,2 . .1.4 on the rectangle. 
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as a dynamical variable. In fact, one may suppose that there 
exist four laws giving Sj +, as a function of Sj corresponding 
tOA j = 1,2,3, or 4. 

As a matter of fact, one can see on Fig. 2 that on the 
perimeter of a rectangle, just after a collision there are only 
two possible directions for velocities, which are perpendicu
lar to each other. This reduces the number of time evolution 
laws to two. But the velocity remains parallel to the initial 
one after even numbers of collisions and perpendicular to it 
after odd numbers of collisions. By choosing conventionally 
the initial velocity parallel to the second bisector and study
ing the position of the wandering particle after even numbers 
of collisions (which is sufficient to investigate diffusion), we 
get simply a dynamical system of dimension one. For techni
cal reasons, we shall calculate the position after 4i collisions 
(i an integer). The reader is requested to convince himself, by 
drawing some trajectories on Fig. I, that 

Sj+4=sj+a (mod 4). (2.1) 

This very simple result comes from the a priori strange 
definition for the rectangle sides, lengths 
[(1 - a)/4, (1 + a)/4)]; for non ad hoc models, for example 
squares and rectangles otherwise disposed on the elementary 
torus, one gets the interval exchange transformation4 for the 
time evolution of the curvilinear coordinate S in place of a 
translation on the circle. The light particle returns to its de
parture rectangle after four collisions, unless the curvilinear 
coordinate Sj belongs to one of the four segments of lengths 
al2 (See Fig. 2): 

I, =HI-3a, I-a] (mod 1), 

12 = H2 -4a, 2 -2a] (mod 1), 

13 H3 -3a, 3 -a] (mod 1), 

14 = H4-4a,4-2a] (mod 1). 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

In this case, it reaches a new rectangle and the displacement 
is given by: 

[ (4, -4), if SjEl, , (2.3a) 

(4,4), if Sj El2' (2.3b) 

- (-4,4), if Sj El3' (2.3c) 

(-4, -4). if S; El4 • (2.3d) 

Then the coordinates of the rectangle reached after 4N colli
sions can be written as 

N 

X4N =4 I (x, + X2 - X3 - X4)(SO +ia), mod 1, 
i= 1 

(2.4a) 
N 

Y4N = 4 I (Xz + X3 - X4 - Xl) (so + ia), mod 1, 
;= 1 

(2.4b) 

where XI" (J.t = 1,2, 3, or 4) denote the characteristic func
tions of the segments II' on the circle with circumference of 
length one. In the next section we shall see how the random 
properties of a translation on the circle imply an anomalous 
diffusion for the model. 
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3. STUDY OF THE DIFFUSION PROCESS 

It appears that the study of dynamical systems for phys
ical purposes often uses a probability measure. This can be 
done but is not very useful here; the calculus will appear 
clearer without it. 

Before entering into the details of the translation on the 
circle, let us speak about the time. At time t; the wandering 
particle has performed i collisions 

; 

t; = I.:ltj (Sj_I)' 
j~ I 

(3.1) 

the amount oftime between two collisions is bounded above 
(there is no trajectory which escapes directly to infinity) and 
depends only on the curvilinear coordinate on a rectangle 
before the collision. With rational a the series 4ka mod 4 
(k = 1,2, .. ·,00) are periodic; times t; (t;-+oo) are proportion
al to the number of collisions i. With a irrational, the rota
tion being ergodic, one can use the Birkhoff theorem 

tN 1 N-I 
lim- = lim- I.:lt;(so+4ia)=(.:lt;), (3.2) 
;'00 N ;-'00 N ;~O 

almost everywhere. Then in any case one can consider the 
number of collisions to be proportional to the time for large 
times. 

A. Diffusion for a rational 

Equations (2.4) giving an expression for the position of 
the rectangle reached after 4N collisions verify the following 
symmetry: 

r 4N (sO) = [X4N ,Y4N ](so) = - r4N (sO + ! modI). (3.3) 

If one denotes a by plq, one see that 

(i) So + qa = So, mod 1, 

(") q - I 11 So + - a - So + 2' 
2 

mod 1, if q IS even. 

Then for q even 

r 4q (so) = r2Q (so) + r2q (so + D = ° (3.4) 

and the motion is periodic. For q odd one has 

r4kq (sO) = kr4q (so), k an integer, (3.5) 

and the motion is periodic on the torus but not on the plane; 
the escape to infinity is linear. 

B. The case a irrational 

It is already known that the points So + ka, k an integer, 
are dense on the circle and that the irrational rotation is 
ergodic with respect to the Lebesgue measure. In this paper 
we study this rotation in more detail. The case a irrational 

o 2.( 3.( 

FIG. 3. The first jumps oflength a on the unit circle. 
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o (20,+t ).( 

FIG. 4. Details of the points of the series ka entering in the segment [O,a]. 

being more complicated than the rational case, we shall split 
the text in three parts: in the first one, this rotation is de
scribed precisely and give some useful notations are given, in 
the second part a maximization is given, and in the third a 
minimization. This is done, of course, because an exact for
mula for the distance cannot be given or it is very complicat
ed. This is not surprising, since the model is supposed to 
reproduce something like a Brownian motion, which has to 
be a complic~ed thing. 

1. Description of irrational rotation 

In a first part, we shall suppose that So = 0, and then 
translate the series of points ka, k an integer, by So mod 1. 
Consider the first a I = I (1/ a )(i.e., the integer part of 1/ a) of 
the points ka, k integer which delimit a I + 1 segments. The 
first ones have length a and the last one, smaller, length 
8 1 = [(1/a) - I (1/a)]a (see Fig. 3). Successive points in the 
series ka will be inserted in these segments and, the last seg
ment being smaller, the points ka, k an integer, will move 
around the circle several times before falling in the small 
segment. 

I t is easy to see that in each of the a I long intervals one 
finds the same arrangement of points repeatedly; for this 
reason we shall study what happens in the first of them, that 
is [O,a]. The point a la being to the left of the origin at a 
distance of 8 1, the successive points falling in the interval 
[O,a] start from a and perform a translation 8 1 to the left 
after each a l time interval (see Fig. 4). The last point at the 
right of the origin is called qp = (a 2a l + l)a, where 
a2 = I [aI8 1] and the distance to the origin is noted 82 , In this 
case we see that we have the same problem of irrational rota
tion as in the original problem, except that intervals of time 
are enlarged (unity is replaced by a l ), that the length of the 
circle has a change of scale (unity is replaced by a) and the 
translation of a replaced by a translation - 8 1, This remark 
will be the point of departure for a recurrence idea. 

In the times following Q2' one reproduces the distribu
tion of points of the interval [O,a] on the a I - 1 long intervals 
(length a); the first time a point enters the small interval of 
length 8 1 is (q2 + a I)' In general, the points of the series ka 
determine intervals of only three lengths on the circle,' but 
sometimes there are only two lengths. The first time this case 
occurs is a I; one finds long intervals of lengths a and the 
small one of length {j I' The second time corresponds to 
(q2 + a 1 - 1), just before a point in the center of the small 
interval of length 8 1; the a 1 small intervals of lenths 8 2 are to 
the right of the points ka, k an integer, 0 < k < ai' and the 

/ others have lengths 8 1 (see Fig. 5). 
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FIG. 5. The points of the series ka, k an integer less thanql + q2' on the unit 
circle. 

The small intervals (length 82) being separated from 
each other by long intervals (length 8 1), the points following 
(q2 + a I)a in the series ka will fall in the large intervals and 
produce the same arrangment of points in each of these inter
vals as in the interval [ala,l]. At each q2 interval of time a 
new point falls in this segment, performing a translation of 82 

to the right. 
The recurrence appears more clearly by using the nota

tion6 of the continued fraction expansion of the number a. 
We define the continued fraction transformation by 

Ta = ~ - 1 (~) (3.6) 

and the numbers ai by 

a. =1(_1 ). , Ti-Ia 
(3.7) 

Equations (3.6) and (3.7) permits one to express a by 
the fraction 

a=----------------- (3.8) 

a l +-------
a2 +... . 

ai +T'a 

If one reduces the fraction (3.8) to a unique denominator one 
gets 

1 [ . a = - Pi( - )'8i ]. 
qi 

(3.9) 

The integers Pi and qi are determined by the recurrence 
relations 

qo = 1, ql = ai' qn+1 = an+1 qn + qn-I' (3.10) 

Po=O'PI=I,Pn+1 =an+IPn+Pn_I' (3.11) 

The number 8;. very small, is given by the product 

8i = IT Tja =aTa .. ·Tia. 
j~ 0 

(3.12) 

The relation (3.8) is easy to obtain from definitions (3.6) 
and (3.7); in order to get (3.10--12) it is easier to use geometri
cal arguments. From (3.9) one can observe that qia ap
proaches the origin from the right for i even and from the left 
for i odd. In any case, the distance from the origin decreases 
exponentially with the number i. In fact the continued frac
tion transformation being ergodic,? the Birkhotftheorem8 

asserts that 

lim ~ log8N = lim ~ f 10gT na 
N- oo N N-oo N n~O 

= t logx dx = _ ~, 
Jo 1 + x 12 

(3.13) 
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almost everywhere with respect to the Gauss measure 
df-l = dx/(l + x). The Lebesgue measure being absolutely 
continuous with respect to the Gauss measure, (3.13) is also 
true almost everywhere with repect to the Lebesgue mea
sure. The rationals P n I q n are the best approximations for a 
in the following sense: any rational pi q with a denominator q 
less than or equal to q n is a less good approximation of a than 
Pn1qn' The numbers qn grow very fast with the index n. 
From its definition, Eq. (3.7), an is strictly positive and from 
Eq. (3.10) one gets the minoration 

qn+1 =an+lqn +qn-I>2qn-I' 

Since qo = 1, one has 

qn >2n12. 

For a majoration, from Khintchine6 one has 

(3.14) 

(3.15) 

sup (qSln < + 00 almost everywhere (in a). (3.16) 
n 

We can come back to our recurrence. Let us suppose that, at 
time (q n + q n _ I - 1), just before entering the interval 
([qn _I a,O] for n even and [O,qn _I a] for n odd) oflength 
8n -I' one finds in the circle only intervals with two lengths: 
8n or 8n -I • The small ones (length 8n ) are to the right (resp. 
to the left) of the points ka, k an integer, O<k < q n _ 1 , for n 
even (resp. odd). These small intervals are separated from 
each other by large intervals oflength 8n -I' On Fig. 6 one 
shows the successive points of the series ka entering the in
terval [qn -I a,O] (resp. [O,qn -I a]). 

The first point is (qn + qn -I )a. Each new point per
forms ajump of 8n towards the origin; the lapse of time 
between two advents is q n • 

-- ~-. -
~ t.ran.lat.lon cSft 

I-- CS ..... ~ cS .. "" cS .. -I ~ cSft'" ~ cS .. ~ 

n even 

cS_. 
~ t.ran.1 at. Ion cSft 

IE- CS ..... ~ cSft 4 • cSft ..j ~ cS,,-l f cS_~ ft 

FIG. 6. Detail of the points of the series ka entering in the segment 
[q" __ , a,O] in the case n even, and [O,q" ,a] in the case n odd. 
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The point ka between these two times falls in the qn 
large (length On -1) intervals, reproducing exactly the same 
disposition of points as in the interval [qn -1 a,] (resp. 
[O,qn -1 a]). At time an + 1 q" + qn -1 = q" + J , the interval 
[q" -1 a,O] (resp. [O,q" -1 aD contains an + 1 points, theoth
er q n large intervals an + 1 - 1. If you wait the time 
(q" + I + q n - 1), you find two kinds of intervals, the small 
ones with length On + 1 to the left (resp. to the right) of the 
points ka, k an integer, O..;;k < q n , according to whether n is 
even or odd, and the big ones oflength 0" and the recurrence 
is done. A major difficulty in solving our diffusion problem is 
that if the successive points ka, k an integer, O,k..;;N, have 
gone around the circle several times it is not easy to say 
anything about the pointNa. The above description will per
mit us to replace this long rotation by successive rotations of 
lengths which are greater than one. 

We shall use an expansion for an integer N already 
used9 elsewhere. One takes the number qM which isjust less 
than N (Le., q M + 1 > N); the division of N by q M gives 

N = cMqM + N', (3.17) 

with aM+ 1 >cM>O, CM an integer; O..;;N' <qM' By iteracting 
the same process on the remainder N', and so on, one gets an 
expansion for N of the form 

M M~N) 

N= L Cn qn = L Cn (a,N)q" (a). 
'1=0 n=O 

(3.18) 

This expansion looks like the decimal expansion of a 
number, but one has to note the following differences: the 
range of the digits (a;) usually increases with the index i, and 
if c, = aj + 1 then (3.10) implies that c; -1 disappears. To 
make this more clear, let us compare the a-expansion of the 
first integers with the decimal expansion in the case where all 
the a j are equal to 9. By a-b we mean that in the a-expansion 
one finds the usual successive integers between a and b. as in 
their decimal expansion. The addition rules, Eq. (3.10), give 
the following a-expansion for the first integers 

1,2--90.100,101--190.200.201. (3.19) 

--290,300 •... ,890.900.901--909.1000,..·. 

The rules of addition. Eq. (3.10). are not so simple as for 
the decimal expansion. The report of a carry, if one occurs. 
obeys different rules; in particular. this report affects two 
digits. In the case where all the a j are equal to 9. we give the 
following example to compare with decimal addition 

5672 +3261 = 9032. (3.20) 

FIG. 7. Position of the points ka, where in thea-expansion of k only digits 
of order higher than or equal to no occur. 
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This expansion is very useful in determining where on the 
circle the point Na occurs; in fact. from Eq. (3.9). one has 

(mod 1) (3.21) 

(3.22) 

Since the On decrease fast with the index n, one sees that 
the position of the point Na depends principally on the low 
digits. 

2. A majoration for the covered distance by the wandering 
particle at time N 

We can now use the above notations to study the diffu
sion process. Equations. (2.4) will be summarized by 

N 

r4N = .I f(so + ia). (3.23) 
i= 1 

In Eq. (3.23) r4N stands either for lX4N or lY4N and 
f(s) is a periodic function of period unity. constant on inter
vals. One can use the expansion (3.18) of N to replace the 
sum (3.23) by: 

r4N = ! f(so + na) + 2:. f(so + Co 00 + na) 
M~ I n~ I 

C~M M-I 

+ .-. + .I f(so + .I (-) ;c; 0; + na). 
"=1 i=O 

(3.24) 

Since the 0" = rr7~oTja are less than one, Eq. (3.9) 
means that on each interval [plqn' (p + l)lqn]' q" > p>O 
q" and p integers, one finds only a point of the series ka (mod 
1). k an integer, 0 < k..;;q" . The functionfbeing constant on 
intervals (see Eq. 2.4), one gets the following majoration 

(3.25) 

uniformly in s. By substituting (3.25) in (3.24) one obtains 
M 

Ir4N I..;;2 L Cn' (3.26) 
'1=0 

The Cn enter in the a-expansion of the time N. Eq. (3.26) 
implies that when Nbelongs to the series of {q; I the wander
ing particle comes back near its departure position; in certain 
cases it comes back to the same rectangle. The sum (3.26) 
giving the diameter of the domain enclosing the particle has 
a serrated variation. By their definition. the Cn are less than 

an + 1 

M 

I r4N I ..;; 2 L an+ l' (3.27) 
n=O 

and the sum on the right-hand side of Eq. (3.27) has been 
already evaluated by Kesten. JO For every positive E he gets 
the relation 

lim P [i ~~~~a)an + 1 (a) -...!3..i > E] = 0, 
N ,= 10gN 10giogN rr 

(3.28) 

the measure P being the Lebesgue measure taken over a. The 
inequality in measure (3.28) implies only that there exists an 

)nfinite series N j , i, an integer, such that 
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M(NJ,a) 12 
n~o an + I (a) < 7 10gN; 10glogN;. (3,29) 

but one can find cases where this inequality is not verified, 
especially when an anomalous big a; is encountered. This 
majoration implies an abnormal diffusion for the light parti
cle. It is very hard to conjecture now if a normal diffusion 
could be found with other diffusors (for example with regu
lar shapes like in the Sinai's billards) or if a stochastic law for 
the diffusors' positions is necessary. 

c. The wandering particle escapes 

In what follows, we shall try to prove that although its 
diffusion is abnormal, the particle escapes to infinity. 

The idea is to construct a series of N; such that r4kN, is 
unbounded. Let us symbolize the decomposition of a sum 
like in (3.24) in partial sums by 

i =! + 2:. + ... + cI ", (3.30) 
n=1 n=1 n=l n=l 

Generally if we use the a-expansion of two numbers N, and 
(N, + N 2 ) without case in the choice of N, and N z, the de
composition in partial sums of ~~~ I' ~~~ I' and ~~~+, N, 

have no common part, because even the lower order digits 
are changed by an addition, The form given in (3.24) sug
gests finding a set of numbers f N; J such that ~:~+tj 
= ~:'= I + ~:'= I' in the sense of the decomposition (3.24), 

A set which has this property may be constructed with num
bers N; such that ifj > i the a-expansion of Ai contains only 
digits of strictly greater order than the a-expansion of N;. 
Moreover, we shall select those sets of numbers for which the 
partial sums of(3,24) all have the same sign and are not zero. 

If an infinite sequence of numbers N; satisfying the 
properties described above exists, the light particle escapes 
to infinity, since 

(3.31) 

As they play an important role in our demonstration, let us 
consider the integers k such that 

(3.32) 

The numbers k can be set in increasing order (k l ,k2, •• ); 

two successive k 's are generally separated by q n,,' but some
times by qn" -I ' The corresponding points ka belong to the 
segment [( - t" + I on", ( - t"on" _ I ] and are the iterates of 
a translation of ( - t" On", starting from the origin (see Fig. 
7). The case where the lapse of time between two succsessive 
k 's satisfying (3,32) is qn" -I corresponds to ajump over the 
point ( - t" + IOn" [or ( - t"o n" _ I ] since we can identify 
these two points and consider the segment where the points k 
satisfying (3.22) fall as a circle). 

As soon as one knows where the point k; + I a occurs in 
this circle, the sum 

k, j I 

I f(s + na) 
It =--0 k,+ 1 

is determined. From (3.25) this sum can have one of the 

1807 J. Math. Phys" Vol. 21, No.7, July 1980 

values ± 2, ± 1, or 0 and is a function of the same kind as/; 
it is constant on intervals and of period on" + on" -I' Bya 
change of scale one can use a function of period unity 

q" L f(so + na) = g(s'), (3.33) 
n=O 

(where s' is a point between zero and one) to write 

± f(s + na) = I g(s' + n Tn"a ). 
n = 0 n = 0 1 + T n"a 

(3.34) 

The number a being irrational, it is easy to see that - T n"a/ 
(1 + Tn"a) is also irrational and less than unity, and that the 
eight points which determine the four intervals II' I z, 13 , 14 
[see Eq.(2.2)] do not belong to the same series of points 
s" + ka, k an integer, s" belonging to the unit circle, and 
therefore, there exist nonnull intervals where the function g 
is not equal to zero. 

We are now able to find series of N; such that r4k ,N, is 
unbounded. 

The set of points So + na, n an integer, being dense on 
the circle, the first No such that 

N ! f(so + na) #0 (3.35) 
n=O 

exists and is finite. As in (3.18), one expands No 

(3.36) 

We shall denote the sign of (3.35) by Eo' Let us consider the 
numbers k satisfying 

(3.37) 

They can be arranged in increasing order k;, i an integer. By 
Eq. (3.34), there is a point s', a function g of period unity 
constant on intervals, and a number a' = T M" + I a/ 
(1 + T M" + la) such that 

± f(so + I (- t Cm Om + na) = I g(s' + na'). 
n=O 11=0 n=1 

(3.38) 

The set of points s/ + na', n an integer, being dense on the 
unit circle, the first N, such that the sum in (3.38) is not zero 
exists and is finite. The number N, belongs to the set of k; 
satisfying (3.32), with no = Mo + 1. Then the a-expansion of 
N, gives 

(3.39) 

Let us remark that the same coefficients Cn are used for 
N, and No since the indices n are always different for the No 
and N, a-expansions. One denotes the sign of the sum (3.38) 
by E I . Using the same process repeatedly, one gets a series of 
N; i an integer, such that 

M, 

IN; = I cnqn' (3.40) 
i</ n = 0 

If one separates the N; in two sets corresponding to positive 
and negative E; one of the sets is infinite; we shall denote the 
N; belonging to it by N; ,N; , ... ,N; . The N; being indepen
dent in the sense of (3.40) (their a-~xpansio~s do not contain 
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the same orders n), one gets 

In~/(so+na)1 >j, (3.41) 

which proves that the wandering particle does not remain in 
a bounded domain. 

The authors are gratefully indebted to M. Mendes 
France of the University of Bordeaux for very useful 
suggestions. 
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Correlation inequalities are used to prove rigorously the following for the imperfect Bose gas: (i) 
existence of condensation in and only in the ground state, (ii) unicity and existence of the limiting 
Gibbs states. 

I. INTRODUCTION 

Bose-Einstein condensation occurs in the exactly solu
ble model of the free Bose gas at low enough temperature. 
Furthermore, it is a general belief that interacting Bose sys
tems will show a macroscopic occupation of the ground 
state. A way of expressing this belief is assuming that the so 
called Bogoliubov approximation is valid. Therefore, the 
condensation phenomenon is of interest. Moreover, the 
study of condensation is fundamental because it is a clue to 
our understanding of phase transitions. 

As far as exact results are concerned, the Bose systems 
considered are those with superstable interactions. 1-3 This 
stability criterion ensures the existence of an equilibrium 
state for any value of the chemical potential. This condition 
excludes the free Bose system and also all mean field type 
interactions. In this work we treat the representative of the 
latter type, namely, the so called imperfect Bose gas,4 repre
senting one of the simplest models of an interacting Bose 
system showing condensation. Apart from a variety ofphys
ically intuitive arguments (see for example, Ref. 4), there 
exists a rigorous proo~ of the existence ofa singularity in the 
mean density as a function of the chemical potential. 

This proof relies entirely on probabilistic methods. In 
this paper we use mainly the recently studied correlation 
inequalities6 for equilibrium states. In the first place these 
inequalities provide a proof of condensation in and only in 
the ground state for sufficiently low temperature or suffi
ciently high density. This proof does not require first a com
plete solution of the problem. Therefore, it is hoped that a 
similar approach is successful for nonexactly soluble models. 
The second main result consists in showing the existence of 
the limiting Gibbs state and deriving the complete solution. 
Again this result is based on the proof that the correlation 
inequalities hold in the thermodynamic limit. 

The appropriate setting of our system is the following. 
We consider only v-dimensional systems with v>3, as for 
v < 2 condensation is absent.7 Denote by A the centered cu
bic box of side length L. A system of identical bosons in the 
box A is described by the algebra .sf A of all bounded opera
tors on the Fock space cW'A . 

The algebra of local observables is then 
.rff loc. = U AER v .sf A and the C * algebra of the quasilocal ob
servables .sf is obtained by taking the C * completion of 
.sfloc • An appropriate subalgebra to describe the commuta
tion relations is the CCR algebra generated by the Weyl op
erators I W(¢ )1¢Eli'! J, where li'! is the space of infinitely dif
ferentiable functions on R v with compact support and 

W(¢) = expi[a(¢) + a*(¢ )], 

where a* and a are the Fock creation and annihilation opera
tors, respectively. 

The model is specified by the local Hamiltonians H L' 

with periodic boundary conditions 

A Ni 
HL = TL -PLNL + ---, 

2 L 

where 

O<AER, 

A = {kER vi ~~ EZv}, 

NL = I. ai,kaL.k' 
kEA 

aLk = a(¢ t), kEA, 

¢ L(X) = _1_ eikx, xEA, 
k L vl2 

=0, xU, 

TL = I. €(k )ai,kaL.k' €(k) = k 2/2. 
kEA 

Further on we use also the notations 

N (¢ ) = a*(¢ )a(¢ ) and N L.k = N (¢ D. 

(1) 

We study the equilibrium state of the system in the grand 
canonical ensemble. The key technique is the equivalence of 
the equilibrium conditions with the following correlation 
inequalities6

: 

WL(X*X) 
pWL (X* [HvX ]»wL(X*X) In (2) 

W L (XX *) 

for all XE.sf A belonging to the domain of [HL ,.], supple
mented by the condition 

(3) 

wherep is any positive number standing for the mean densi
ty; W L is the canonical state of .sf A determined by H L • Note 
that exp( - PH L ) is trace class for all values of PL' Indeed, 
for all - PoER ., 

A [ (PL -UPo)L V]2 HL = TL -PoNL + - NL - --'---'-----
L" 

LV 
- 4A (PL _PO)2 . 

Furthermore, the state extends to any polynomial in the cre
ation and annihilation operators. This can be used to extend 
the correlation inequalities to unbounded observables. 
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II. BOUNDS ON THE CORRELATION FUNCTION AND 
CONDENSATION 

Lemma 11.1: Ifj#kj (i = 1, ... ,n), k j #kj' for i#i' and 
nj > 0, njEN, then 

e[E(;) - «k)I{UL (NL,j(NLk, + l)n, (NLk,)"' ... (NLk)n m ) 

= {UL «NLj + 1) (NL,k, t' .. ·(NL,k,Ym). 

Proof It follows trivially from Eq, (2) by taking X suc
cessively equal to 

and 

a* a (N n, -IN n, N n,,)1/2 L,j L,k, L,k, L,k, '" L,k" 

a* a (N n, -I N n")1/2 L,k, L,j L,k, ... L,k" . 

Lemma 11,2: There exists a constant CI(v) such that 

{U (N .)< pCI(v) . 
L L,) UI" 

• 

Proof From Lemma 11,1, it follows immediately that 
Ijl-HiJL(NL,) is decreasing, and hence 

p> ~ I (UL(NL,k» ~{ I 1}{UL(NL,) 
L UI>lk I L Ik 1.;;ljl 

>Ct(v) UI "{UL (NL,j)' • 

Lemma 11.3: For each nEN, 

(i) 

[3{UL(-E(k)N~tl +(uL -AnL)N~tl + ~ NUl) ,,... '2 LV 

{U (Nn+l) 
>{U (N n + I) In L L,k , 

L L,k {UL [(NL,k + 1)n+ I ] 

where nL = NLIL v; 

(ii) 

(UL«PL -AnL)N~,k) 

(
AN Nn ANn ) 

<{UL L,j L,k + ~ + €(j N~k) . 
LV 2Lv ' 

Proof For (i) the result follows by putting 

X = aL,kN't.~ 

in Eq. (2). One gets (ii) by taking 

X = aL,j N't.~ 

in the inequality 

{UL «X*, [HuX ])}>o, 
which itself is immediate from Eq. (2). 

Lemma 11.4: For v>3 there exists a constant C2 de
pending onA and[3, such that {UL (NL,k) and {UL (Nb)1/2 are 
majorized by 

pC2 

I k I max (v13,21 + (2/3) 

for Ik 1#0. 

Proof We look for an upper bound of {U L (N l.k )and 
then use the Holder inequality in the form 

{UL (NL,d<{UL (N Lk)I!3, {UL (NLk)I/2<{UL (Ntk)1/3. 
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Using the inequality 

a 
a In b >a - b, if O<a<b, 

Lemma 1I.3(i) becomes 

[3{UL(-€(k)Nlt l +(PL -J.nL)NLnt l + ~ NUl) 
, '2 LV 

>{UL (N~.t I - (NL,k + l)n + I). 

Now we work on Lemma II.3(ii) to get 

{UL[(PL -AnL)N~.tI] 

<{U L,O L,k + L,k, 
(
AN Nn+l ANn+l) 

L LV 2Lv 

(4) 

(5) 

by puttingj = 0. Repeatedly using Lemma 11.1 in the form 

e- f3«k){U [N (N +1)n+I]>{U (N Nn+l) L L,O L,k L L,O L,k (6) 

one gets 

(UL(NLoN~tl) an P , '< , anER, (7) 
Lvi k 1

2n +2 

By inserting (7) in (5) and (5) in (4) one gets an inequality for 
{U L (N~.t I) in terms of {U L (N 'E,k) (m <n). By iteration of this 
procedure one arrives at an upper bound for {U L (N~.t 1) in 
terms of {U L (N L.k) and the inverse powers of 1 k I. Finally, 
using Lemma 11.2 and specifying n = 2, one gets the 
Lemma. • 

and 

Lemma 1I.5:For each kEA one has 

A 
PL <Ap + E(k) + - ({UL (NLk ) + 1) LV . 2 

P 00 = lim P L <J.p. 
L_ oo 

Proof Take X = a!.k in 

{Ud [X*,[HL,xllJ>O. 

The last statement follows by using Lemma 11.4 and by 
taking 

lim lim. • ik 1-0 L-·,.oo 

Lemma 11.6: For A #0, 

{U [(NL,o )2] < PL P + (_1 + p) 1 
L L V A ,1,[3"2 r' 

Proof Use Lemma 1I.3(i) with k = ° and n = 0, and 
with the lower bound for the right hand side equal to -1. 
Using 

[(
NLO)2] (NLO) {UL L :, <{UL nL L ~ , 

the lemma follows. • 
Note that the upper bound in Lemma 11.6 is not valid 

for the free Bose gas. However, one can, using Lemma 11.5, 
take the limit ,1,--+0 after having performed the thermody
namic limit. Note that lim,\-->o and limL .• oo are not inter
changeable (see later on). 

The upper bound of Lemma 11.4 is not good enough at 
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large momenta for our purposes; we now derive a better 
bound. 

Lemma II.7: For each ~ > 0 and L large enough, there 
exists a constant C3 independent of ~ and L, such that for 

Ik 1>0: 

b (L) - C3 

k - ~vL V/2(ef3€(k) _ 1) , 

( 
A ~2) ck(L)=f3 €(k)- -- -. 

LV L 

Proof Choose j such that I jl = ~L -1/2 in Lemma II.l: 

wL(NL,j) 
wL(NL,j NL,k)<' ef3[€(k)~€(})I-l 

By Lemma II.2, there exists a constant a such that 

wL(NL }, N Lk ) a 
. '<,------

L v ~vL V/2(ef3€(k) - 1) 
(8) 

By Lemma II.3(ii) with n = 1: 

WL(,J,LNL,k - AnLNL,d 

Aa ( A ~2) 
<, oVL v/2(ef3€(k) -1) + wL(NL,k) 2L v + L' (9) 

Substitution of (8) and (9) in Lemma II.3(i) yields 

- ck(L )wL(NL,d + bk(L) 

wL(NLk ) 
>wL(NLk ) In " 

, wL(NL,k +1) 

where bk(L) and ck(L) are as above, and C3 = Aa. The 
Lemma follows from convexity arguments in the right-hand 
side. • 

Lemma II. 8: For each 0 > 0 and L large enough, one has 
for Ik I>~: 

W [(N )2]" 1 + b' (L ) 1 L L,k " (1/2)e (L) 2 k (1/2)e (L) , 
(e ' -1) (l-e~' ) 

where 

b k (L ) = 2C3 + C3 

(ef3€(k) _ 1)2 L v/2~v (ef3€(k) _ I)L v/2~v ' 

Ck(L)=f3(€(k)- ~_ 0
2
) 

LV L' 

and where C3 is the same constant as in Lemma II.7. 
Proof The proof goes along the same lines as that of 

Lemma II.7. One has, however, to use Schwartz's inequality 
in the right-hand side of Lemma II.3 with n = 1 to get 

W [(N )2] In WL [(NL,k?] 
L L,k wd(NL.k + 1)2] 

:;;, [(N )2] I WL [(NL,k)2] 
pWL L.k n{WL [(NL,k)2] 1/2 +1}' • 
Now we prove the existence of condensation in the ther

modynamic limit L--+ 00 taken with constant particle density 
p. The particular way the limit L--+oo is taken is irrelevant 
for condensation. 

Theorem II.9: One has 
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(ii) lim lim I W L c;:,k) = 0; 
~L~oo O<[k[</j 

(iii) for any p > 0, there exist af3e > 0 such that for allf3>f3e: 

O 1· wL(NL,O) /-1'- wL(NL,o) 
< 1m " 1m <po 

L~oo L v L~oo LV 

Proof From (3) 

wL(NL,o) L wL(NL,k) . 
LV =p - k,.cO LV 

For any ~ > 0, split the k summation as follows: 

I= I +I· k,.cO O<[k[</j [k[>/j 

Using the estimates of Lemmas II.4 and II.7 and taking the 
limit L--+ 00, one gets 

1
. wL(NL,O) 
1m 

L~oo LV 

>p _ pC3(21T) ~ v 1 dk 

I k I max [v/3.2\ + (2/3) 
[k [</j 

_ (21T) ~ v r dk, 
J[k [>/j ef3€(k)-1 

which is a senseful bound, because v>3. Now let ~ tend to 
zero to get (i) and (ii). Furthermore, (iii) is immediate. 

Note that Theorem II.9(iii) proves the condensation in 
the zeroth mode at sufficiently low temperature. Further
more, Theorem II.9(ii) shows that the zeroth mode is the 
only one with macroscopic occupation. 

Note also that the lower bound obtained for the critical 
temperature is the same as for the free Bose gas.8 

III. THE LIMIT-CORRELATION INEQUALITY 

The ultimate aim of this section is to obtain the correla
tion inequalities in the thermodynamic limit. To do so we 
first need more information about the structure of the repre
sentations induced by the limiting Gibbs states. 

Lemma IlL 1 : For any t/JEg let 
(l/21T) vl2 f dx t/J (x)e ikx = j; (k); then 

lim Iw L(1- W(t/J» 12 
L-oo 

<'2( (21Ttpo I j; (0) 12 + f d~~t)(~)112) + Iit/J 11 2
, 

where 

Po = lim wL(NL,o)L v. 
L-oo 

Proof Using the Schwartz inequality and gauge 
invariance, 

IwL(1- W(t/J»1 2<,wL(2 - W(t/J) - W( -t/J» 

= 2wL(1 - cos(a(t/J) + a·(t/J» 

_ A" ( , 2 _a.::.!..( t/J....:.)--.:+_a_·.::.!..( t/J-"-.) ) -"ffiJL sm 
2 
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<;W L ([ a(tP ) + a*(tP ) F) 
= 2wL (a*(tP )a(tP» + IItP 112. 

Now using the estimates of Lemmas 11.4 and 11.7, one gets 
the result. • 

Lemma 111.1 guarantees the existence of sufficiently 
many fields in the representation of any W *-limit point of 
Gibbs states as L---+oo obtained by a net (La)a' Let wp be 
such a limit point and (11"p,ilp, Kp) its GNS triplet; denote 
also ..ff p = 11" P ( d)". 

From Lemma 111.1 we get the continuity of the map 
tER---+11" p [W (ttP )] for all tPEiiJ. Hence, by Stone's theorem 
there exists a self-adjoint field Bp such that 

11"p(W(tP» = expiBp(tP) 

and that each B p (tP ) is affiliated with the von Neumann alge
bra ..ff p' The creation and annihilation operators, respec
tively, are then obtained in the standard way 

a~(tP) = HBp(tP) - iBp(itP )], 

ap(tP) = ~ [Bp(tP) + iBp(itP)]· 

Let §J be the completion of iiJ with respect to the norm 

IlltP I W = 1<$(0) 12 + i v dk (1 + (1/ I k 12» 1 <$ (k) 12
, 

tPEiiJ . 

It is clear that §J is the direct sum of C with 
L2 [R,(1 + (1/ 1 k 12) dk ]. Its elements are denoted by (a,<$) 
and 11 l(a,<$)IW= lal2+ SRvdk(1 +(1/lk 12» 
X 1 tP (k) 12. Also from Lemma 111.1, for any sequence 
(tPn )nEN of elements tPn of iiJ converging to (a,tP )E§J, the 
one-parameter groups of unit aries {expitB (tPn ) ItER J nEN 
converge strongly to a strongly continuous one-parameter 
group {expitBp(a,tP )ltER J of unit aries; where Bp(' , .) 
stands for the extension of the self-adjoint fields to §J. In the 
same way we extend the notation for the creation and anni
hilation operators. 

Now we proceed with the study of the behavior of part i
cle densities in the limit L---+ 00 • 

Lemma III.2:With the above notation, for all elements 
x, yin d loc. one has the following: 

- [(NL NL' )2] (i) lim lim W L - - - = 0, 
L'~= L-~= LV L'v 

(ii) lim lim IwLx[(eit'L'IL"',y)] 1= 0, 
L ' ·oc L "00 

(iii) lim lim lim IWL [x(eit'L'IL'V -1)y] 1= 0, 
1-....0 L'_oo L---oo 

(iv) for all E> ° and L " L " large enough 

lim IWL [x(eitN1" v - eitNe/c) y] I < E, 

L~= 

Proof(i) One calculates 

L'v 
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where XA is the characteristic function of the volumeA. For 
A'CA, 

(
NL NL') 

wL Lv L'v 

= L 12v £; WL [NLa*(tP f)a(tP 7)] = WL [(: ~ rl 
Furthermore, 

X (tP tXA' ,tP t )WL [a*(tP t)a(tP Da*(tP t)a(tP t)]' 
Using gauge invariance, 

Therefore, we get the following bound: 

- [(NL NL' )2] lim WL - - --
L ,= LV L'v 

1,#1, 

XwL (NLY I 2. 

Using now the estimates of Lemmas 11.4, 5,6, and 8, one gets 

-1·-wL (Ni.,o)1/2 /' 
1m "",p 

L 'oc LV 

and there exists a function F element of L I(R v,dk ) such that 

M. Fannes and A. Verbeure 1812 



                                                                                                                                    

lim OJL(Ni,S/2<F(k), for k #0. 
L~= 

Hence, 

-1' [(NL 1m OJL --
L~= LV 

<L+2p f dkF(k)I-I_f dxeikxl2 
L'v JR" L 'v JA' 

+ 1 "Xr" dk l dk2 F(k l )F(k2) 

X lLl,v l,dxei(k,-k')XI
2

• 

Using Lebesgue dominated convergence, the right-hand side 
tends to zero asL ' - 00 because the means tend almost every
where to zero. 

(ii) Takey = W(¢> );¢>E!P; for L , large enough, the sup
port of ¢> is contained in A '; then 

[/Nl/ , ", W(¢»] = eilNLn"[ W(¢» _ W(e- i(tIL''!¢»] 

and 

\OJL(X[/NL1L",W(¢»]) \ 

<lIxIIOJL(1 We¢»~ - W[e-itIL'V(¢»] 12)1/2 

<21/211xllll - OJL [e- iSin(tIL'v)W«eitIL '" -I)¢> )] P/2 
and (ii) follows, using the estimate of Lemma III. 1. 

Proof of (iii): By (ii) it is sufficient to prove that 

lim lim lim IOJL ~(eitNln" - 1) ] I = O. 
r .() L' "'00 L "oc 

Now 

\OJL ~(eitNln" -1)] \ <lIxll It IOJL [(:~~ rr2

• 

But from Lemmas 11.5, 6, and 8 and from (i), 

l,im lim OJ L [(N~~ )2] = lim OJL [(NL )2] < 00. 
L.= L-.= L L~= LV 

Proof of(iv): By (ii) it is again sufficient to prove that for 
each E> 0 and L', L " large enough 

-1' I r( itN, ," itN ')] I 1m OJLLxe Ln -e l_'n" <E. 
L~= 

For this to hold it is clearly sufficient that 

l~m lim \OJ L [xc eitN,1 L . _ eitNll L ')] I = 0, 
L -00 L--+oo 

But this follows from (i) using an estimate of the type used in 
Lemma 111.1, 

Finally, (v) follows from (i) and (ii) using analogous 
techniques as before. 

Proposition 111.3: Let again OJ{3 be any W*-limit point of 
the OJ L as L tends to infinity; with the notation above one has 
(i) for each L there exists a self-adjoint operator N on JY' 

ffil
' {3,L {3 

a 1ated to JI {3 such that 

(ii) N(3,L IL" converges in the generalized strong sense, as 
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L_ 00, to a self-adjoint operator n{3 affiliated to the center of 
vii (3, and (iii) OJ(3 is locally normaL 

Proof 0) follows immediately from the assumption and 
from the proof of Lemma IIL2(iii). 

About (ii) the existence ofthe self-adjoint operator n{3 
follows from Lemmas IIL2(iv) and (iii). That n{3 is affiliated 
with the center of vii {3 follows from Lemma IIL2(ii). Indeed, 
from (ii) 

0= [1T{3(x tX2),e'tn" ]fl{3 = [1T{3(x I)/tn" k{3(x2)fl{3 

for all x 1,x2Ed loe, • 

Fina]]y, to prove (iii), from Lemma IlL 1 it follows that 
OJ{3is a regular state; from Lemma IIL2(v), 

- (Ne) lim OJL -- < 00 
L L'v 

and (iii) follows from Ref. 9. 
Proposition III.4: Let OJ{3 be any W*-limit point of the 

OJ L (L- (0); one has (i) for each finite L, there exists a self
adjoint operator N~,L on JY'{3 affiliated with JI {3 such that 

( 
itN ilNo 1T{3 e 1.0) = e 1',1_; 

(ii) N~,LIL v converges in the generalized strong sense, as 
L- 00 , to a self-adjoint operator n~ affiliated with the center 
of JI {3' 

Proof The statements of Lemma IIL2 hold also when 
NL is replaced by NL,o' However, the proof of these state
ments requires a minor change at two places, namely, in 
estimating 

OJe [(NL,o _ Ne,o )2] 
LV L'Y 

and in computing 

leiIN'BII", W (¢> ) 1. 
The proof of the proposition then goes along the same lines 
as that of Proposition III.3, but based on the adapted 
Lemma 111.2. • 

Proposition III.S: With the above notation, 
fl{3EDom(n{3) and 

p = (f1{3,n{3fl{3)' 

Proof To settle the domain questions we use the follow
ing properties: (a) if A is a self-adjoint operator on a Hilbert 
space JY' and ¢>EJY' such that 

where C is a constant independent of t, then ¢>EDom(A ) and 
IIA¢> II < c. This follows from: If ¢EDom(A ), 

1 (A If,¢> ) I = ~~~ I (eit~ ~/ If,¢» I <c\llfll· 

(b) If An = A: converges in the generalized strong sense to 
an operator A on JY' and if Vn:¢>EDom(An) and IIAn¢> II <C, 
then ¢>EDom(A ) and IIA¢> II <CO This follows from (a) and 

II e
ilA

i
; 1 ¢> II = li~ II (eitA';'t- 1) ¢> II 

<lim \IAn¢> II<C. 
n 
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One also has 

lim (ifJ, e
iA 
~ 1 ifJ) 

1--0 It 

( 
eilA -1 ) 

= lim lim ifJ, . ifJ 
t~O n~oo It 

= lim lim {(ifJIAnifJ)+ [ifJ,(ei'A.-I - An)ifJ]}. 
1-_0 n~oo It 

But as ifJEDom(An) one has 

l[ifJ,(eltAi~I - An)ifJ ]1< ~ IIAnifJI12 (10) 

and, as IIAnifJ II<C, one gets 

(ifJ, AifJ) = !i~ (ifJ, AnifJ) = !~~ ~~~ (ifJ, eitA'~t-I ifJ ). 

(11) 

Coming back to the imperfect Bose gas one has from the 
proof of Lemma 111.2 

II(eil(Nfl";;'.)-I )npI12<}~_~oo OlL'(:~y<C, (12) 

where C is independent of L. 
Therefore, flpEDom(Np.L) by (a), flpEDom(np) by (b) 

and Proposition II 1.3 (ii), and by (11) 

. . ( eil(Np.,/L') _ 1 ) 
(flp,npflp) = lim lim flp, . flp . 

L '00 I~O It 

Using again (10) and the bound (12) one gets 

(flp,npflp) lim lim OlL (NL) 
L-oo a U L l' 

= lim lim OlL (N
Lu

) 
L-oo a n L ~ 

[by Lemma 1I1.2(v)] 

=p. 
Proposition 111.6: With the above notation, 

flpEDom(n~ )and 

Po li~OlL"(;~o )=(flp,n~flp). 

• 

Proof The proof of this proposition goes exactly along 
the same lines as that of Proposition 111.5 but is now based on 
Proposition 111.4. • 

Lemma 111.7: For all ifJEfiJ we have 

lim II I (/ITI - eit~(~ (O),~)III = 0 
L '00 

uniformly in t on compacts, where 

7(~ (O),~) = (O,E~); kER v, 

7L (~~(O),~~) = E(k)[~ ~(O),~ ~], kEA. 
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Proof For L large enough, A contains the support of ifJ 
and by a straightforward computation 

eitTI [~ (O),~ 1 = [~(O),~ L,t ], 

where 

~LI = I (ifJf,ifJ) eil<(/)~f· 
lEA 

Also 

I I I (e ilTI - eit~[ifJ (O),~ 11112 

= ( dk(I + _1_2) IFL(k,t) 1
2

, 

JR" Ik I 
where 

FL (k,t ) = ~ L,I (k ) - eil«k)~ (k ). 

We use now the Lebesgue dominated convergence theorem 
to prove that the second term vanishes as L- 00 ' First of all, 
it is a standard matter to prove that 

lim FL (k,t ) = O. 
L 

Next one finds an L2!R ",[1 + (11k 2)]dk J bound for 
FL (k,t), This amounts to looking for a bound for ~L'I (k). In 
fact, we obtain a bound uniform in t on compacts, 

We shall need the following bounds for elements ifJE!:IJ : 
Consider the Fourier transform 

J (/) = (2~)"/2 f dx ifJ (x)e ilx
, lEA, 

For III < 1, 

I ~ (I) I «1I217')"
12

llifJ II" 

For III;;;. 1, let Ll = - };r~, (J2 / Jx~), for any integer n 

I ~ (I) 1«_1 )1'/2 IILl nifJ II, . 
217' 12n 

Hence, choosing n large enough 

_1 II~(/)I 
L v lEA 

<C~ )"/2 [ (L", dl )ilifJ II, + (r I" Id:')ILl nifJ II,). 

Consider also the discrete Laplacian: For aEI peA ), 
v 

(Llda)n = L (an + e, + all _ e, - 2a ll ), 
i--;-1 

(13) 

where ei = (O, ... ,O,217'/L,O, ... ,O)EA for the ith site. One has 
for aEI P(A) and bEl q(A )[(1Ip) + (1Iq) = 1] and mEN, 

I an(Ll ~nb)1I = L. (Ll ';a)"b", (14) 
nEA n~A 

Note that 

( - Lldyn 
e--i1x== ________ e- i1x , 

4m(};:-~, sin217'xJL)m 
for lEA ,xEA; 

therefore, using (14), 
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= _1_" eitEfJ)jJ(/) (-Lid)m e- ilx 
L v ~ 4m(l:~=) sin21Tx;lL)m 

= _1-2: (_ Lid)m[e
il
E(l)jJ(/)] e- i1x. 

LV lEA 4m(l:i=) Sin21TX;lL)m 

ForxEA, 

V 1TX· 4 L sin2 
-' > _x2 

i=) L L2 . 

Hence, 

I ~ 2: eilE(/)jJ (l)e - ilx I 
L leA 

1 ILi ;;'[eilE(/)jJ (/)] 1 
< p ~ 24mx2mlL 2m 

Now we treat the / summation as in (13), namely, by consid
ering the cases 1/ I < 1 and 1/ I > 1. In both cases we bound the 
discrete Laplacian by a factor (21T I L )2 times a polynomial in 
t of second degree. Therefore, for t in some compact, there 
exists a constant K such that 

(15) 

Now we are in a position to find a bound for FL (k,t). Indeed, 
for A containing the support of 4J, 

jJL,,(k) = L dX[ ~ V ~ eilE(/)jJ (/)e - ilx ]eikx. (16) 

Again we consider two cases: 
(a) Ik I < 1: As v>3 it is sufficientto prove the bounded

ness of jJL,,(k). But this follows from using the bound (13) in 
the region Ixl < 1 and from using the bound (15) in the 
complement. 

(b) Ik 1>1: Using 

( _ Li )neikx . 
--'--_-<--_ = e'kx 

k 2n 

and performing partial integrations in (16), one reduces the 
problem to the situation treated in (a), replacing jJ (/) by 
enjJ (/). 
Combining (a) and (b) we have proved for t in some compact 

IFk(k,t) I <F(k), where FEL2[ R v,( 1 + k\ )dk l 
Finally, the uniformity in t is obtained using the formula 

f" eit,A _ eil,A = i ds A eisA 
I, 

and the bound of above for / 2jJ (/) instead of jJ (/). 
Now we are in a position to consider the limit L-+ 00 of 

the correlation inequality, which we perform in different 
steps. First we introduce two commuting groups of auto
morphisms of the von Neumann algebr~ JI p' 

Lemma 111.8: (i) the maps a;: eiB,,(4) (0),4> I 

iB le<T(~(O),~11 ,/. ar ' 
-+e {J , 'f'E= , tER extend to a weakly contmuous 
group of automorphisms of JI p. (ii) if wp is the W*-limit 
point of the net I W L I ,then 

" a 

li~ W L " {Y[ TL ", f ds/(S)a~'''(x)]} 
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= {l1p,llp(y) f ds!,(s)a; [llp (x) ]l1p ). 

where x, Y belong to d loc. and/is any absolutely continuous 
function on R such that/and!, belong to L)(R,ds). 

Proof (i) If aieiB{J(~(O)'~1 = /B"lei<T(~(O),~ II, fjJEffl, then 

clearly ai extends to a group of* automorphisms of the C* 
algebra generated by [eiB{J(~(O),~ llfjJEffl]. From the local nor
mality of the statewp (Lemma 111.1) this C * algebra is weak
ly dense in JI p' Therefore, ai extends uniquely to a group of 
automorphisms of JI p' Finally, the weak continuity in tfol
lows again from Lemma 111.1 and the invariance of the state 
under a T which can be seen as follows: Let YEd loco and 
fjJEffl; then from Lemmas 111.1 and 111.7, 

and then again from Lemmas 111.1 and 111.7, 

lim wL" [ya>W(fjJ)] 
a 

= [l1p,1Tp(Y) eiB"lei<T(~(O),~lll1p]. 

The invariance of wp follows now from 

W L oa;l. = W L' 

(17) 

(ii) follows from (17) and the Lebesgue dominated conver
gence argument. Indeed, 

li~ wL " {Y[ TL , f dS/(S)a;/(X)]} 

= ili~ f dS!'(S)wL" [ya~/.u(x)] 

= if dS!'(S)[l1p,1Tp(y)ai1Tp(x)lJp]. • 
Lemma 111.9: (i) The maps a~:ap [jJ (O),jJ] 

-+e - iSap [jJ (O),jJ ], fjJEffl, sER, extend to a weakly continu
ous group of automorphism of JI p' (ii) If wp is the W *-limit 
point of the net I WL I ,then 

" a 

lim W L {Y[ - ILL NL + ~ Ni" 'f ds/(s)a;I"(X)]} 
a" "a 2 L~ 

= i[ I1p,1Tp(Y) f ds!,(s)a~(x)( - IL + np)l1p ], 

where x andy are local elements, and/is any absolutely 
continuous function on R such thatf,!" and/" belong to 
L)(R,ds). 

Proof In this case the proof is trivial because for any 
local element x, a;/(x) becomes L independent for L large 
enough and 

About (ii) note first thatf,!', and/" belonging to L)(R,ds), 
together with Proposition 111.5, settle all domain questions 
in the formula. Furthermore, 
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CUL ~[ - JlLNL + ~ :~ , J dSf(s)a~I(S)]} 
= iCUL {Y[ ( - JlL + ~ nL) J dsf'(s)a~/(x) 

+ ~ dsf'(s)a~/(X)nL ]}. 

Note again that for x local and L large enough a~/(x) is L 
independent. The result follows using Lemma 11I.2(v) and 
Proposition III.3(ii). • 

Consider the set if ofintegrablefunctionsfonR 2abso
lutely continuous in both variables and with integrable par
tial derivatives. For xEJ/ p andfEif let 

xJ = J ds dtf(s,t)a;a'/(x). 

It is well known that the set f!lj = {xJlxEJ/ p,fEif J is dense 
in JI (3' As a;a,/ = a'/a; (s,tER), it is clear that this set is in 
the intersection of the domains ofthe generators of the weak
ly continuous automorphism groups {a;ls and {a'/L. 

Theorem 111.10: Let cup be a thermodynamic limit 
Gibbs states of the imperfect Bose gas; if Is = af las and 
/, = af lat and xJEf!lj, then 

i/3 {xJ fl(3' [xJ: - xJ,(Jl - ILn(3) ]flp J 

>llx fl 112ln IIxJ flp l1
2 

J (3 Ilx; flp 112 
(18) 

Proof The proof is now immediate from the local corre
lation inequality (2) and from Lemmas 111.8 and 111.9. • 

IV. THE CONDENSATE STATE 

From above one has for ¢Eg; , 

1T{3 [W(¢)] = expiB(3 [c,6(O),~]; 

also, more generally, using Lemma 111.1, 

expiB(3(a,~) = li~ 1T{3{ w[¢ + [a - ~ (0)] (~t/2¢~]) 
because 

a = ~ (0) + [a - ~ (0)] (l:!!.)V/2 ¢ ~(O) 
and L 

p~ III [ 0, ( ~ t/2 ~ ~ ] III = o. 
For t/JEg;, we introduce N(3(¢ ) as the infinitesimal gen

erator of the strongly continuous group of unit aries 
{1T(3 [expitN (¢)] J IER' The continuity follows from the local 
normality of the state cu (3' Another consequence of this is 
also 

N{3(t/J) = a~ [~(O),~ ]ap [~(O),~ ]. (19) 

This allows us to find an explicit expression for n~, the 
generalized strong limit L-+oo of Np(t/J ~/L V/2): 

nO = s-lim a* (~~(O) ~ ~ \_(~ ~(O) t/J ~ ) 
{3 L P L v/2 ' L v/2 f L v/2 ' L v/2 

= a*[ (2~ t12

,o ]a[ (2~ Y/2,O] 

by the III· III-norm estimates of above. Define the operator 

a{3 [(1I21Tt12,O] 
Uo = --'------

p//2 
(20) 

1816 J, Math. Phys., Vol. 21, No.7, July 1980 

then 

UoUo = n~/po. (21) 

Note that Uo is affiliated with the center JI {3r'J( p and hence 
a normal operator. 

Lemma IV.l: Letfbe any positive bounded measurable 
functionfon R with compact support; then 

cu{3 [n~ f(n~ )(np - n~) ] 

= C~) J dk efl£(k! -1 cu{3 [n~f(n~)]. 
Proof For t/JEg; such that ~ (0) = 0, take the 

observables 

f(n~)1/2UoG$(0,~) and f(n~)1/2U'ta(3(O,~) 

in the correlation inequality (18). The extension of this in
equality to these unbounded operators is justified by the esti
mates given before. One gets 

/3CU{3 [n~ f(n~)a{3(O,~ )a$(O,E~)] 

>cu{3 {n~f(n~)[N{3(t/J) + II¢ 112] J 

Xln cu{3 {n~ f(n~)[N{3(t/J) + Iit/J 112] J 

cu{3[n~f(n~)Np(t/J)] , 

- /3cu{3 [n~ f(n~)a$(O,~ )ap(O,E~)] 

>cu{3 [n~ f(n~ )N{3(t/J ) ] 

xln cup[n~f(n~)N{3(t/J)] 
CUp {n~ f(n~)[N{3(t/J ) + Iit/J 112] J 

Using Lemma 111.1, 

I cup [n~ f(n~)a~(O,~ )a(3(O,t,b)] I 
<, Ccu(3 [N{3(¢ ) ] 1/2CU{3 [N{3( 1/')] 1/2 

<,C'III¢ 111'1111/'111', 

where 

(22) 

(23) 

Denote the closure of g; with respect to the 111·111' -norm by 
!iJ'; then by the Riesz representation theorem there exists a 
bounded operator R on !iJ' such that 

cu{3 [n~f(n~)a~(O,~)a{3(O,¢)] = (¢,R,~). 

Furthermore" Let A Ed A' and r;, xER v be the space trans
lation automorphism over x with periodic boundary condi
tion, and Tx the usual ones; then 

r;A = Tx A 

for all x such that Ix I < IL - L '1/2. It follows that 

CU~Tx = cup. for all xER v. 

Therefore, the operator R is a multiplication operator by a 
continuous function: 

(R¢)(k) = R (k )¢(k). 

We may also assume R (k ):;60 if cup [n~f(n~)] :;60. In
deed, take S a set of measure different from zero and 
R (k) = 0 for kES. Let ¢ be a function with support in S; then 
the left-hand side of inequality (4) is bounded; in order that 
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the right-hand side be bounded, 

0= w/3 [n~ f(n~)[N/3(I,6) + 111,6112]J = W/3 [n~ f(n~)] 111,611
2, 

which is a contradiction. Now we write the inequalities ob
tained above by means of this operator R and take a ~ (k)
convergent sequence (I,6n)n of normalized functions I,6n in §;' 
and derive 

(
1 + _1_

2
)R(k) = w/3[n~f(n~)] 

Ik I ef3E(k)_1 

Hence 

W/3 [n~f(n~)(n/3 - n~)] 

= lim_l_ L w/3[n~f(n~)a~(O,¢t)a/3(O,¢t)] 
L LV k #0 

= (_1 )w/3[n~f(no)] fdl 1 . 
21T ef3E(l) - 1 

Lemma IV.2: With the above notation, f..l = Ap. 
Proof Take (I,6n)n a sequence of elements of!iJ such that 

¢n(O) = 0, II¢n II = 1, and limn (¢n ,E¢n) = 0; then from (18) 

w/3 [ [a~(O,¢n), - a/3(O,E¢n) + (f..l - An/3)a/3(O,¢n)] J >0 

or 

[f..l - AW/3(n/3)] II¢n 112 - (¢n ,E¢n)<O. 

Using Proposition 111.5, 

f..l<Ap. 

Now take Uo and U~ in (18): 

f..lw/3(n~) = AW/3(n/3 n~). 

From Lemma IV.l, lettingfn-1, 

w/3 [n~(n/3 - n~)] =po(-I-)Vfdk 1 
21T ef3E(k) - 1 

Hence, 

or 

f..l ( 1 )V 1 T >Po + 21T dk eE(k) _ 1 . 

But by Theorem 11.9, f..ll A>p. _ 
Proposition IV.3: If Po> 0, one has (i) Uo is unitary and 

n~ = Po; (ii) n/3= p. 
Proof (i) Let [E A IAER • J be the family of spectral pro

jections of n~ and for a measurable subset.::1 of R ., away from 
0, denote 

From Lemma IV.l one gets 

w/3 [Ed (n/3 - n~)] = (2~ r (f dk ef3E(k! _ JW/3(Ed ). 

Taking x = f(n~)Uo andl(n~)Uo in (18), with n~ 1 f(ng) 12 
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= Ed ,one finds, using Lemma IV.2, 

Therefore, 

It follows that the spetrum of ng is contained in [O,pb J, 
where 

pb = p - ( 2~ ) v f dk ef3E(k ~ _ 1 . 

Let n~ = pb Epi, be the spectral decomposition of n~; then 

prf1J/3(n~) = pb w/3 (Ep) <Prf1J/3 (Ep) 

by Theorem 11.9. But this implies E , = 1 as E ,EJ(/3rJ1/3' 
Po Po 

and (i) follows. 
(ii) Taking x = nj/2Uo and nj/2U~ in (18), one gets, us

ing (i) above, 

w/3 [np(Anp - f..l)] = O. 

As w/3(An/3 - f..l) = 0 by Lemma IV.2, 

w/3[(An/3 _f..l)2] =0 

and (ii) follows. -Note that the proof of proposition IV.3 relies in an es
sential way on the condition A > O. For the free Bose gas 
(A = 0) one can still conclude that f..l = 0 (see Lemma IV.2) 
but it is known that the spectrum of n~ is R •. So proposition 
IV.3 is wrong in this case. 

Note that as a result of proposition IV.3(i) we proved 
the existence of a phase operator for the condensed state. 10 

This result is also sufficient for the validity of the so
called Bogoliubov approximation. This approximation con
sists of replacing a/3 [(1I21Tt12,0] by the c number 
pb12eiU [aE(0,21T)]. But consider now the decomposition 

(21T 
w/3(') = Jo w/3 [E (da).], 

where 

Uo = 121T E(da)eiu 

is the spectral resolution of Uo. 
It is clear that for the components w/3 [E (da).] the uni

taryoperator Uo is represented by eiu . Proving the validity of 
the Bogliubov approximation for the state consists in prov
ing that the correlation inequality holds for these compo
nents, which is immediate from Theorem 111.10. This result 
is an extension to the state of a result of Ref. 2 in the case of 
the imperfect Bose gas. Note that in this model the situation 
is particularly simple because the function a-w/3 [E (a).] is 
constant due to the special type of the interaction. 

Finally the solution of the condensed state is given as 
follows: 

Theorem IV.4: For Po> 0 and I,6E!iJ, 

w/3 [W(I,6)] = exp [ - !(I,6,K,I,6) 2~ f1T da] 

X exp [2ipb12
1 ¢ (0)' cosa], 
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where 

(Kt/J )(k) = 1 ~ (k ). 
eP€(k) -1 

Proof For t/JEliJ , 

(JJp [W(t/J») = (flp,/B(1I,fo(O).OJ/B,JO·,fo)flp) 

= [flp, 121T E (da) eiB(1I,fo(O).OJeiB,JO·,fo)flp ] 

= f1T exp [eiapbI2~ (0) + C.c. ] 

X [flp,E (da) eiB,JO·,fo)flp ]. 

As the components a-[flp,E(da)Xflp ]with 
XE! 1Tp [W(t/J») I~ (0) = O,t/JEliJ I" satisfy the correlation in
equality for the free Bose system [by proposition IV.3(ii»), 
one has6

•tt 

( n E(d ) iB,JO.,fo) ) da 
Up, a e flp = -exp[ -!(t/J,K,t/J»). 

21T 
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We treat the motion of a charged particle in a central field plus a stochastic field corresponding to 
the zero-point field of quantum electrodynamics as a quasi-Markov process in the classical action 
variables. As special cases we consider the rigid rotator, the harmonic oscillator, and the Kepler 
system. We show that in the first two cases, but not in the third, the quasi-Markov process 
satisfies the detailed balance condition, which expresses the invariance of the process under time 
reversal. We consider the implications of this last result, and argue that it shows the possibility of 
a mechanical system being in equilibrium with respect to the radiation field, while the radiation 
field itself is not in equilibrium. 

I. INTRODUCTION 

Stochastic electrodynamics is the Brownian motion of a 
charged particle in a random electromagnetic field whose 
spectrum, at the absolute zero of temperature, is the same as 
that ofthe zero-point field in quantum electrodynamics. The 
frictional force is the normal Lorentz damping of classical 
electrodynamics. We are therefore dealing with a system 
which is entirely classical except for the presence of the zero
point field. 

For the harmonic oscillator, such a model reproduces 
many features normally associated with quantum mechan
ics. 1 While this has been known for a long time, progress in 
extending the treatment to other force fields has been very 
limited,2 mainly because a charged particle, moving on a 
classical orbit of given frequency, emits and absorbs energy 
from the electromagnetic field at all the harmonics of that 
frequency. Recently, however, Boyer3 has noted that many 
results obtained for multiply periodic systems in the old 
quantum theory can be used also in stochastic 
electrodynamics. 

The Fokker-Planck equation, which was introduced as 
part of old quantum theory4 and subsequently became an 
important part of the general theory of Markov processes, 
already plays a central role in stochastic electrodynamics. It 
was used by one of us (see Ref. 1) as long ago as 1963, butthe 
tool needed to calculate the drift and diffusion coefficients in 
it came to our attention only relatively recently. This is the 
multiply periodic expansion, which was well known in old 
quantum theory, and the use of which enables us to find the 
slow variation in the action variables when the electromag
netic forces are taken into account. 

In the present article we seek to put the nonlinear prob
lem in stochastic electrodynamics into the context of Mar
kov processes and also to establish a connection with old 
quantum theory. A companion articleS will show the 
Fokker-Planck equation found here may be related to a 
Fokker-Planck equation in complete (six-dimensional) 
phase space. 

A central assumption is the validity of the narrow line 

approximation, according to which the system performs a 
large number of oscillations in the external field before the 
perturbing (that is damping and fluctuating) forces produce 
a significant change in its orbit. That this is a reasonable 
assumption with the orders of magnitude in stochastic elec
trodynamics has been demonstrated by Claverie and Diner.6 

Our work has been greatly enriched by a study of the 
literature of the old quantum theory, and in this connection 
the recent semi-historical review article by Van Vleck and 
Huber7 is of particular value. Indeed, the results obtained in 
the present paper follow directly from Van Vleck's treat
ment of radiation by multiply periodic systems. 8 

2. THE MULTIPLY PERIODIC EXPANSION 

In this section we review the theory of action-angle var
iables, as it applies to the motion of a particle bound in a 
central field of force. A fuller treatment may be found in, for 
example, the textbook of Goldstein. 9 

The basic equations of motion are 

mx = grad V (r), (2.1) 

where r = Ixl is the distance from the center offorce. The 
action variables ( S! , S 2' S 3) are defined as follows: 

S3 = L3 = component of angular momentum in a fixed 

direction, 

S2 = L = magnitude of angular momentum, 

S! = 2~ f (2m[H - V(r)] - ~2)1/2 dr, 

(2.2) 

(2.3) 

(2.4) 

where H = T + Vis the total energy (kinetic + potential) of 
the particle, and the integral is taken over a single complete 
oscillation of the variable r. 

Equation (2.4) may be inverted to obtain H as a func
tion of S! and S2' Then the natural frequencies of the system 
are given by 

(2.5) 

For more general systems, H is a function of all the 
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action variables and the number of natural frequencies is 
equal to the number of degrees of freedom. In our case the 
derivative of H with respect to 53 is zero, and hence li)3 is 
zero. This leads to degeneracy in the orbits of the particle. 

Associated with each action variable, 5;, there is an an
gle variable, 7];. To define these, we first form Hamilton's 
characteristic function 

W(x,~) = f {2m[H - VCr)] 

- (L 2/r)}1!2 dr + L() + L31/J, (2.6) 

where () is the polar angle in the plane of the orbit and I/J is the 
azimuth of the line of nodes. Then 

aw 
7]i = a5,' (2.7) 

The equations of motion (2.1), after the change of varia
bles from (x,p) to (S,1J), become 

t, = 0, (2.8) 

(2.9) 

that is, the action variables are constants ofthe motion, while 
the angle variables increase uniformly. It is these simple 
equations of motion which make the action-angle variables 
such useful coordinates, both in dynamical astronomy and 
in certain stochastic processes. Small extra perturbing terms 
on the right-hand side of (2.1) result in slow changes of the 
action variables. We have recently discoveredlO that there 
are other advantages. The drift and diffusion coefficients in 
the Fokker-Planck equation take a rather simple form when 
expressed in terms of these variables. 

In the next section we shall see that a necessary part of 
the calculation of the coefficients is the Obtaining of expres
sions for x and p in terms of( 5,7]), and there is a generaliza
tion of Fourier's theorem, the multiply periodic expansion 
theorem (Ref. 9, p. 294) which gives precisely such an expres
sion. This theorem states that any function F of x and p 
which is single valued on the phase-space (x,p) may be ex
pressed in the form 

F(x,p) = f 
In the case where a particle moves in a central field of 

force, and F is x itself, an important simplification of this 
expansion occurs (Ref. 11, p. 138). Consider the case where 
the orbit lies in the (x,y) plane. Then 

x +iy= (2.11) 
n = ~ 00 

In this expression the summation over n3 is, of course, ab
sent, because of the restriction we have made on the plane of 
the orbit. But the summation over n2 is also absent, because 
it takes the single value n2 = 1. This expresses the uniform 
precession of the orbit, and is the reason for the selection rule 
for electric dipole radiation in old quantum theory. In the 
next section we shall see how this result may be extended to 
deal with the three-dimensional case. 

3. THE FOKKER-PLANCK EQUATION 

One of us has shown 10 how the Fokker-Planck equation 
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in terms of the action variables may be obtained. Essentially 
the use of the narrow-line approximation permits us to treat 
the system as a quasi-Markov process in the action variables 
alone. The angle variables are needed only to find certain 
time averages which enter into the drift and diffusion coeffi
cients. We shall be assuming implicitly that all the angle 
variables are uniformly distributed in the interval (0, 21T), 
even for nonstationary states of the system. 

The equation of motion is a generalized Langevin 
equation 

mx = - grad VCr) + G + F(t), 

where G is the Lorentz radiative reaction 

G = (2e2/3c3) x, 

(3.1) 

(3.2) 

and F(t) is the stationary stochastic force resulting from the 
particle's interaction, in the dipole approximation, with the 
vacuum electromagnetic field 

(F(t» = 0, 

(F,(t)Fj(t + r» = e2oijBE (r). 

(3.3) 

(3.4) 

In terms of the action variables, the Fokker-Planck 
equation is 

ap _ a (A B ap ) at - a5, - ;p + 'j a5j , 
where 

and 

2 fOO at, atj 
Bij = !e BE(r) - (t) - (t + r) dr. 

- 00 aPk apk 

(3.5) 

(3.6) 

(3.7) 

In (3.6) and (3.7), the bar denotes time averaging over r, and 
the time variation is that of the unperturbed motion, in 
which the effects of both F and G are to be neglected. We 
may use (2.10) to evaluate the right-hand sides of (3.6) and 
(3.7). This procedure is greatly simplified by the use of the 
result from classical mechanics, noted in Ref. 10, namely 

a5; aXj 
apj a7],' 

(3.8) 

We obtain 

(3.9) 

(3.10) 

where S E (li) is the spectrum of the vacuum field, that is 

Sdli) = S: 00 e-'<U7BE (r)d, (3.11) 

and d n is the "oscillator strength" of the old quantum the
ory, that is 

(3.12) 

Returning to (3.6) and (3.7), we shall show in the Ap
pendix that, because of the rotational symmetry, certain sim
ple relations .are satisfied by the coefficients A; and B'j' 
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These are 

A3 = (53/52)A 2, 

Bn = (53/52)B I2 , 

B23 = (53/52)B22 , 

B33 = HI + (5V5Dl B 22 • 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

We shall assume that the probability density also has rota
tional symmetry, so that its derivative with respect to 53 is 
zero. In that case the Fokker-Planck equation reduces to 

ap = ~ [ _ A B ap B ap J 
at a51 IP + II a51 + 12 a5z . 

+- -A2P+B I2 -+B22 -a [ ap ap ] 
a52 a51 a5z 

+- -A2P+BI2 -+B22 -. I [ ap ap ] 
52 a51 a52 

This may be written in the form 

ap = ~ ~ t- [_ A B ap ] 
at 52 a5; ~2 p + ;) a5} , 

where the summation convention now extends over 
(i,}) = (1,2). 

(3.17) 

(3.18) 

Finally, since 51 and 52' unlike 53' are independent of 
the choice of axes, we may choose axes in the plane of the 
unperturbed orbit in calculating the drift and diffusion coef
ficients in (3.18). Then using the multiply period expansion 
(2.11), we find that the only non vanishing oscillator 
strengths are given by n = (n,I,O), for which 

d~ = e2(lxn 12 + IYn 12) = e2 ICn 12. (3.19) 

The drift and diffusion coefficients of the reduced 
Fokker-Planck Eq. (3.18) then become 

2e2 
00 

3c3 n=~oo n(nwi +(2)3I c,,1 2
, (3.20) 

2e2 
00 

3c3 ,,=~ 00 (nwi +wz)3ICn 1
2
, (3.21) 

BII =;; eZ ! n2 SE(nW I + ( 2) ICn 12, (3.22) 
"= - 00 

BI2 =! e2 !. nSE(nW I + (2) ICn 12, (3.23) 
n = - oc: 

B22 =! e2 ! SE(nw l + ( 2) ICn 12. (3.24) 
n = - 00 

4. SOME SPECIAL CASES 

To illustrate the method, and also to obtain some con
crete models on which to base our later discussion of the 
detailed balance condition, we consider three potentials for 
which the Fokker-Planck coefficients may be explicitly cal
culated. They are 

(i) the rigid rotator, V(r) = o(r - ro); 
(ii) the linear oscillator, VCr) = ;;mw6~; 
(iii) the Kepler system, VCr) = - Ze 2/r. 

(i) In this case we put 

Co = ro and Cn = ° (n=;i=O). 

Also H = 5 ~ /2m~, and therefore 
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(4.1) 

WI = 0, Wz = 52 /m~. (4.2) 

The Fokker-Planck coefficients in (3.18) therefore become 

A I = 0, B II = 0, B 12 = 0, 

A z = - (2ez/3c3) w~~, B22 = !eZSE(wZ)~' (4.3) 

The stationary solution of this Fokker-Planck equation 
has been discussed by Boyerl2 and Claverie and Diner.6 Ifwe 
take the zero-point spectrum 

S E(W) = (2-1i/3c3) I W I 3, 

then it is 

p = (1/2r~) e - 2521fi. 

(4.4) 

(4.5) 

Note thatp is the density in the full phase-space (52,53' 
'YJ2' 'YJ3)' The reduced phase-space density, W(5z), is ob
tained by integrating over 53' 'YJz and 'YJ3 and is 

W(52) = 8r52P 
= (4/-li2) 52 e - 25211", (4.6) 

which is the result given by Claverie and Diner. 

(ii) For the linear oscillator (Ref. 11. p. 85) 

H=wo(251 +52)' (4.7) 

and therefore 

WI = 2wo and W2 = Wo' (4.8) 

The fact that WI = 2w2 means that the orbit is closed, and 
leads to so-called "hidden degeneracy" in the quantum-me
chanical energy levels. The only nonzero coefficients in the 
Fourier expansion (2.11) are Co and C _ I , which are related 
to 51 and 52 by 

Ico 12 = 2( 51 + 52)1mwo, (4.9) 

Ic _11 2 
= 251/mwo· (4.10) 

Hence the Fokker-Planck coefficients to be substituted in 
(3.18) for this case are 

Al = - (4ezw6/3mc3) 51> 

A z = - (4ezw6/3mc3) 52' 

BII = (2e2w6/3mc3) 1151' 

BI2 = - (2e2w6/3mc3) 1151' 

B22 = (2e2w6/3mc3) fl(251 + 52)' 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

where we have again assumed the zero-point spectrum (4.4). 
The stationary state in this case has been known at least 

since 1963. 1 It is 

(4.16) 

Again, we note that, as in the previous example, if we wish to 
express this as a reduced phase-space density in ( 5 J , 52) we 
have to multiply by a factor 16~52 to take account ofinte
grations over 53' 'YJ J , 'YJ2' and 'YJ3' 

(iii) For the Kepler system9 

H = - mZ 2e4/2( 51 + 52)2, (4.17) 

and therefore 

(4.18) 

As in the previDus example, we have a closed orbit, which 
leads to degeneracy of the quantum-mechanical energy lev-
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els. The Fourier expansion of the position vector on the 
Kepler orbit is 13 

+
. _ _ (51 + 5z)Z 

Xn lYn - en - ----
mZeZ 

(J~(n€) 1] In(n€)) 
X ---+----, 

n € n 
(4.19) 

where 

1] = 5z/( 51 + 5z) and € = (1 - 1]2)112. (4.20) 

Substituting in (3.20)-(3.24), we obtain for the Fokker
Planck coefficients 

AI= 
2mZ 4elO 

! n3(n - 1)/~, (4.21) 
3e3 (51 + 5Z)5 

Az = 
2mZ 4elO 1 ! n'l~, (4.22) 

3e3 (51+52)5 

BII = 
mZ4elO f! ! nZ(n - l)Zlnl/~, (4.23) 

3c3 (51 +52)5 

BI2 = 
mZ4elO f! ! n2(n - l)lnl/~, (4.24) 

3c3 (51+52)5 

B22 = 
mZ4elO f! ! n2Inl/~, (4.25) 

3c3 (51 + 52)5 
where 

In = J ~ (n€) +!l I n (n€) . (4.26) 
n € n 

I t is a rather formidable tasks to obtain a closed form for 
the coefficients and then to find solutions of (3.18) with these 
coefficients. The very limited progress we have so far made 
will be reported in the next section. 

5. THE DETAILED BALANCE CONDITION 

The Fokker-Planck Eq. (3.5) may be expressed in the 
form 

ap + divJ = 0, 
at 

where 

J = Ap - B·gradp. (5.1) 

The quantity J may be called the current density associated 
with the probability density p. 

We have shown in a separate article lO that the condition 
that the process be invariant under time reversal, known as 
the condition of detailed balance, is that the current associat
ed with the stationary distribution should be zero, that is 

J o = A Po - Bograd Po = O. (5.2) 

This implies that the drift vector A and the diffusion matrix 
B satisfy the potential condition 14.15 

B - IA = - gradl,b (5.3) 

for some scalar l,b. 
Let us see whether the drift and diffusion coefficients 

obtained in the previous section satisfy this condition. We 
first examine the component of Jo associated with 53' 
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J = A - B apo _ B apo _ B apo (5.4) 
30 3PO 13 aE:- 23 aE:- 33 aE:- . 

~ I ~2 ~3 

Using the rotational symmetry, we have seen that the last 
term on the right-hand side is zero, and that the remaining 
terms satisfy the relations (3.13)-(3.15). Hence 

J - 53 (A B apo B apo ) 
30 - 52 2PO - 12 a

51 
- 22 a

52 

_53 J 
- 20' 

52 
(5.5) 

We have therefore found that, in order to establish de
tailed balance for three-dimensional systems with rotational 
symmetry, it is sufficient to show that the first two compo
nents of the current density vanish. 

In the case of the three-dimensional rigid rotator, we 
are left with just one condition 

2e2 
3 .2 e2 

3 .2 apo - -0)2rOP - -0)2rO h -- = O. (5.6) 
3c3 3c3 a52 

This is satisfied by the stationary distribution (4.5). Indeed, 
it is generally the case that one-dimensional systems satisfy 
the detailed balance condition, and by (5.5) we have effec
tively reduced this system to one dimension. 

Now consider the three-dimensional linear oscillator. 
We are left with two components of Jo 

2e
2
0)6 ( apo apo ) 

JIO = - 3mc3 251Po + IiSI a51 - IiSI a
52

' (5.7) 

2e
2
0)6 ( apo apo ) 

J20 = - 3mc3 252PO - IiSI a51 + f!(251 + 52) a
52 

' 

(5.8) 

Again the stationary distribution (4.16) makes both of these 
components vanish. The vector B- 1 A has the components 
( - 4/f!, - 21f!, 0), so that (5.3) is satisfied with 
l,b = (4~\ + 252)1f!· The stationary density is a constant 
times e - <1>, and this is generally the case where the potential 
condition is satisfied. 

The rather satisfying trend apparently established by 
these two examples is, however, broken by our third case, 
that of the Kepler system. We begin by carrying out a change 
of variable 

5' = 51 + 52' 5~ = 52' (5.9) 

Then the transformed Fokker-Planck equation is 

ap -~(-A' +B' a
p

) ar- a5; iP ij a5 j , 
(5.10) 

where 

A;= (5.11) 

(5.12) 

(5.13) 

(5.14) 
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(5.15) 

(5.16) 

The detailed balance condition in the form (4.3) requires that 

a (B~2A'1 -B'12A~) a (B'IIA~ -B'12A 'I) 

as ~ B '11 B ~2 - B 12 = as 'I B '11 B ~2 - B 12 ' 

(5.17) 

and since both the bracketed expressions in (5.17) are func
tions of S 'I and S ~ through E only, this simplifies to give 

d (B ~2A 'I - B '12A ~) d (B '11 A ~ - B '12 A 'I ) 

dE B 'II B ~2 - B '122 = - 'Tf dE B 'II B ~2 - B A . 
(5.18) 

The series occurring on the right-hand sides of (5.11)
(5.15) may all be expressed as power series in E, convergent 
for lEI < 1. The first few terms of each are as follows: 

I 4f2 3...2 45 4 35 6 n = 1 + e: + - E + - E + "', 
n 8 4 

(5.19) 

(5.20) 

717 7435 6 
'" n41nlf2 = 1 + 7~ + _E4 +--E + "', 
~ n 32 144 

(5.21) 

3 2 ...2 179 4 1249 6 
"'n Inlf =1+3e:-+-E +--E +"', 
~ n 32 144 

(5.22) 

I 21 If2 1 ...2 33 4 151 6 n n = +e: +-E +--E + .... 
n 32 144 

(5.23) 

The expressions occurring on the left- and right-hand sides 
of (5.18) have the expansions 

_!!.. (B ~~A '1,- B '12~ ~) 
dE B lIB 22 - B 12 

=Ii- I (~_~E3 + ... ) 
8 32 ' 

(5.24) 

d(B'IIA~-B'12A'I) z_I(1 173+) 'Tf- =71 -E--E ... 
dE B;IB~2 -BA 8 32 ' 

(5.25) 

and we conclude that the Kepler system does not satisfy the 
condition of detailed balance. 

We have also investigated the detailed balance condi
tion in the neighborhood of'Tf = O. The series in A 'I and A ~ 
can, in fact, be summed explictly and give 

(5.26) 

(5.27) 

The series in B 'II , B'12 and B ~2 are more difficult to sum, 
and we have so far only been able to obtain the leading terms. 
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We find that 

In4lnlf~ 

= 4h V3 ['Tf- 8 _ ~ 'Tf- 6 + O('Tf- 510g'Tf)], (5.28) 
tr 15 

In3lnlf~ 

= 4hV3 ['Tf-5-~'Tf-3+0('Tf-210g'Tf)]' 
3tr 5 

(5.29) 

hV3 [2 ] In2lnlf~ =-tr- 'Tf- 2+ 5 10g'Tf+O(I) . (5.30) 

We then obtain 

d (B~2A'1 -B'12A~) 3trV3 2 
- = ----'Tf +"', 
d'Tf B ;IB ~2 - B12 40h 

(5.31) 

_ ~(B'l1A~ -B'12A 'I) 
'Tf " , 

d'Tf B l1B 22 - B 12 

54trV3 
= 125h 'Tf 10g'Tf + "', (5.32) 

so that the condition of detailed balance is not satisfied near 
'Tf = 0 either. 

The above results will make it very difficult to find a 
stationary solution of the Fokker-Planck equation for the 
Kepler system in stochastic electrodynamics. Nevertheless, 
the expression of the Fokker-Planck Eq. (5.1) in the form of 
a conservation law gives us some hint as to how to proceed. 
The physically accessible part of phase space is defined by 
the following inequalities: 

O<S'I' (5.33) 

O<s~ <S'I' 

- S~ <s~ <S~· 

(5.34) 

(5.35) 

A norm-preserving solution of (5.1) will satisfy the boundary 
condition that the normal component of J vanishes on all the 
boundaries. Now, from (5.5) we see that./or any probability 
density, this condition is satisfied on the boundaries S ~ = S ~ 
and S ~ = - S ~, and from (5.19)-(5.23) it follows that, for 
S ~ = S 'I , that is E = 0, the condition is again satisfiedfor any 
probability density. 

Now Fellerl6 has classified the types of boundary points 
which occur in the case of one-dimensional diffusion pro
cesses. Ifwe limit our attention to common solutions of both 
the Fokker-Planck and Kolmogorov (or "forward" and 
"backward") equations, then they may be classified as "nat
ural boundaries in the extended sense" (to include Feller's 
"natural", "entrance" and "exit" categories) and "regular" 
boundaries. In the latter case the norm-preserving condition 
that the current is zero at the boundary has to be imposed, 
while in the former it is automatically satisfied by all com
mon solutions. 

We have therefore found that all the finite boundaries in 
our phase-space are natural in the extended sense. This leads 
us to expect that it will be a fairly straightforward matter to 
find a minimizing functional for the stationary density, Po' 
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and hence obtain a numerical solution for Po, provided, of 
course, that such a stationary density exists. 

6. SUMMARY AND DISCUSSION 

We have shown that a mechanical system inateracting 
with the random field of stochastic electrodynamics may be 
treated as a quasi-Markov process in the action variables of 
the unperturbed motion. The resulting Fokker-Planck 
equation takes a fairly simple form for a particle moving in a 
central field, but except for certain rather special potentials it 
is still too complex for us to obtain even a stationary-state 
solution. 

The special potentials lead to Fokker-Planck equations 
which satisfy the detailed balance condition, and therefore 
the process is time-reversal invariant in these cases. We have 
now been able to extend the analysis of a rather less simple 
system, the Kepler system, far enough to show that it does 
not satisfy this condition. 

Boyer3 has already pointed out the feature which is 
common to both the rigid rotator and the harmonic oscilla
tor. For a given state of the system, that is for a given set of 
values of the action variables, it interacts only with one nar
row band offrequencies in the zero-point spectrum. A gener· 
ai, nonlinear system will continually be transferring energy 
in the radiation field among the various harmonics of its 
natural frequencies. 

Boyer found that, if we impose an extra condition called 
"radiation balance," namely that the mechanical system and 
the radiation field are both in a state of equilibrium, we come 
inevitably to the Rayleigh-Jeans distribution for the radi
ation and the Maxwell-Boltzmann distribution for the me
chanical system. He expresses the view that this is a crisis for 
stochastic electrodynamics, which can be saved only by go
ing over to a relativistic treatment. 

We offer an alternative view. We have pointed out in 
another articlelO that the frictional force in stochastic elec
trodynamics is much less closely related to the stochastic 
force than in other forms of Brownian motion. Indeed in the 
customary, retarded-potential, form of electrodynamics, 
there is no relation between them at all. If we turn to the 
alternative, Wheeler-Feynman, form of electrodynamics, it 
becomes possible to relate them in principle, but even then 
the extreme long-range nature of the electromagnetic inter
action means that the relation must be "global" rather than 
"local". And yet, in normal Brownian motion, the detailed 
balance condition does establish a relation between the fric
tional and stochastic forces. 

Another feature of the super equilibrium studied by 
Boyer is that if we impose radiation balance we find not 
merely that the net amount of radiation absorbed at a given 
frequency is equal to the net amount emitted. We also find 
that such a balance is established separately for each state of 
the mechanical system, that is for each set of values of the 
action variables. This property, which has been called "su
per-detailed balance," was pointed out to us by Peiia
Auerbach. 17 

We therefore propose that the failure of the general 
nonlinear system in stochastic electrodynamics to satisfy the 
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conditions of either detailed balance or radiation balance be 
regarded as a reflection of the fact that stochastic electrody
namics, like quantum mechanics, is a local rather than a 
global theory. We speak of equilibrium between a mechani
cal system and the radiation field of the rest of the universe, 
even though the latter is, quite patently, not itself in a state of 
equilibrium. To the criticism, which may be made, that we 
should not therefore model it with a stationary Gaussian 
process, we reply, in the manner of Boltzmann, that you will 
have to wait an awfully long time to see any departure from 
stationarity, especially if you measure your time in atomic 
units. 

We are grateful to Mr. E.J. Watson for showing us how 
to obtain the asymptotic expansions (5.28)-(5.30). 

We give here the derivation of the relations (3.13)
(3.16). 

APPENDIX 

Putting the Lorentz radiative reaction (3.2) into (3.6), 
and putting also 

SJ = X,P2 - X2P" 

we obtain 

A J = (2e 2/3mc3
) x 1 x'2 - x 2 x', 

= (2e 2/3mc3
) ( x A x).k , 

(AI) 

(A2) 

(A3) 

where k is the unit vector in the direction of the 3-axis. Simi
larly, putting 

S~ = (X2P3 -X3P2)2 + (x3P, -XIP3)2+(X,P2 -X2PI)2, 
(A4) 

we obtain 

A2 = (2e2/3mc J
) (x A x).I: , (AS) 

where L is the unit vector in the direction of the angular 
momentum. Now x is in the plane of the orbit, and hence 
x A x is in the direction of L, so 

/'.. , S3 
A] = L·kA 2 = -A2 • - S2 

(A6) 

The next two relations are obtained in a rather similar 
manner: 

2 f'" ati at3 Bi3 =!e BE(r) -::=-:-<t) - (t + r) dr. 
- oc apJ apJ 

(A7) 

Now both the vectorsaS I lap andas2 /ap are in the plane of 
the orbit, and therefore, by a repetition of the above 
argument 

B\3 = (S3 / S2)B12 and B 23 = (S3 / S2)B22 · (A8) 

Finally, comparing B33 and B22 , 

B33 =!e2 f~oc BE(r) x,(t)x,(t+r)+x2(t)x2(t+r) dr, 

(A9) 

(A 10) 

The 3-axis is, of course, fixed in space, but we are free to 
choose the direction of the others. We therefore take the 1-
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axis as the line of nodes (that is the intersection of the plane 
of the orbit with the ecliptic). We also introduce a 2'-axis 
perpendicular to the 1-axis, but in the plane of the orbit. 
Then, clearly 

x, = X z cosi, X3 = x~ sini, 

Also x,(t)x,)(t+r) =x~(t)x~(t+r), and therefore 

x, (t )x, (t + r) + X z (t )xz (t + r) 

=~ [1+(tjltDl x(t)·x(t+r). (A 12) 

Substituting (AI2) in (A9) and comparing with (AlO), we 
obtain the last of the required relations. 
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Nonequilibrium fluctuations in driven systems 
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Italy, 
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The validity of a fluctuation-dissipation theorem for nonequilibrium fluctuations in driven 
systems is discussed. It is found that the Gaussian assumption alone does not necessarily lead to a 
fluctuation-dissipation theorem but rather the Markov property must also be invoked. 
Consequences of the Gaussian-Markov assumption are: (i) the spectral density reduces to a sum 
of two independent contributions, one due to internal noise and the other to external excitations' 
and (ii) the mode of regression of nonequilibrium fluctuations is identical to the decay of ' 
fluctuations to equilibrium. Without the Markov assumption, time-varying external fields can 
induce additional correlations which: (i) influence the regression of fluctuations; and (ii) 
invalidate the fluctuation-dissipation theorem. 

1. INTRODUCTION AND SUMMARY 

One of the cornerstones of nonequilibrium statistical 
mechanics is the fluctuation-dissipation (FD) theorem I 
which represents a generalization of Nyquist's theorem2 to 
nonequilibrium thermodynamic processes. Nyquist's theo
rem relates the electromotive force due to thermal agitation 
of electrons in a conductor to the resistive properties of the 
circuit. This is to say that the power spectrum or spectral 
density of the noise, S (E;liJ), due to a fluctuating emf, E, is 
related to the real part of the complex impedanceZ (liJ) by the 
formula 

S(€,liJ) = 4kB T.ReZ(liJ), 

where kB is Boltzmann's constant and Tis the absolute tem
perature. The generalization of Nyquist's theorem, com
monly referred to as the fluctuation-dissipation theorem, 
states that the change in the state of a system due to the 
action of an external (or fluctuating) force is accompanied by 
the absorption of energy whose rate is equal to that at which 
the energy is dissipated in the system. 

There is, however an ambiguity to the FD theorem in 
that it apparently makes no difference as to whether the fluc
tuations occur spontaneously from equilibrium, i.e., internal 
noise, or whether they are the result of an imposed con
straint. Let us recall that the Callen-Welton I derivation of 
the FD theorem requires the action of an external force, yet, 
the same results can be obtained by considering spontaneous 
fluctuations that are formally caused by the action of ficti
tious "random" forces. 3 That the system be insensitive to the 
way in which fluctuations occur is not intuitively obvious; 
Onsager and Machlup4 have pointed out that this is, indeed, 
a very strong postulate: for a Gaussian process, it can be 
shown to be equivalent to the Markov assumption. More
over, it is not self-evident that a FD theorem should be valid 
for systems in which fluctuations are caused by both random 
forces and external, time-varying constraints.5 

We preface our remarks by clearly stating the limita
tions of our analysis. The first and foremost limitation is that 
the FD theorem is not valid beyond the linear approxima
tion,6 if the process happens to be nonlinear. This is to say 
that fluctuations in the emf need to be so small that nonlinear 

terms are unimportant. We shall guarantee this by treating a 
linear process so that there will always be present a Nyquist 
noise with an equilibrium temperature. In the Langevin de
scription of a random process, in terms of noise sources (cf 
Sec. 2), the assumption that the random force is a Gaussian 
random variable together with the linearity of the process 
implies that the process is normal. 

Within this limiting framework, we show that on ac
count of the Gaussian-Markov postulate, we may carryover 
many of the equilibrium results to nonequilibrium fluctu
ations in driven systems. In particular, we obtain a FD theo
rem for the internal noise contribution to the spectral density 
even for slow, nonstationary processes for which it still 
makes sense to define a spectral density. We show that for 
Gaussian processes, the Markov assumption reduces the to
tal spectral density to a sum of two, independent contribu
tions: one due to internal noise for which there exists a FD 
theorem, relating the central second moments of the fluctu
ating variables to the dissipative properties of the system, 
and another contribution to the spectral density due to exci
tations that are caused by a time-varying, but otherwise arbi
trary, external force. In other words, we show that the Gaus
sian assumption alone does not necessarily guarantee the 
validity of the FD theorem. 

The FD theorem establishes a power balance between 
the rate at which energy is absorbed by the system and the 
rate at which energy is dissipated in the system. In physical 
terms, we may say that the system does not have the capacity 
to "store" energy (cf. Sec. 4), so that there cannot be nonin
stantaneous responses to external perturbations. This is 
guaranteed by the Markov assumption. We therefore con
clude that for Gaussian processes, the Markov assumption is 
also required to ensure the existence of a FD theorem. Alter
natively, for non-Gaussian-Markov processes, we are no 
longer able to express the spectral density as a superposition 
of internal noise and external excitations. Consequently, a 
FD theorem is no longer expected to hold. 

Intuitively, we may say that regardless of whether fluc
tuations are occurring from an equilibrium or a nonequilib
rium state, provided the process is Gaussian and the system 
does not remember how it got into the given state (i.e., the 
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Markov property), there exists a FD theorem and the regres
sion of fluctuations is not influenced by time-varying, exter
nal constraints. 

The latter statement can be considered as a generaliza
tion of the Onsager regression hypothesis to time-varying, 
external forces. We recall that the Onsager regression hy
pothesis states that the regression of spontaneous fluctu
ations obeys, on the average, the deterministic (phenomeno
logical) law for the decay from the same nonequilibrium 
state back to equilibrium, when it has been produced by a 
constraint which is suddenly released. 7 Implicit in Onsager's 
hypothesis are: (i) the Markov assumption-the inability of 
the system to remember and (ii) the Gaussian assumption
the identification of the average with the most probable be
havior. A regression theorem for Markov processes has been 
given by Lax8 which does not make use of the Gaussian as
sumption. The utility of Lax's regression theorem is that it 
generalizes the Markov property from classical to quantum
mechanical systems by providing an appropriate factoriza
tion of the multitime density matrix. Limiting ourselves to 
the analysis of random processes that are both Markovian 
and Gaussian, which according to the generalized Doob 
theorem9 must be linear Fokker-Planck processes (cf. Sec. 
3), we find that the regression of fluctuations to a nonequilib
rium-steady state in driven systems is identical to the regres
sion of fluctuations to the state of equilibrium. This leads us 
to believe that Gaussian-Markov processes behave as if they 
were in equilibrium with respect to certain degrees of free
dom while other degrees offreedom may be in a nonequilib
rium state. 

In Sec. 2 we briefly remark on the generalization of the 
Wiener-Khintchin theorem to slow, nonstationary pro
cesses. We then evaluate the autocorrelation function under 
nonequilibrium conditions by a method alternative to that of 
the characteristic function. 10 Under the Gaussian-Markov 
assumption, we find that fluctuations regress to a nonequi
librium steady state, or slowly evolving state, in the same 
way that they regress to the state of equilibrium. However, as 
a result of time-varying external fields, the mean value of the 
fluctuating variable is time-dependent and there will be an 
additional contribution to the spectral density at nonzero 
frequency due to external excitations. In order to gain an 
understanding of why external excitations have no effect on 
the regression of fluctuations, we perform a perturbation 
analysis in Sec. 3, using the path integral formulation of 
Gaussian nonequilibrium processes. 11.12 We find that the 
time-varying external field destroys the principle of micro
scopic reversibility since it can only create excitations and 
has no influence on the reverse transitions. 

Finally, in Sec. 4 we show that, granting the Gaussian 
assumption, it is the Markov assumption that is responsible 
for our finding that the regression of fluctuations is not influ
enced by time-varying external fields. This is accomplished 
by comparing our results of Sec. 3 with those of a forced 
harmonic oscillator, to which we apply the operator formu
lation of nonequilibrium statistical thermodynamics. 12 We 
observe that the external field causes virtual transitions to 
and from neighboring excited states in the forced harmonic 
oscillator and this influences the way in which fluctuations 
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regress. Moreover, the Markov assumption is violated since 
the system now remembers how it got into a given state. And 
on account of the fact that the system can store energy in the 
field, all responses need not be instantaneous; the system can 
manifest non instantaneous responses to external 
perturbations. 

2. THE WIENER-KHINTCHIN THEOREM FOR SLOW, 
NONSTATIONARY PROCESSES 

The Wiener 13 -Khintchin 14 theorem relates the spectral 
density S (a;w) of a stationary, random process a(t) to the 
autocorrelation function C (t ) through a Fourier cosine 
transform: 

S (a;w) = 4 f" C (t) coswt dt. (2.1) 

The derivation of (2. 1) makes use of the property that the 
statistical characteristics of the random process are invar
iant under time translations. A generalization of the theorem 
to slow, non stationary processes can be achieved under the 
conditions that the mean value m(t) = (a(t» and the auto
covariance A (t) = ([a(t) - m(t )][a(O) - m(O)]) change 
slightly over times of the order of the correlation time 7'c' 
defined as 

This is to say that a spectral density may be defined as 

S (a;w,t ) = 2 f: oc C (t,t + 7')e - iWT d7', 

provided the following conditions are fulfilled l5
: 

dm dA 
7'c - -(m and 7'c - -(A. 

dt dt 

(2.2) 

(2.3) 

(2.4) 

The major difference between the stationary and slow, non
stationary definitions of the spectral density, (2.1) and (2.3) 
respectively, is that in the latter case, the autocorrelation 
function depends not only on the time difference but also 
upon the absolute time. In Sec. 3 we shall see that conditions 
(2.4) require the external force to vary slowly over times of 
the order of the inverse of the damping constant. Our analy
sis of fluctuations that occur in slow, nonstationary pro
cesses is now directed to the evaluation of the autocorrela
tion function appearing in (2.3). 

Hashitsume lO was probably the first to note the some
what curious fact that time-varying exernal forces, acting on 
linear systems, have no influence on the autocovariance ex
pression describing the regression of fluctuations. He ana
lyzed the case of Brownian motion of a driven harmonic 
oscillator and found that the expression for the autocovari
ance was not modified by a time-varying electric field. Since 
this finding will be shown to be due to the Gaussian-Markov 
assumptions, it will suffice us to analyze the stochastic differ
ential equation: 

Rit + sa = X (t ) + x(t ). (2.5) 

By writing down Eq. (2.5), we have taken a Langevin de
scription of the linear random process a(t), in which the 
noise source that generates the process is represented by the 
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random force x(t). In the absence of the random force, Eq. 
(2.5) describes, for example, an RC circuit with an external 
emf, X (t ). We assume, for generality, that the external force 
is time-varying but is otherwise completely arbitrary. 

In the Langevin noise source formulation, the fluctuat
ing force is taken to represent thermal noise which is always 
stationary with a uniform spectrum. In order to be consis
tent with the fact that Eq. (2.5) describes, on the average, the 
deterministic evolution of the system, it is essential to as
sume that the conditional mean of the random force 
vanishes: 

(2.6) 

for any given initial value ao. The Markovian property arises 
from the condition that the correlation function of the fluc
tuating force at two different times vanishes. In order to have 
a random process, it is necessary to assume that there is a 
sudden change in behavior at t = to, or, in other words, that 
the fluctuating force is <5-correlated 

(x(t )x(to» = 2D<5(t - to), (2.7a) 

where D is the diffusion coefficient, given by the Einstein 
relation: 

(2.7b) 

Finally, the property that a is Gaussian follows from the 
observations that the average of the fluctuating forces over 
short time intervals is normal and that the process is linear. 

The autocorrelation function is defined as 

(2.8) 

where the angular brackets mean 

subject to a = a(t) and a o = a(to). It is important to bear in 
mind that we make no reference to an equilibrium ensemble 
in defining (2.8), as in the Kadanoff-Martin '6 definition of 
the equilibrium time correlation function. 

In order to evaluate the autocorrelation function, we 
must first determine the two-joint probability density func
tion (pdt), wz(a,ao)' Our task is simplified considerably by 
invoking the Markov assumption [cf. (2.7a)]. We can then 
write the two-joint pdf as a product of the conditional pdf 
wl(a,t lao,to) and the single pdf wo(ao), viz., 

(2.10) 

Substituting (2.10) into (2.9) reduces the autocorrelation 
function to a single integral 

(a(t )a(to» = J: 00 (a(t» a, aolUo(ao) dao' 

where (a(t» a, is the conditional average: 

(a(t» a, = J: '" awl(a,t lao,to) da. 

We now have to evaluate the two-joint pdf (2.10). 

(2.11) 

(2.12) 

Rather than employing the method of characteristic 
functions 10 to evaluate the pdf, we choose the more intuitive 
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method of solving the Fokker-Planck equation 

a a a2w 
-w= -\(ya-X(t)/R)wl +D-, (2.13) 
at aa aa2 

where y = s/ Rand w is any member of the hierarchy of pdf. 
The explicit evaluation of any pdf from the Fokker

Planck equation depends on the imposed initial and bound
ary value conditions. Solving the Fokker-Planck equation 
(2.13) subject to the condition 

w = <5 (a - a o) for t = 0, (2.14) 

say, by the method of variation of parameters, 17 we obtain 
the expression 

wl(a,t lao,O) = 121TkB [1 - exp( -2 yt )]lSJ- 1/2 

X exp( - Q 12k B), (2.15) 

for the conditional pdf, where 

Q = sla - aoe - yt _ R -I 

X L exp[ -y(t-u)]X(u)duI2/(1-e- 2Yt ). 

(2.16) 

If we allow a long enough time to elapse, it is natural to 
suppose that the system will forget its initial condition and 
the conditional pdf will go over into the single pdf. Assuming 
that the system has evolved from the state ao = ° at some 
very distance time in the past, to = - 00, due to the action of 
a time-varying, external force, we obtain the solution to the 
Fokker-Planck equation: 

Woo (a,t) = (S/21TkB)1/2 exp{ - sla - R-' 

X J~", exp[ -r<t-U)]X(U)dU I2/2kB}, 

(2.17) 

which is the single pdf of the "aged"system. It should be 
noticed that (2.17) does not coincide with either a stationary 
X = const, or an equilibrium, X = 0, pdf. For slow, nonsta
tionary processes, however, (2.17) will play the role of the 
single pdf in the autocorrelation function expression, (2.11). 
Now inserting expressions (2.15) and (2.17) into (2.10) and 
then into (2.9), we obtain the expression for the autocorrela
tion function: 

C(t,to) = (kB/S) exp[ - y(t - to)] 

+ {R- ' foo exp[ -y(t-U)]X(U)dU} 

X{R-' J~oo exp[ -y(to-U)]X(u)dU}. 

(2.18) 

The autocorrelation function and autocovariance are 
related by 

A (t) = C(t) - m 2(t). (2.19) 

Knowing that 

met) = R -I f~oo exp[ - r<t - u)]X(u) du, (2.20) 

which is a particular solution of the deterministic equation 
associated with the stochastic differential equation (2.5), we 
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get the expression for the autocovariance from (2.19): 

A (t - to) = (kBIs) exp[ - r(t - to)]. (2.21) 

From this result, we conclude that for Gaussian-Markov 
processes, fluctuations regress in driven systems in exactly 
the same way as they do to the state of equilibrium. In other 
words, it shows that time-varying, external forces have no 
influence on the regression of fluctuations in Gaussian-Mar
kov processes. 

The spectral density, (2.3), can now be computed by 
taking the Fourier transform of the autocorrelation func
tion, (2.18). We then obtain 

S (a;w,to) = S (a - m;w) + S (X;w,to), (2.22) 

where the contribution of the internal noise to the spectral 
density is still given by Nyquist's theorem 

w2S(a - m;w) = 4kB T·ReY(w), (2.23) 

where Y(w) is the admittance 

Y(w) = (R + sliwtl/T. (2.24) 

The important result which follows from (2.22) is that for 
Gaussian-Markov processes, the total spectral density is the 
sum of two, independent contributions: one coming from 
internal noise and the Olher from external excitations. 

In the particular case of stationary, periodic excita
tions, X (t) = Xo exp(iwot), the spectral density (2.22) re
duces to 

w2S(a;w) = 4kB T·ReY(w) +417R -IIXoI2 

X ReY (wo)c5 (w + wo). (2.25) 

In words, (2.25) states that periodic, external excitations will 
only contribute to the noise spectrum when they are in reso
nance with the natural frequencies of the system. In view of 
this result, it is interesting to recall Richardson's5 conjecture 
that there need be no connection between the admittance 
function that describes the regression of fluctuations and the 
response of the system to external excitations. Expression 
(2.25) shows that the admittance functions must be identical 
for periodic, stationary excitations. 

To conclude this section, we compare our results with 
those of Lax. 18 Lax took into account that fluctuations were 
occurring from a nonequilibrium steady state implicitly 
through the values of the coefficients in the Langevin equa
tion. He then proposed that a Nyquist relation for nonequi
librium fluctuations be given by 

w2S(a;w) = 4kBT.ReY(w)1], (2.26) 

where 1] is the correction factor: 

1] = (slkB )(a2
), (2.27) 

measuring the deviation from equilibrium where 1] = 1. 
Lax's analysis applies to fluctuations from a nonequilibrium 
steady state which is maintained by time-independent exter
nal constraints. The spectral density of such processes is giv
en by 

S (a;w) = S (a - m;w) + 41Tm2c5(w). (2.28) 

The c5 function in the second term is due to the fact that the 
condition of stationariness requires the mean value to be in
dependent of time. From expression (2.28), we observe that 
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the only difference in the spectral density of fluctuations oc
curring from equilibrium or a nonequilibrium steady state, 
maintained by time-independent external constraints, is a 
shift in the power spectrum. We therefore conclude that the 
case of time-independent external constraints is uninterest
ing since there are no qualitative differences in the spectral 
density for fluctuations occurring from equilibrium or a 
nonequilibrium steady state. Our approach differs from that 
of Lax's in that we have taken the constraints, which are now 
time-dependent, explicitly into account. 

3. TIME-DEPENDENT TRANSITION PROBABILITIES 

In the last section, we gave the conditions for which a 
spectral density can be defined for slow, nonstationary pro
cesses [cf. conditions (2.4)]. Considering the solution of the 
averaged Langevin equation, in which <x(t) a, = 0, we ob
serve that conditions (2.4) will be satisfied provided the ex
ternal force varies slightly over times of the order of r -I. In 
this event, we can treat the external force as a small, time
dependent perturbation and apply time-dependent perturba
tion theory to the Fokker-Pla'nck equation (2.13). 

The Fokker-Planck equation may be formally written 
in the operator form: 

aw _I A 

- = (2kB ) Fw, at (3.1) 

where the symbol" A" is used to distinguish an operator from 
an ordinary function. Rather than studying the properties of 
the Fokker-Planck operator ft, it will prove advantageous to 
apply the "gradient transformation,,19 

w(a,t) = exp( - s f a da/2kB }¢ (a,t), (3.2) 

where20 

f a da = !a2 
- ~<a2), (3.3) 

to Eq. (3.1) and study the properties of the Hamiltonian op
erator iI, defined by the Schrodinger-type equation: 

a¢ = _ (lr)(rRa2 _ 
at 2 2kB 

kB a2¢ 
+ R' aa2 

/'.. 

=GkiJl)H¢. (3.4) 

For a vanishing external force, Eq. (3.4) becomes identical to 
the Schrodinger equation for a harmonic oscillator. This 
would lead us to suppose that for a small external force, the 
Hamiltonian H can be decomposed into an unperturbed part 
Ho and a perturbed part HI: 

H = Ho + HI' (3.5) 

Ho is a self-adjoint operator and possesses a complete set of 
eigenfunctions that correspond to those of a harmonic oscil
lator, viz., 
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where 

i.e., Hn is the nth degree Hermite polynomial. 
The transformed Fokker-Planck equation, (3.4), is 

comparable to the Schrodinger equation of a forced harmon
ic oscillator (cf. Sec. 4) in the presence of a vector potential. 
In analogy with the Feynman path integral formulation of 
quantum electrodynamics,21 we define a kernel G (a,t lao,to) 
which propagates the function ¢ from one point in a-space 
and time to another point at a later time according to the 
integral equation 12 

¢ (a,t) = J: oc G (a,t lao,to)¢ (ao,to) dao' (3.8) 

This integral equation bears a striking resemblance to the 
Chapman-Kolmogorov equation and it is a consequence of 
the Markov assumption. In the absence of the external force, 
the perturbed Hamiltonian HI vanishes and the kernel can 
be expanded as a bilinear sum of orthonormal functions, 
(3.6), multiplied by exponential decaying functions oftime l2 

Go(a,t lao,to) = I ¢n(a)¢n(ao) exp[ - rn(t - to)], 
n=O 

(3.9) 

with rn = ny. In the presence of time-varying external 
fields, the time dependence will no longer be given by a sim
ple exponential factor and instead we write: 

G(a,t lao,to) = I I Anm (t,tO)¢n(a)¢m (ao), (3.10) 
m=On=O 

where the time-dependent transition probabilities Anm (t,to) 
have now to be determined. 

We express the kernel in the path integral form l2 

(3.11 ) 

The connected integral sign denotes an average over all pos
sible paths which begin in state a o at time to and terminate in 
state a at the later time t. The Lagrangian L, in the present 
case, is 

L (a,a,t) = !R I (a - x (t )IR )2 + ya2 
- 2yaX (t )IR ), 

(3.12) 

which is seen to be a combination of the Lagrangian of a 
charged particle in an electromagnetic field and a forced har
monic oscillator. We could now apply time-dependent per
turbation theory by expanding the exponential in (3.11) as a 
power series in the external force and calculate the time
dependent transition probabilities to any desired orderin the 
external force. 22 However, if we note that our process is 
Gaussian and formally corresponds to a forced harmonic 
oscillator, which can be solved in closed form,21 then we 
realize that the transition probabilities are also obtainable in 
closed form. 

1830 J. Math. Phys., Vol. 21, No.7, July 1980 

Using the Gaussian property, we equate average and 
most probable values so that the path average of the negative 
exponential of the action II 

A = f L (a,a,t) dt, (3.13) 

in expression (3.11) for the kernel can be replaced by 

G (a,t lao,to) 0:: exp{ - (2kBtl [ f L (a,a,t) dt L,,}, 
(3.14) 

Thus, the Lagrangian must satisfy the Euler-Lagrange 
equation: 

!!...(J~)_ JL =0 or a-ya=R-I(X-yX), 
dt Ja Ja 

(3.15) 

which is similar to the equation of motion of a forced har
monic oscillator. The relation between the Euler-Lagrange 
equation, (3.15), which is a necessary condition for the extre
mum of the action (3.13), and the averaged Langevin equa
tion can be deduced by writing the Euler-Lagrange equation 
(3.15) in canonical form. 

Defining the conjugate momentum variable /3 in the 
usual fashion, 

(3.16) 

and taking the Legendre transform of the Lagrangian (3.12) 
with respect to the velocity, we obtain the Hamiltonian: 

H(a,/3) = JL a - L =/3a - L, 
Ja 

(3.17) 

whose corresponding operator has already been defined by 
Eq. (3.4) using the "quantization" condition23 

t3=-2kB~' (3.18) 
Ja 

The canonical form of the Euler-Lagrange equation (3.13) is 
now given by the pair of equations: 

. JH 
a=-

J/3 

. JH 
/3= --. 

Ja 
and 

Introducing the linear transformation 

S = !(a - /3 Is), 17 = !(a + /3/s), 

(3.19) 

(3.20) 

the canonical equations (3.19) are converted into the desired 
form: 

t + YS = R -IX(t), 

r, - Y17 = o. 
(3.21) 

(3.22) 

Equation (3.21) will be recognized readily as the averaged 
Langevin equation. In the case of a vanishing external force, 
the two equations are mirror images of one another; the gen
eral solution is a superposition of decaying and growing ex
ponentials that manifest a symmetry in past and future. 24 

The presence of the external force destroys this symmetry 
and also the reversibility of transitions between any two non
equilibrium states. We shall now investigate this symmetry 
breaking in greater detail. 

Setting T = t - to, we write the general solution of the 
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Euler-Lagrange equation (3.15) as 

a(r) = ao coshyr + (cioly) sinhyr + R-' 

X f X(t)exp[ -r(r-t)] dt. (3.23) 

The time integration in (3.13) can now be performed explic
itly and we find 

A = (s/2 sinhyr) [(a2 + a~) coshyr 

(3.24) 

where 

<P=R-' f exp[ -r(r-t)]X(t)dt. (3.25) 

The kernel can thus be written in the closed form: 

G (a,rlao,O) = (se yr /4rrkB sinhyr)1t2 exp( - A /2kB)· 
(3.26) 

The time-dependent transition probabilities in expres
sion (3.10) are now obtainable by multiplying it by ¢J. (a) and 
¢Jm(ao) and integrating over all a and a o. The result can be 
written in the form of a matrix element of the kernel 

(3.27) 

Of particular interest is the probability of transition from the 
equilibrium or "ground" state to the first excited state which 
we shall refer to as the 0---+ 1 transition. The transition prob
ability is: 

A\O(r) = (¢J,(a)IG(a,rlao,O)I¢Jo(ao» = (S/kB)1t2<P. 
(3.28) 

Calculating the transition probability for the reverse transi
tion, i.e., the 1~0 transition, we obtain the surprising result 
that AOI(r) vanishes. This implies that time-varying external 
fields destroy the principle of microscopic reversibility 
which equates the frequencies offorward and reverse transi
tion at equilibrium.25 In Sec. 4, we shall see that this symme
try breaking is due to the Markov assumption which, for 
Gaussian processes, means that the system does not remem
ber how it got into the given state. 

If the reverse transition probabilities did not vanish, 
then the virtual transitions to other states could take place 
leading to a modification of the autocovariance expression 
(2.21). That is, the transition probability for the decay of a 
fluctuation from the first excited state would be given by 

AII(r) = (¢JI(a)IG(a,rlao,O)I¢JI(ao» 

+ I (¢JI(a)IG(a,rla',t)I¢J.(a'» 
• 

(3.29) 

with 'I> t)O. In expression (3.29), we have introduced a 
complete set of states to take into account virtual transitions. 
Due to the finding that the transition probabilities of all re
verse transitions vanish, expression (3.29) gives the correct 
temporal dependence of the autocovariance (2.21), viz., 

A 11('1) = (¢JI(a)IG(a,rlao,Q)I¢JI(ao» = exp( - yr). (3.30) 

Therefore, for Gaussian process that are also Markovian, we 
find that although time-varying, external fields create exci
tations, they have no influence on the decay of a fluctuation 
from a given state. 
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4. ELEMENTARY EXCITATIONS IN NONSTATIONARY 
PROCESSES 

In this section, we show by comparison with the forced 
harmonic oscillator, that the inability oftime-varying exter
nal fields to influence the decay of a fluctuation from a given 
nonequilibrium state is due to the Markov property. In Sec. 3 
we treated the external field as a perturbation in a Schro
dinger-type equation describing a harmonic oscillator. In 
analogy with quantum field theory, it would appear advan
tageous to introduce the creation and annihilation operators 
of second quantization 12 

at = (~)1/2(~ _ ~), 
S 2kB Ja 

(4.1) 

~ _ (kB )112( sa J ) a- - --+ - . 
s 2kB Ja 

(4.2) 

It is easily seen that these operators obey the commutation 
relations for Bose particles. 

In terms of the creation and annihilation operators, the 
Hamiltonian of the transformed Fokker-Planck equation 
(3.4) is 

(2kBt1H = yata - (S/kB)1/2R -IX(t)at, (4.3) 

which bears a striking resemblance to the Hamiltonian of a 
forced harmonic oscillator 

(2kBtIH[ = yata - (s/kB)1/2R -IX(t)(a + at). (4.4) 

The Hamiltonian (4.3) can be used to derive the Heisenberg 
equations of motion for the annihilation and creation opera
tors, viz., 

(4.5) 

(4.6) 

These equations of motion are analogous to the pair of ca
nonical equations (3.21) and (3.22). Their solutions are 

a(t) = exp( - yt)a + (s/kB) 1t2R-1 

X J~ 00 exp[ - y(t - u)]X(u) du, (4.7) 

at(t) = exp(yt)at , (4.8) 

which clearly display the asymmetry caused by the external 
field in the creation and destruction of elementary 
excitations. 

The time dependencies of these operators can be written 
in a more compact form by defining the operators, 

So = exp( - yatat), (4.9) 

(4.10) 

with 

E(+)=(s/kB)1/2R-1 J~oo exp(yu)X(u)du. (4.11) 

With the aid of these operators, the solutions of the equa
tions of motion, (4.7) and (4.8), can be written in the generic 
form 

A (t) = U-1(t}AU(t), (4.12) 
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for any operator A and U (t ) is the time development 
operator, 

(4.13) 

We are now in a position to express the moments as 
expectation values of particular combinations and products 
of the creation and annihilation operators over the ground 
state 10) = ¢lo' Likewise, ¢l1 corresponds to the first excited 
state, 11), and so on. The mean value m(t) is given by the 
expectation value 

m(t) = (kBIs)1/2(01 [ii(t) + iit(t) J 10) 
= (kBIs) 1/2(01 U- 1(t )iiU (t )10) = (2.20). (4.14) 

The autocorrelation function is given by the expression 

A (t) = (kBIs) (Olii(t )iit(O) 10) 

= (kBIs)(OI U-\t )iiU(t )iitIO) 

= (kBIs)(OI [ii + g( + lJiitlO) exp( - yt) = (2.21). 
(4.15) 

The steps leading to the final result in (4.15) have been writ
ten out in detail in order to demonstrate that the external 
field has no influence on the decay of fluctuations from a 
given state. In the language of second quantization, we say 
that the operator g ( + liit does not have a conjugate operator 
g( -)ii which would induce de-excitations. It will now be 
appreciated that, in comparison with the forced harmonic 
oscillator, the presence of the conjugate operator g( - lii is 
incompatible with the Markov assumption. 

In the case of the forced harmonic oscillator, whose 
Hamiltonian is given by (4.4), the operator SI in (4.10) must 
be replaced by 

SIJ = exp[~(g( + liit + g( - lii)], 

where 

(4.16) 

g(-l= (slkB)1/2R-l j''' exp(-yu)X(u)du. (4.17) 

Following the same procedure, we now find the mean value 
and autocovariance are given by 

mit)=(2Rtl{J~00 exp[ -y(t-u)]X(u)du 

- Joo exp[y(t-U)]X(U)dU}, (4.18) 

Ait ) = (kBIs) exp( - yt ).exp [ - (yI2kBR) J~ 00 du 

X Joc dVX(V)X(u)e-Y(V-Ul], (4.19) 

respectively. The autocovariance expression for the forced 
harmonic oscillator, (4.19), clearly shows that the time
varying external field has an "influence" on the decay of 
fluctuations from a given nonequilibrium state. 

A result, similar to (4.19), was first obtained by Feyn
man21 who used the forced harmonic oscillator as a model to 
study the interaction of charged particles with the electro
magnetic field. Using his Lagrangian formulation of nonre
lativistic quantum mechanics, Feynman found it possible to 
eliminate the coordinates of the field, considered as a set of 
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uncoupled oscillators, and to recast the problem in terms of 
the coordinates of the particles alone. The effect of the field 
was to cause a delayed interaction between the particles and 
it was described by an "influence functional," similar to the 
second exponential factor in (4.19)26 

The fact that the system now has the capability to store 
energy, as witnessed by noninstaneous responses to external 
perturbations, implies that the process has acquired a "mem
ory" and is therefore no longer Markovian. The time-vary
ing external field can now induce virtual transitions to and 
from neighboring excited states and these additional correla
tions manifest themselves in the mode of regression offluctu
ations. Furthermore, since the system has the capacity to 
store energy, the power balance between the rate at which 
energy is absorbed by the system and the rate at which it is 
dissipated in the system, as required by the FD theorem, will 
no longer be fulfilled. Consequently, eventhough the process 
is Gaussian, a FD theorem will not be valid since it is no 
longer Markovian. 
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It is shown that point splitting may be used to regularize arbitrary Feynman amplitudes and 
Taylor subtraction terms of the type found in the Zimmermann formulation (BPHZ) of 
renormalized perturbation theory. Point splitting refers to the Fourier transformation of the 
Feynman integrand with respect to the internal (loop) momenta. It is shown that this has the 
effect in configuration space of breaking open the circuits of the diagram. The regularization may 
be removed, interchangeably, before or after the propagator epsilon is taken to zero in the sense of 
distribution theory. This result is proven elsewhere but is mentioned here for its importance. The 
result may make the method useful in establishing the unitarity of BPHZ. Two appendices 
contain a review of circuit-based graph theory and a demonstration that an arbitrary circuit based 
graph may sometimes have no realization as a graph. 

1. INTRODUCTION 

A point split Feynman amplitude is the Fourier trans
form with respect to the internal (i.e., loop) momenta of the 
integrand corresponding to the diagram for the amplitude. 
The method can be thought of as a generalization of the 
Wilson-Zimmermann work on point split operator pro
ducts. Zimmermann introduced the notion of normal pro
ducts l in which operator products are defined from Green's 
functions by the LSZ reduction formalism. The point at 
which the multiplied operators are to be evaluated appears 
as a special vertex in the Feynman diagrams for the Green's 
functions. These Green's functions are then calculated from 
the diagrams by using renormalized perturbation theory. 
The Wilson expansion2 for the product of two operators at 
two different points [e.g., A (x)A (x + t )1 led to the Wilson
Zimmermann proof3 that this expansion is valid in perturba
tion theory. In this proof, the splitting of the special vertex in 
configuration space corresponds in momentum space to a 
Fourier transform with respect to the internal momenta of 
the lines incident on the special vertex. This approach was 
generalized to more complicated classes of operator pro
ducts by Clark.4 

In the present work, we study the effect of splitting ev
ery loop of an arbitrary Feynman diagram or subtraction 
term. Since we do not focus on any special vertex, and since 
the effect is to regularize the ultraviolet divergencies, it 
seems more appropriate to call the result circuit breaker reg
ularization, but we will often use the earlier term. 

The regularization of Feynman diagrams has been 
shown to be superfluous in that renormalized amplitudes 
may be calculated without it. In particular, this is true of the 
Zimmermann formulation (BPHZ)2,5 of the Bogoliubov
Parasiuk-Hepp (BPH)6,7 method of renormalization. Al
though a regularization may suggest a subtraction proce
dure, it may be possible to independently define the proce
dure. In the case of BPHZ, the need for regularization is 

"'The research reported in this paper was supported in part by the Max
Planck-Institut fUr Physik, Miinchen, and by the binational German and 
American Fulbright Commision in Bonn. 

obviated by the combining of subtraction terms before inte
grating with respect to the internal momenta. 

Yet for other purposes, the need for regularization ap
pears difficult to escape. For example, in Lagrangian field 
theory, it seems impossible to look for a relationship between 
divergent Lagrangian counter terms and the subtraction 
procedures of perturbation theory without regularization. 
Bogoliubov used Pauli-Villars for this purpose.6 

Partly out of a desire to avoid nonphysical divergencies 
altogether, the axiomatic viewpoint has leaned toward using 
the renormalization procedure to define Green's functions 
which in turn may be used to construct a field theory, per
haps by way of the retarded functions. 8 This approach re
quires a demonstration of unitarity. 

Zimmermann used Pauli-Villars regularization to 
sketch a heuristic argument for the unitarity of BPHZ. I His 
argument remained incomplete. As he pointed out, he need
ed to assume the validity of interchanging the propagator 
limit with the limit in which the regulator is removed. 

Circuit breakers permit one to freely exchange these 
limits,9,10 They may therefore be helpful in completing the 
proof of unitarity. 

If regularization is, finally, to be thought an unneces
sary complication, circuit breakers seem to minimize this 
complication. Instead of multiplying the integrand by 
strange factors, inserting additional lines in the diagram, we 
merely study the Fourier transforms of the integrands. The 
original value is then recovered as a particular value, that at 
the origin, ofthe transform, The study of a function and of its 
Fourier transform seem, in principle, hardly different. For 
this reason, point splitting appears to be a peculiarly natural 
way of regularizing. 

2. THE FORMAL MEANING OF POINT SPLIT FEYNMAN 
AMPLITUDES 

Consider a connected graph, r, consisting of vertices, 
VI V2, .. ·, Vv and of lines, L aba , where Laba is the oth line 
connecting Va and and Vb' To each vertex Va we assign an 
external momentum qa (possibly fixed at zero) with ~aqa 
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= O. To each line Labu we assign: 

(1) an internal momentum kabu subject to the 
conditions 

(a) kabu = - k hau 

and 

(b) Ikabu = 0, 
b 

(2) an external line momentum qabu subject to the 
conditions 

(a) qabu = - qbau 

and 

(b) Iqabu = qa. 
bu 

(3) a total momentum 

Pabu = kabu + qaba 

and 
(4) a propagator, .1abu (Pabu)' 

We specify an arbitrary specific routing of the external mo
mentum by means of a set of external momentum routing 
coefficients. These are numbers C~~CT' which define a solution 
of the conditions in (2) through the equation 

(2.1) 

Condition (2) subjects the external momentum routing coef
ficients to the equivalent conditions: 

and "c(j) = oj L aba a' (2.2) 
bCT 

The set of vertices Va forwhichqa is fixed at zero will be 
called internal (int) and the complement of this set will be 
referred to as the external (ext). 

Wherever no confusion results, we use the multi-index 
notation 

(dq)exI = II dqa' and (dq) exl = (dq)ex,ldql' 
GEext 

The un subtracted amplitude associated with the graph 
is then "formally" 

)' r(q) = f<dk)[!! .1abCT (PabCT)][!J o (qa) ][O(~)a)] 
a> b tnt 

X [II O(Ikabu )]. (2.3) 
a¥1 bu 

Note that the momentum conservation at the arbitrar
ily chosen first vertex is omitted since it is already implied by 
the remaining conditions. 

In order to define a point split amplitude, one further 
assigns to each line: 

1834 

(5) a breaking (i.e., splitting) parameter S abCT' 
subject, for convenience, to the condition 

Saba = - Shaa' 
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The point split amplitude is now formally obtained by 
replacing the integral over the internal momentum, in Eq. 
(2.3), with the Fourier transform with respect to the internal 
line momenta. The breaking parameters are then the coordi
nates conjugate to the internal line momenta. 

We complete this section by formally examining the 
point split amplitude in coordinate space: 

Jr(Z,S) 

= f(dq) exp(i~qaZa»)' r(q,S) 

= f(dq) exp(i~qaZa) f(dk) [ !! .1abCT (PabCT) 

a>b 

X eXP(ikabCTSabCT)] 

X [!J 0 (qa) ] LIJI0 (i?abCT ) ]O(~qa) 
Inl 

= f(dq)ext(dk)(dX) exp(??aZa + i~Xai?abCT )O(X I) 

exl 

XO (Iqa)[II .1abCT (PabCT) exp(ikabCT sabCT)] 
aE aha 

ext Q> b 

= f(dq)ext(dP)(dX) exp[i I qaza +! I SabCT (PabCT 
aEext aba 

-I C~~CTqj) + IXa ( - qa + DabCT)]O(X I) 
JEext a ba 

X [ !! .1abCT (PabCT) r(?;qa ) 

a>b ext 

= f(dq)exI(dX) eXP[iIqj(Zj -!I SabCTC~~CT - Xj)]O(X I) 
JEext aha 

X [II LlabCT(SabCT + Xa - Xb) lo(Iqa) 
aba J aE 

a> b ext 

= f(dq) exl (dx) exp{i I qj [Zj - ZI - ~ ISabCT(C~~CT - C~~CT) 
a¥- 1 jEext aba 

NI 

- Xj + xd}o(x l) II LlabCT(SabCT + Xa - Xb) 
abu 
a>b 

= f(dx)[n O( Zj - ZI -! I SabCT(C~~CT - C~~CT) - xj )] 
jEext aba 

j¥1 

X [II LlabCT(SabCT + Xa - x b) lo(x l). 
aba J 
a>b 

(2.4) 

In the above, we have made use of the properties described in 
the line assignments (I) to ( 5). We now perform a translation 
in every Xj by an amount ( - ZI + ~~abCTSabCTC~~CT)' and we 
assume, to keep the notation a little simpler, that LlabCT(Z) 
= LlabCT( - z). This results in 

J r(z,S) 
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= J(dX)int [ II L1aba( Za -! ~ Sgdp c~':lp - Xb)] 

a>b 
1\ (aEext) 1\ (bEmt) 

X [ II L1 aba (Xa - Xb + Saba)] 
aba 

(a> b) 1\ (aEint) 1\ (hEint) 

X [ !! L1 ( Za -Zb -! ~ Sgdp(C~':lp - C~~~») J 
(a> b) 1\ (aEext) 1\ (bEex!) 

(2.5) 

The geometrical effect of the splitting parameters is 
thus to change the (xa - x b ) of internal propagators by an 
amount Saba, thus splitting apart, as it were, the end points of 
the internal line and, as it were, breaking open the loop, if 
there is one involved. The other effect is to introduce a kind 
of additive displacement of the external vertices, a displace
ment which is linear and homogeneous in ( S) and which 
depends on the internal momentum routing coefficients. 

This expression, Eq. (2.5), has the difficulty that it is not 
clearly defined for the case that the propagators are chosen 
to be Feynman propagators. Bogoliubov and Shirkov,3 for 
example, derive 

where J I , N I , and KI are the Bessel, Neuman, and modified 
Bessel functions, respectively, of first order, and m is the 
mass. The term-by-term singularities of this expression 
make it inconvenient for studying the convergence proper
ties of /( z, S). An examination in Feynman parameter 
space, however, proves quite tractable. In fact, the singulari
ties effectively cancel for appropriately chosen breaking pa
rameters in arbitrary neigborhoods of the breaking param
eter origin. 

3. RENORMALIZED AMPLITUDES: A REVIEW OF BPHZ 
AND FORM OF THE TYPICAL TERM 

To be complete, point splitting will be studied in the 
context of a renormalization prescription. We choose BPHZ 
because it is clear, reasonably simple, and, in common with 
some, but not all other procedures, it is valid for all dia
grams, including those with overlapping divergencies. We 
begin with a brief review of the Zimmermann forest 
formula. 1,5 

A r forest, U, is a set of nonoverlapping proper diver
gent subgraphs of the graph r. We designate the lines of any 
graph, r, by I rl· For any Ik Ir I, the reduced graph r lIis 
defined as the graph that results from reducing each line of I 
to a single vertex. Each line of r that was connected to the 
lines of I is then connected instead, at the same end, to this 
new vertex. The lines of I itself are deleted. We define 

c 

F(U)=rl u I Yil, 
i= 1 
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whereYI, .... Yc are the maximal subgraphs ofrin U. The set 
of all the y( U) with yE U partitions r into disjoint parts so 
that every line and every vertex of r is a line or vertex of one 
and only one such reduced graph. 

For each proper y~ r. subgraph momentum variables 
are defined in relationship to the subgraph in the same way 
as they previously were for the graph, i.e., as linear solutions 
to 

and 

(3.1) 

(3.2) 

(3.3) 

where ~ba y means that the values of the indices abO' are re
stricted to those which indicate lines of y. The solutions al
lowed are further restricted by the requirement that they be 
"admissible," i.e., of the form 

k ~b~ = kaba(k), 

or, in other words, independent of q. An example of such a 
solution is the set of canonical momenta. 1,5 

For convenience, we define forest variables k ~~2 and 
q~~2 according to the rules 

(3.4) 

where Y is the element of Ufor which LabaEI y(U)I. 

Subgraph variables may be expressed through the use of 
momentum routing coefficients: 

with 

q ( y) - "C(j)rq,r 
aha- - L abO' J' 

j 

and k (abY~ = "d (J) Y k .... L aba i' 
j 

and " C(j) Y = b j 
L aba Q' 

ba 

(3.5) 

(3.6) 

The forest formula then states that the renormalized 
Feynman amplitude in momentum space is the integral over 
any admissable set of independent (loop) momenta of 

(3.7) 

where 

abO': 

Lul.uElrl 

(b) Sy causes the variables of all subgraphs of Y to be 
expressed in terms of the variables of Y, 

(c) ty is the Taylor operator of degree appropriate to r 
(i.e., greater than or equal to the superficial degree of diver
gence of y) in the variables q;, 

(d) the product over graphs is taken according to the 
rule that whenever!l C r, then ( - tl-' SI-') is placed to the 
right of ( - tySy), 

(e) F is the class of all r-forests, and 
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(t). the product over elements of the empty forest has 
unit value. 

Lemma 3.1: The forest formula may be rewritten as 

Rr=Sr I Ir(U) II[-tySyly(u)(U)], 
UcF YEU 

where the factors are written according to Eq. (3.7 d), and 
each Taylor operator operates on everything to the right of 
it. 

Ir(U) = II [IJ'(U)(U)], (3.8) 
yE'"U 

Sy operators only on variables k I' and q I' such that,u C r, 
and ty operates only on expressions which are written in 
terms of q y. For this reason t

"
S!1 commutes with any factors 

IJiu) such that either ,uCr or ,unr = 0. Lemma 3.1 then 
follows directly from Eqs. (3.7) and (3.8). 

Theorem 3.1. The variables kab" and k ~~,; are related by 
an invertible linear transformation. 

Proof The fact that k ~~,; = k ~~,; (U) is required by the 
definition of k u, Eqs. (3.1 )-(3.4), and the admissibility re
quirement. We will prove the existence of the inverse rela
tion by an induction. To this purpose we define UO = 0, and 

UJ=UJ-Iu{rlr is minimal in U_UJ-l}. (3.9) 

We recall that an element of a forest is said to be minimal in 
the forest iff the forest contains no subdiagram of that ele
ment. It is clear that 

(3j) U J = U, (3.10) 

since otherwise U could not have a finite number of 
elements. 

Since l' (0) = r, Eq. (3.4) trivially gives for all lines 

proving Theorem 3.1 for this case. 
Now suppose that Theorem 3.1 is true for U replaced by 

U J. If U is replaced by U J + I, each line of r will fall into one 
of three categories: 

(i) LabaElrW)")1 ~ Ir(U)I, that is, the line is not in 
any graph of either UJ + lor UJ with the possible exception of 
r itself. Then, by definition, 

(ii) r EUJ + I, rEUJ, and Lab"Ely(U ')1. In this case we 
keep the previous solutions of Eqs. (3.1)-(3.3), that is 

(iii) rEUJ t I, and ri=U J, and Lab"EI y( U J + 1) I. 
For case (iii) we rewrite Eq. (3.1): 

(3.11 ) 

where q~b~' is a linear combination of the q~. From Eq. (3.3) 
we find 

Now c is vertex of r, and the members of a forest do not 
overlap. Furthermore, by the definition of U J, r is a maxi-
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mal member (i.e., is not contained in any other member) of 
UJ + I. Therefore every line ending at c must be either in r or 
in 1'( U J , I). Equation (3.2) with r = r requires 

F(u' ') y 
o = I kcba = I kChCT + I k chCT . 

h(T ha ha 

This results in 

by case (i) of the present argument. Now we insert this result 
into q~b~' , in the expression for k aba , Eq. (3.11). The admissi
bility requirement is that the internal momenta be indepen
dent of external momenta. Applying this to Eq. (3.11) pro
duces the conclusion that the combination 

is independent of qa' Therefore in case (iii) Eq. (3.11) exhib

its kaba as a linear function of the k ~~" . 
In summary, in cases (i) and (iii) we have explicitly ex

hibited kaba as a linear combination of the k '/;'" 1 • 

If Laba is a line of case (ii), the induction hypothesis tells 

us that k ahu is a linear combination of the k '/;1" Then either 

k U' k V'II 
cdp = cdI' , 

for cases (i) and (ii), or L cdp belongs to case (iii), whereupon 
L cdp if (U J), and therefore 

k ~~ = kCd!, = kCd!, (k U' "), 

by the argument of case (iii). We conclude that Theorem 3.1 
is true by induction on). 

For convenience, we shall drop the operator S r from 
the forest formula, Eq. (3.7). This has no effect on the value 
of R r since S r only determines the values used to express 
R r' We examine the terms arising from any particular forest 
U in the expression of Lemma 3.1. Each ly( U) is expressed 
in terms of the subgraph variables k U and q u. Let us examine 
the case that r is a minimal element of U. Then Sy has no 
effect since y( U) = r. The only factors to the right ofIy(U) 
are associated with subgraphs which are disjoint from r. It is 
clearthatty operates only the factor ly( U), which is a prod
uct of propagators, one for each line of r, of the form: 

X(~) =i/[(kY +qy )2_M2 
f Uhf' abO' abO' 

+ iE[(k ~ba + q~ba)~ + M2] J. 

we here make the simplifying assumption that all propaga
tors are associated with the same positive mass, M; it should 
be possible to generalize from this. Therefore, when r is 
minimal, tyly(U) contains terms which, up to constant fac
tors, are all of the form 

aba: 

XII(qavr'" II(k i!1r;". (3.12) 
a,l' i./1 
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We proceed from this to develop the general form. 
Theorem 3.2: The terms in R r corresponding to a given 

r forest U are all, to within multiplicative constants, of the 
form: 

v=3 p=3 
i=m j=v , 

Ir(u)(U) II (k %f'v II (qjpfjl' 
i= I j= I 

v=O p=o 

x II 
abu 

LaooE 

ITI- iF( U)I 

where the k i
U are any m independent internal forest mo

menta, and the various niv ,nip' and nabu are all non-negative 
integers. 

Proof We again use the uj defined in the proof of Theo
rem 3.1. For U = UO = 0, r = r, and the theorem follows 
trivially with the various un" exponents all zero. 

Let YI' Y2"'" Yc be the maximal elements of U = uj+ I, 
and set U' = uj. Suppose that Theorem 2.2 is true if Uis 
replaced by U' and use this with Lemma 2.1 to write the 
terms associated with U in the form: 

Ir(U)CUI (- tYj Sy/rJ(U») 

X (IF(u,)tI1r(U') (U(k %y.v) 

II j,p abu: 

LaooElT 1- IF(U')I 

X [(k !'~u)~ + M2] J - naM. 

Note that the lines of each r/U) are excluded from the last 
product. Also for this last product, the lines all belong to case 
(ii) of Theorem 3.1, and therefore k ~~ may be replaced by 
k !,~. These factors are then all independent of qjU and there
fore may be commuted to the left of the remaining Taylor 
operators. We next use Theorem 3.1 to rewrite the powers of 
k % as polynomials in k % which also commute with the Tay
lor operators. Using Equations (3.1) and (3.3), the factors of 
q!,' may be rewritten as polynomials in q!, and k y The effect 
of the Taylor operators on these does not alter the form. The 
effect on the factors of I Yj (U) is just to produce more factors 
of the form ofEq. (3.12). Thus Theorem 3.2 is proved by 
induction on the uj, 

4. CIRCUIT BREAKER REGULARIZATION 

We develop explicit forms for the point split, or open 
circuit, terms. 

Definition 4.1: The point split Feynman amplitude for 
positive E corresponding to a graph r (the r-psFa), J<;')( 5,q) 
is 

J<;')( S,q) = f(dk) R <;')(k,q) exp( .t klS) , 

IEITI 

where R <;')(k,q) is given by the forest formula, Eq. (3.7), and 

(dk) = IT dkj , 

j= I 
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where m is the number of independent line momenta (or 
circuits) in r, and kl' k 2, ... ,km constitute a basis. 

As a result ofZimmermanns' convergence proof, 1,5 the 
r-psFa integral coverges absolutely and uniformly in 5. 

It would seem natural to define a point split forest term 
(psft) for a graph from the expression for the r-psFa by 
replacing R <;.) by the typical forest term given in Theorem 
3.2. 

However we find it convenient to first express the typi
cal forest term as an integral over a Feynman parameter 
space by recourse to the usual Gaussian form identity: 

(.Jt= [p~)=}dP)exp( -jt/j.J-J (4.1) 

We make the usual change of variables defined by 
L L-I 

A. = I Pj , Pj = A.aj , a L = 1 - I aj . (4.2) 
j=1 j=1 

Equation (4.2), together with the positivity of all Pj , 

result in the usual properties of the Feynman parameters: 

(a)PL = (1- ~~II aj)A., 

L 

(c) 0 < Pjl I /3i = P/ A. = aj < 1 and 
i= 1 

L-I 

0< I a j <1, 
j= I 

(d) 0 < a L <1, and 

(e) (dP) = dA. (da) A. L-I, 

(4.3) 

The region for the (a) integration, Ra , is defined by 
Eqs. (4.3c) and (4.3d). 

We use Eq. (4,2) in Eq. (4.1), with L = n, and obtain 

(.J t = r da roo dA. A. n - I exp( _ A..J -I) 
JRu JA=O 

1 I'" = d P P n - I exp( _ p.J -I), 
(n -I)! p=o 

(4.4) 

where the last integral is obtained by another change of var
iables and the well-known value of the (a) integration. This 
results in 

II (.J <;!t = II [(n l -1 )!]-I 
" I 

IEITI 

X L~o dP,P7,-1 exp[ -PI(.J~)tl] (4.5) 

= II [(nl - 1 )!]-I i (da) II (a7,-I) 
I R" I 

X roo dA.A. N
-

1 exp [ -A. Ial(.J ~)tl], 
JA=O I 

(4.6) 

where I nl = N. Equation (4,6) is obtained from Eq. (4.5) 
I 

by using the change of variables, Eq, (4.2), once more, this 
time with L being the number of lines of r. 

Definition 4.2: A point split forest term (psft) for a 
graph r is obtained from the expression for the r-psFa, 
Definition 4, 1, by substituting the parameterized form of the 
typical forest term, Eq. (4.6), for R <;.) and performing the 
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internal momenta (k) integrations before performing the pa
rameter integrations. 

Dropping multiplicative constants, the psft is then of 
the form: 

T(€)(S,q) = II(qavr~' i (da) 
a,v Rn 

with 

x1}(a/,-I) i~od A AN-1f(dk)eXP(G)U(k ~r'" 
(4.7) 

G = L{ - Aa, [Li ~;(p/U»]-I + ik, s,l , 
pf' = k f' + qf' = k, + q" for IElr(U)1 

= k f' = kr foriElr( U)I, and 
m 

(dk) = II dki· 
;= 1 

By Theorem 3.1 

k, = I d;k f' and 
i=1 

m 

k r; -= L d f'i k f', 
;= 1 

(4.7a) 

(4.7b) 

(4.7c) 

(4.8) 

where the lines have been numbered so that the first k f' are 
any m independent forest momenta. The numbers d f'i and 
d; are referred to as forest routing and momentum routing 
coefficients, respectively, and are related to circuit 
coefficients. 11 

For convenience we will suppress the line indices when 
they are summed over and use 

(4.9) 

Our principal result follows. 
Theorem 4.1 : Circuit breaking is a regularization. That 

is, for any psft there are real values of the breaking param
eters in every neighborhood of the origin for which the inte
grals defining the psft converge; for these values of the break
ing parameters, if the integrals over the internal momenta 
are performed first, then the integrals over the Feynman pa
rameters, Eq. (4.7), are absolutely convergent (ac). 

Remark: The necessary restrictions on the breaking pa
rameters will be stated at the end. 

Proof We first study the case that all the nil" in Eq. (4.7) 
vanish. Ignoring the factors of external momenta, Eq. (4.7) 
may then be replaced by 

T = i (da) II (a7' -I) roc dA A N -I f(dk U) 
R" 'Elrj J,1=O 

X exp { - L AadLi~) (Pf')]-I + i I (xjk n}. 
'Elrl j= 1 

(4.10) 
The internal momenta integrations are performed in 

the usual way by diagonalizing the positive semidefinite ma
trix A whose components are 

A
'j 

=dUiad Uj, (4.11) 
where the summation has been suppressed, as previously 
noted. The diagonalization is accomplished by means of an 
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orthogonal transformation: 

&k __ k, A __ A' = &Ad, det& = 1. (4.12) 

& defines rotated forest coefficients 
m 

i ,,//! Uj D, = .t... Vij d, , (4.13) 
j= 1 

which become an orthogonal set on scaling by Va,: 

!iJ; = v'-;;; D i, and!iJ i!iJ j = 0 for i i= j, (4.14) 

!iJi!iJj = (&Ad)ij 

According to Eq. (4. 7b), the external forest momenta q;: en
ter into Eq. (4.10) only in the lines of r ( U). Therefore we 
may, for convenience, redefine 

q, = 0 for Mlr( U)I, 

and 

= qabu = L C~bU qj for 1= LabuElr( U)I, 
j 

Q, = v'-;;; qt. 

The application of Eq. 4.12 to 4.10 then results in 

with 

(4.15) 

G = i L ( E j k ~ + A ! ( !iJ i)2(k ;)2 + 2( !iJ j Q) k ~ 
J 

where 

+ i€ [( !iJ i)2(k f')?- + 2( !iJ jQ ) k X ] J ) 

+ i A [Q 2 _ M 2 + i€(Q ~ + M 2) ], 

m 

:. j = L &ji Xi' 
i= 1 

(4.18) 

Completing the squares in the internal momenta of Eq. 
(4.17) and applying the appropriate (Wick) rotations of con
tours in the complex k U planes results in9 

(4.19) 

where 

(4.20) 

According to Eq. (4.14), the !iJ j constitute an orthogonal 
set. Therefore Bessel's inequality requires 
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~ (Q~1~ Q2 ~ ()2 ~()2 (421) o ,,~ r;)r 1\2 " E = ~ ql E al " ~ ql E . 
j (.;;z; -J I I 

in R" . Using Eq. (4.18) to invert the orthogonal transforma
tion then results in 

ReF"H= _€AM 2 

(4.22) 

Therefore the integrand of Eq. (4.19) is uniformly bounded 
by 

[A N -2m -I /(det A )2] til. 

We break the A integration into two parts: 

A = r'" dAA N -
2m

- 1 eH=AI +A 1, 
J,,~o 

A I = I d A A N - 2m - I til, 

A 2 = L'" dAAN-1m-1 eH. 

Choosing a sufficiently small, so that 

0<a"d4(1 +c)<€, 

(4.23) 

(4.24) 

(4.25) 

results in the integrand in A I being uniformly bounded by 
the integrand in 

A I " f: 0 d A A N - 2m - I 

xexp[(A-a -1).I (XIAI}I Xj») 
A '.J~ I 1 

< ~-2mexp[ - 1,%1 U'iAj}IXJ)E]. (4.26) 

Using 

b =€m1
, 

c- I =E[4(I+c)]-1 I (XIAI}IXj)E' and (4.27) 
i,j= 1 

n=N-2m-1, 

as well as 

dA=A 2cd(e-(AC) '), 

we integrate A 2 by parts twice. This results in 

Az = exp[ - ba - l/(ca) J 
X [_can + 2 +c2(n +2)an + 3 _bc2an + 4 ] 

+ c2 f'" d A [en + 2)(n + 3) An +2 

(4.28) 

- (n +2)b A n+3 - ben +4) A n+3 + b 2 A,'n+4] 

X exp[ -Ab-(cA)-I]. (4.29) 

The analysis of this integral proceeds from two formu
las obtained from circuit-based graph theory. I I These for
mulas are generalizations of those obtained for the unsub
tracted amplitude by Nakanishi. 13 A review of the necessary 
terminology and essential results may be found in Appendix 
I. These results are cast into a useful form by the next lemma. 
® is the generalized, or circuit-based graph, for the psft. 
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Lemma 4.1: At any point of Ra there exists a general
ized circuit of C of ® and a line r of ® such that for some 
generalized chord set T* in the class of all generalized chord 
setsY*(®), 

(a) II a l = sup II a l 
leT* TT leTt 

Ti"E.Y-·(~) 

(b) a, = inf ai' 
I: 

leT· 

(c) OlT*={rJ, 

and 

(d) I U',A I} I Xj)E 
i,j= 1 

>(~)(~,)CtlU'id~)~, with P>O. 

Proof Properties (a) and (b) are obvious. Property (c) is 
true if one chooses for C that circuit which is generated by 
the line, r ofT* defined by (b). The last property then follows 
from the first three and the equations (Appendix J) for det A 
and A I} I, using 'T for the number of distinct chord sets in 
Y*(®): 

detA 

"r( sup d~T) II a l = rD2 II al; 
T'I'E,Y' *(G}) leT. leT-

(4.30) 

therefore 

(4.31) 

with 

P = rD 2/ B ~ > 0, and D 2 = sup d ~* > O. 
TtE. '/'-.(l~) 1 

(4.32) 

The positivity condition, Eq. (4.32), is a result from circuit
based graph theory. The next to the last line ofEq. (4.31) 
follows from the fact thae I 

T* - {rJEY"(@/C). 

This completes the proof of Lemma 4.1. 
We return to the proof of Theorem 4.1. Referring to Eq. 

(4.29), we repeat the integration by parts a total of 2m times. 
The resulting integrated terms contain factors of band c 
which, by Eq. (4.27) and Lemma 4.1 (d), are bounded in R" 
except on a set of measure zero. A remaining factor of exp
[ -l/(ca) - ba] is similarly bounded since it is certainly less 
than an arbitrary positive power of ca multiplied by an ap
propriate constant. Since the integration by parts introduces 
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2m factors of c into the unintegrated terms, both types of 
terms are dominated in Ra by 

[(L m XdC)2]2m 
/=-1 I I E 

(4.33) 

with 0 <d = inf dT *. 
Tl'E'."/-«(\\) 1 

Here we have made use of Lemma 4.1 and Appendix I; also 
see Eq. (4.34) (below). 

Therefore the integrals converge absolutely and uni
formly in Ra providing only that the quantities 

m 

Xr: = I Xid):#O (4.34) 
i= 1 

for every generalized circuit e of®. Recalling Eq. (4.9), this 
condition is seen to be a finite system of inequalities which 
are linear in the breaking parameters. That is, we need only 
choose breaking parameters which do not lie in any of a finite 
number of hyperplanes. Since this may always be done, we 
have finished the proof of Theorem 4.1 for the case that the 
nil' #0 (no factors of internal momenta in the numerator of 
the psft). 

The case that the nil' ofEq. (4.7) are non vanishing is 
treated similarly. Eq. (4.16) is modified by the introduction 

of factors of(k t)""'. The (k U) integrations are then domi
nated by the exponential, except on a set of values of A. and 
(a) of measure zero, whose exponent is given by Eq. (4.17). 
Therefore, except on the set of measure zero, the (k U) inte
grations are ac uniformly with respect to S. For this reason, 
the factors of (k t) may be replaced by derivatives with re
spect to XiI" and these derivatives may be taken after perfor
mance of the (k U) integrations. The result is Eq. (4.19) modi
fied by factors of 

an [ i ] 
aX~, 4..1. (1 + E2) 

X 2: ( - Xi A ij' X jE + iEXiA i) 'XjE) ]. 
t.} 

(4.35) 

with n = 1,2. 
This introduces factors of 1/..1. which do not affect the 

convergence of the A. integral since Eq. (4.26) can be replaced 
by 

(" _ n [(A. - a ) ,"v -, ] A,,;;;)o dA. A. exp -..1.- - 1 ff i A ij XjE , 

which is bounded by the dominance of the exponential near 
A. = O. 

The factors of Ai}' do not affect the convergence of the 
(a) integral since, according to Appendix I, these factors are 
(bounded) polynomials in (a) divided by det A. Repetition of 
the integration by parts procedure of Eqs. (4.28) and (4.29) a 
total of m times for each factor of 1/ det A and repeated use of 
Eq. (4.33) produces the conclusion that the integrals remain 
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convergent when the nil' are arbitrary. This concludes the 
proof of Theorem 4.1. 

Corrollary to Theorem 4.1: The circuit breaker regular
ization remains valid for particles with spin. 

Proof The introduction of spin results only in altering 
the powers of internal and external momenta in the typical 
terms. 

A subsequent paper will examine the distributional and 
regulator limits for circuit breaker regularization. It will be 
shown that the regulator and propagator E limits may be 
freely interchanged after folding in a Schwartz test function. 
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APPENDIX I: A BRIEF REVIEW OF CIRCUIT BASED 
GRAPH THEORY 

Definition 1.1: A circuit based graph, elsewhere called a 
generalized graph, or g-graph, ®, is a set of lines to each of 
which is assigned an m-dimensional vector called the inter
nal momentum of that line. 

The internal momentum routing coefficients or forest 
routing coefficients serve as a representation of the set of 
internal momenta. 

Definition 1.2: A set oflines of a g-graph is said to be 
independent if the internal momenta of these lines constitute 
a linearly independent set. 

Definition 1.3. A generalized chord set or g-chord, 'f*, is 
a maximal independent set of lines of a g-graph. 

Definition 1.4: A generalized tree, or g-tree, 'f, is the 
complement in the circuit based graph of the g-chord. 

By using the internal momenta of any particular g
chord, 'f* = [l" ... ,lm J, as a basis, we may write the internal 
momentum of a line, of the circuit based graph as 

PI = f d;:'PI,. (1.1) 
i= 1 

Definition 1.5: A generalized circuit or g-circuit, ei , is the set 

of lines for which the routing coefficients d ;:'#0. 
The assignment of internal momenta thereby defines 

the circuits of the g-graph even though we have no idea of 
how to connect the lines into a graph (cf., Appendix II). The 
theory is in this way based upon circuit coefficients, in effect, 
rather than upon the more usual incidence matrix. This is 
the source of the terminology, "circuit based graphs." 

Definition 1.6: A class ofg-circuits, [e" ... ,em J, is called 
afundamental set orf-set of g-circuits iff it is a maximal class 
of g-circuits for which 

(Vk:1,;;;k,;;;m) ek rt. u ej • 

i 
}7'k 

We remark that in this definition no assumptions are 
made as to which chord sets give rise to the indicated 
circuits. 
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As a result of these definitions and particularly of the 

linear independence of the Pi with T* = {/I, ... ,/m }, it fol
lows that 

and 

d c . C:i 
j' =Uj' 

T*n Ci = {Ii }. 

(1.2) 

Therefore the g-circuits determined by Eq. (1.1) and Defini
tion 1.5 constitute anI-set. 

It also follows that ag-tree is a maximal set of lines 
containing n circuits, and therefore that every g-circuit inter
sects every g-chord in at least one line. 

An additional graph-like property of g-graphs is that 
every I-set of g-circuits, determined from an arbitrary assort
ment of g-chords, in turn determines at least one g-chord 
such that the second of Eqs. (1.2) is true, and the givenf-set 
can be thought of as generated [in the sense of Eq. (1.1) and 
Definition 1.5] by this g-chord. 

Definition 1.7: For any B such that Bk ®, the reducedg
graph ®/B, is the g graph consisting of the lines of ®-B 
together with the internal momentum assignments which 
these lines have in ®. 

Identifying d ~:i = d ri, one may obtain two useful for
mulas relating to the matrix A of Eq. (4.11): 

detA = ~ CU. a,) d~., 
with 

dT • = det dC, where d C is the matrix whose compo

nents are d ~i, while Y*(®) is the class of all g-chords in ®: 

A.--: 1 =_I_ 
IJ detA 

(1.3) 
T*: 

em T·E.T·«(ll/C) 

where the lines have been labeled so that the g chord whose 
internal momenta are used as a basis to define A is 
I 1,2, ... ,m}, andB ~ is positive definite; C (®)is the class of all 
g-circuits in ®. 

For a fuller development, the reader is referred to. II 

APPENDIX II: ON THE QUESTION OF THE GRAPHICAL 
REPRESENTATION OF CIRCUIT BASED GRAPHS 

We first note that every graph can be considered a cir
cuit based graph: one need only assign independent internal 
momenta to any chord set of the graph and use the vertex 
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conservation conditions to find the remaining momentum 
assignments. The g-chords, g-trees, and g-circuits of the 
graph are then identical with corresponding chord set, trees, 
and circuits of the graph. 

It has been shown that the internal momenta assign
ments corresponding to a forest term [a term associated with 
anyone forest in the forest formula, Eq. (3.7)] can also be 
thought of as arising from a single graph. 9 

In general, however, a circuit based grflph can not al
ways be thought of as having a realization as a graph. This is 
made clear by the following counter-example: 

® = {l,2,3,4,5,6,7,8}, T* = {l,2,3,4}, 

C 1 = 11,5,6), C2 = 12,5,7), C3 = (3,6,7,8), 

C4 = 14,5,8}. 

If there is a graphical representation, then Ci - T* = Pi must 
be a path. This permits only two different ways of connecting 
the lines of PI and P2 (cf. Fig. 1.) The only ways of attaching 
the line 8, because P3 and P4 are both paths, all involve intro
ducing a circuit. This is not permitted since ®-T* = Tis ag
tree and must be realized as a tree. Therefore, for any assign
ment of moment consistent with the given g-chord and g
circuits, ® cannot be realized as a graph. 

r~ 
FIG. I. 
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We use the method of orthonormal polynomials to investigate the large N limit of the two
dimensional lattice gauge theory. The 1/N 2 and 1/N4 corrections to the vacuum energy and the 
expectation value of the Wilson loop operator are calculated in the low temperature phase (A 

g2 N < 2). These corrections diverge at the transition point. In the high temperature phase we 
show that there are only corrections which fall exponentially as Nbecomes large, and hence there 
are no 1/N corrections in this phase. 

1. INTRODUCTION 

Recently much attention was devoted to the 1/N ex
pansion as a tool for computation in gauge theories. 1-4 Here 
Nis the order of the gauge group which is taken to be SU(N) 
or U(N). In a recent paper by D. Gross and E. Witten,4 two
dimensional lattice gauge theory has been considered. Al
though the two-dimensional theory is somewhat trivial, be
cause it can be reduced to a one plaquette problem, it has 
some interesting features from which one hopes to learn 
something about the behavior of the four-dimensional mod
el. For example, it was found4 that the two-dimensionallat
tice gauge theory has a third-order phase transition for 
N = 00, as a function of A g2 N, where g2 is the coupling 
constant of the model. 

In order to carry out the computation of the vacuum 
energy and the expectation value of the Wilson loop the au
thors used the saddle point method, which was developed in 
a previous work by Brezin, Itzykson, Parisi, and Zuber5 as a 
tool for calculating the N = 00 limit of the <p n theory. This 
method is not adequate for the computation of the 1/ N cor
rections to the leading behavior. Recently another method 
wad developed by D. Bessis,6 and simplified further by 
Parisi,7 for the counting problem in <p n theories. This meth
od has the advantage that 1/ N corrections can be calculated 
systematically. This method was extended and applied suc
cessfully to the two-matrix problem by M.L. Mehta. 8 

In this work we show how to extend the method of 
orthonormal polynomials due to Bessis to the case of inte
gration over the set of unitary matrices. Using this method 
we reproduce the two phases previously obtained by the sad
dle point method. It is amusing that in contrast to the saddle 
point method the calculation of the low coupling regime 
turns out to be simpler than the strong coupling regime. 

We proceed to calculate in the low temperature phase 
the next non vanishing corrections which are of order 1/N 2 

and 1/N4. The coefficients of these corrections diverge as 
A-2. In the high tempeature phase we are able to show that 
there are no 1/ N corrections at all, but the corrections are 
exponentially small in N. 

2. DEFINITION OF THE PROBLEM 

We consider the lattice formulation of the two dimen-

sional gauge theory.9 The dynamical degrees offreedom are 
unitary matrices Un,i associated with the links of the lattice, 
where n denotes the site and i the direction of the link. U is an 
N X N unitary matrix. The Wilson action is given by 

S(U) = ~ ~ Tr[~ U + H.C.], 
where the sum is over all the plaquettes. 

The vacuum-to-vacuum amplitude is 

z = f (DU) expS(U) 

and the vacuum energy density is 

a2 

Eo= --V lnZ, 

(2.1) 

(2.2) 

(2.3) 

where Vis the volume of the two-dimensional lattice, and a2 

is the volume of one plaquette. The expectation value of the 
Wilson loop operator is given by 

WL (g2,N) = ~( Tr I) u), (2.4) 

where L is a closed loop on the lattice. 
It has been shown3

•
4.10 that the functions defined above 

can be reduced to the one plaquette problem 

Z=(z)Vla' (2.5) 

and 

z(g2,N) = f dU eXP[;2 Tr(U + U+) l (2.6) 

Similarly one can show that for a rectangular loop 

WL(g2,N) = W
R

•
T

, 

where 

(2.7) 

w(g2,N) = ~ f dU ~ TrU exp [ ~ Tr(U + U+)] (2.8) 

and Ra X Ta are the dimensions of the loop. It is easy to 
obtain w from z by noticing that 

A 2 J Inz 
W= ---. (2.9) 

2N2 JA 

Denoting the eigenvalues of Uby e,O',j = 1, ... ,N and 
denoting by T the unitary matrix that diagonalizes U, one 
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has 

(2.10) 

where Li (X1, ... ,xN) is the Vandermonde determinant 

(2.11) 
i<j 

Since the integrand in z does not depend on T, the T-integra
tion can be performed trivially and one obtains 

ftT N dOi i(J, i(J 2 
z(A.,N) = constX -tT illl 21T ILi (e , .. ,e ")1 

2N N 
X exp--;- I cosOj • 

A. j=1 
(2.12) 

3. THE METHOD OF ORTHONORMAL POLYNOMIALS 

First let us note that the following identity holds: 

Li (ei(}, , ... ,/(J") = det [ei(j -1)(Jk] 

where 

(3.2) 

are arbitrary polynomials with the coefficient of the highest 
power equal to one. 

Let us now chose a system of polynomials which are 
orthonormal with respect to the measure 

w(O) = e(2N IA) cos(J, (3.3) 

i.e., 

(3.4) 

Note that Eq. (3.4) also defines the quantities hj • 

Letting a==2N I A. and using the shorthand notation In 
=In (a) for the modified Bessel functions with argument a, 
it is easily shown, using the formula 

I = I = ftT dO w(O )ein(J 
n - n _ tT 21T ' (3.5) 

that the polynomials Pn defined by (3.4) are given by 

10 II 12 In 

II 10 II 
Pn(z) = cn-

I det (3.6) 

In _I 10 II 

Z Z2 zn 

where 

Cn =det[Ik_dk.I=I"n' 

This is true sincePn (ei(J) is clearly orthonormal to e - im(J 
for any m < n with w( 0) as the measure. One notices that all 
the coefficients of P n (x) are real and therefore 

1843 

Pj *(ei(J) = Pj(e - i(J). 

We further notice that 
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(3.7) 

(3.8) 

Using (3.1) in (2.12) we expand the Vandermonde determi
nant and use the orthonormality properties of the polynomi
als to obtain 

N-I 

z(A.,N) = constXN! II hk· 
k=O 

(3.9) 

The constant is to be taken such that z( 00 ,N) = 1. 
But for a = 0, all In with n #0 vanish; therefore all hn 

are equal to unity and the constant in (3.9) has to be simply 
liN!. Hence 

N-I 

z(A.,N)= II hk =CN = det[Ik_/(a)h,/=I, .. ,N· 

k=O 
(3.10) 

This result agrees with a formula previously obtained 
by Bars and Green3 using a completely different method. We 
need to know the asymptotic behavior of the product of hj • 

To this end we shall now derive recursion relations for some 
of the coefficients of the polynomials ~. Let us define the 
coefficients Rj , Sj by 

z P/z) = PH I (z) + RjPj(z) + SjPj _ 1 (z) + .... (3.11) 

R j' Sj are, of course, real. Other relations we shall need are 

z2p/z) = PH2 (z) + (Rj + RH I )PH I (z) 

+ (Sj + Sj + I + R J) Pj + ... , 

ZP;(Z)=jP/z)+(jf Rk)~_I(Z)+'''' 
k=O 

z2P;(z) = j PHI (z) + .... 
Let us now calculate the following integral 

f 
dO dw(O) P I (ei(J) P(e - ill) 

21T dO j- j 

(3.12) 

(3.13) 

(3.14) 

= i: f ~: w(O)(ei(J_e-i(J)Pj_l(ei(})Pj(ri(J) 

iN 
=-(h -Sh I)' A. j j j-

(3.15) 

where we have used Eq. (3.11). On the other hand, the left
hand side of (3.15) is equal, using integration by parts, to 

-if dO w(O)ei(Jp~ p*+if dO w(O)p. e-i(Jp*' 
21T J-I J 21T j-I J 

= 0 + iC~ Rk)hj _ l , (3.16) 

where we have used Eq. (3.13). From (3.15) and (3.16) one 
obtains 

N j-I 
T (hj - Sjhj -I) = hj _I ~ R k· (3.17) 

Defining 

1; = hjlhj _ l , (3.18) 

(3.17) can be cast into the form 

N j-I 
-(1;-S)=IRk. 
A. 0 

(3.19) 

Similarly, computing in two different ways the integrals 

f dO ei(J d:~) Pj(ei(J) Pie - i(J), (3.20) 
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f dOei6 d:~) ~_I (ei6)Pj(e-i6), (3.21) 

one obtains, using relations (3.11)-(3.14), two other 
relations 

and 

~ (Rj +Rj-I)J; =j(I-J;). (3.23) 

Starting from 

Ro = II (a)IIo(a), (3.24) 

one can use Eqs. (3.19), (3.22), and (3.23) as recursion rela
tions for calculating all the coefficients Rj , Sj,J;. 

4.1/NEXPANSION FORz(A,N) 

We shall now evaluate the 1/ N expansion of the quanti
ty [see Eq. (2.43)] 

lIN-I 
- Eo(A,N) = -2 Inz(A,N) = -2 In II hi· (4.1) 

N N i~O 

This last expression can be written in the form 

We start by evaluating the leading order of (4.2). 
Defining 

. I 
x=L, E=-, 

N N 

(4.2) 

(4.3) 

we replace the discrete quantitiesJ;, Rj' Sj' by 

J; -f(x), Rj -R (x), Sj -S(x), 

RJ+ I -R (x + E)-R (x) etc., 

- 'IRk- R(y)dy. 1 ° 1" 
N 0 0 

(4.4) 

Then Eqs. (3.19), (3.22), and (3.23) take the form 

1 i" - [f(x) - sex)] = R (y) dy, 
A 0 

(4.5a) 

1 IX - [1-2S(x)-R\x)] =xR(x)+ R(y)dy, 
A 0 

2 
-R(x)f(x)=x[l-f(x)]. 
A 

(4.5b) 

(4.5c) 

Before solving these equations let us note the constraint 

O.;;;f(x),;;; 1 for O';;;x,;;; 1. (4.6) 

The argument goes as follows: clearly fj is positive for 
any j because, by the definition (3.18), it is a quotient of two 
positive numbers. Moreover, 

f dO 0(1 on on on hJo = -w«()P(e' )eIVe-lvP.*(e'V) 
21T } } 

=hj + 1 +Rj2hj+Sj2hj_1 +.", (4.7) 

where the dots stand for possible nonnegative terms only. 
Hence 
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2 s/ J; 1 = 1 - R - - - ... ,;;; 1 
J + } fj (4.8) 

because allfj are positive. 
From (4.5) one obtains the following integral equation 

for R (x) 

-----+ !R 2(X) - ! + ylxR (x) - yl R (y) dy x I" 
x + 2R (x)IA 0 

=~ ~~ 

By diffentiating we obtain a first order nonlinear differential 
equation for R (x), which is easily transformed into a differ
ential equation for V x + 2R 1 A 

(4.10) 

This equation has the trivial solution V = 21 A, which 
corresponds to 

R (x) = 1- 0x, 

f(x) = ylx, 

S (x) = - 0x(l - ylx). 

(4.lOa) 

(4.lOb) 

(4.lOc) 

(4.10) has also the solution v = x, which corresponds to 
R =0 or f = 1, but this is not a solution of (4.9). 

The solution (4.10) is a good solution in the whole re
gion O,;;;x,;;; I only for A,;;;2. For A > 2, the condition (4.6) is 
not satisfied for x > 2/ A. For A > 2 one should take instead 
the non analytic solution 

R (x) = {01 - ylx O';;;x';;;2/A, 
2IA,;;;x,;;;1, 

f(x) = {yll x O,;;;x,;;;2/ A, 
2IA,;;;x,;;;l, 

{ 
- 0x(l - !Ax) O';;;x,;;;2/ A, 

S(x) = 0 
2/A,;;;X';;;1. 

(4.lla) 

(4. 11 b) 

(4.11c) 

It remains to evaluate (4.2) by replacing, to leading or
der, the sum by an integral. We have to leading order 

1 1 
-Inho = -lnIo(2N IA) = 2/A + 0 (lIN). (4.12) 
N N 

Using (4.lOb) one obtains 

f (1 - x) Inf(x) = f (1 - x) In0x = ! Inyl - ~ 
(4.13) 

and using ( 4.11 b) one obtains 

t (21A 

Jo (l-x)lnf(x)= Jo (l-x)ln0x =l/A2-21A. 

(4.14) 

Combining (4.12) with (4.13) and (4.14) we arrive at 

_ E (A) = {2/A + Pn0 -a A,;;;2, (4.15) 
o 1/A2 A>2, 

which agrees with the result obtained in Ref. 4. 
We shall proceed to calculate the 1/ N corrections to 

Eq. (4.15). We shall need in the sequel the following 
formulas: 
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1 1 A A ..1,2 
-lnho = 2/..1, + -In-- + --+--
N 2N 41TN 16N2 64N 3 

25 A 3 13 A 4 ( 1 ) +----+----+0 -
3072 N 4 2048 N 5 N 6 

' 

(4.16) 

1 N ( p) P - L 1-- lnyi-
N p~1 N N 

-!lnll _ J __ I_ 
i 1'" 4 2N 

A 1 
X In-- + - (-.L - A - -.L InN) 

41TN N 2 12 12 

00 B2k 1 
+ t k?2 (k - l)k N 2k ' 

(4.17) 

1 2NIA P - L (l-pIN)lnyi-
N p~1 N 

2 1 1 A 1 
_ --+---lnl-+-

A ..1,2 2N 4 1TN N 2 

X(~A -A --bln2;) 

+ 1.-! B2k (A 12N)2k 
A k ~ 2 k (2k - 1) 

1 00 B 
_ ~ 2k C 12N)2k (4 17 ) 

+ ..1,2 k"=2 (k -1)k(2k _1)/1. .. a 

Here A = 0.2487544770 is the logarithm of Glaisher's con
stant and B2k are Bernoulli numbers. We did not use Euler's 
formula to obtain the asymptotic expansions (4.17) and 
(4.18) because of the singularity of (1 - x) lnytx at x = 0, 
but rather used the asymptotic expansions II ~: ~ I lnpx and 
~:~ I plnpx. We shall also need Euler's formula, which 
reads 

1 N - L g(pIN) 
N p~o 

1
1 1 

= g(x) dx + -[g(O) + g(l)] 
o 2N 

+ !!2. _l_[g'(I) - g'(O)] 
2! N 2 

B4 1 ["'(1) "'(0)] -41 N 4 g -g + ... 

+ ( Y B 2P _ 2 1 
- (2p-2)! N 2p+1 

B 
X [g(2P -3)(I) _g<2P -3)(0)] + (- y+l~ 

(2p)! 

1 X -- [g<2p )(X I) + ... + g<2p )(X )]. (4.18) 
N 2p+1 p 

where (i -1)/N <Xi diN. This formula is valid for g(x) of 
class C 2p on [0,1]. Let us now introduce the following expan
sions for the functions fj, R j' Sj : 
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1 
+ N 4fix) + "', 

with similar expressions for Rj' Sj' One also has 

R
J
'- I =R+~{R -R')+ 1 'R -R '+lR") N'I Ji2'2 12 

+ _1_(R _ R ' + lR " - lR III) N 3 3 2 i I 6 

(4.19) 

+ _1_(R _ R ' + IR " _ lR ", + -.LR IV) + ... N 4 4 3 2 2 6 I 24 ' 

(4.20) 

and 

Sj+1 =S+~SI+S')+-:h<S2+SI'+~") 
N N 

+ _1_(S + S ' + IS " + JS"') N 3 3 2 2 I 6 

+ _1_(s + S ' + IS " + JS ", + .).S IV) (4.22) N 4 4 3 2 2 6 I 24 • 

Using (4.18) one easily obtains an expansion for liN 
X ~Rk' Using these last expressions in the recursion for
mulas (3.19), (3.22), and (3.23), we obtain a set of three coup
led equations, of integral and algebraic form, for any order in 
liN. These equations are described in Appendix A. Having 
solved the equations up to a given order in liNk one can 
proceed to solve the equations to the next order. Here we 
shall give only the results; the details are given in Appendix 
A. For A < 2 we arrive at 

A 1 A 1 ..1,2 
R=I--x-----------,-

2 N 4 N 2 32 (1 - yiX)2 

1 A 3 1 A 4 50 + lUx 
- N 3 64 (1 - 0X)3 - N 4 4096 (1 - 0X)5 + "', 

(4.23a) 

S = - ~x(1 _ 0 x ) + _1_ ~ x(3 - Ax) 
2 N 2 64 (1 - 0xf 

+ _1_ 9..1, 5 x(lO - Ax) 
N 4 8192 (1 - yiX)5 ' 

A 1 ..1,3 x 
f=2X+ N 2 64 (1-0x )2 

(4.23b) 

1 9..1, 5 x(6 + Ax) 
+ N 4 8192 (1 _ 0

X
)5 + .... (4.23c) 

For A> 2, R, S, andfcoincide with (4.23) in the region 
x < 2/..1., for x > 2/..1., R =0, S =0,/ -1. The singularity at 
x = 21..1. becomes more and more server in higher orders in 
liN. 

Since we know that for finite N,fj has no divergence and 
remains between 0 and 1, the expansion given forfin (4.23b) 
has to represent some function which is finite for x = 2/..1,. 
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Let us also comment on the result for A > 2, x > 2/..1.. It 
is true that Eqs. (3.19), (3.22), and (3.23) have a solution Rj 

= 0, Sj = O,fj = 1 for somej>jo provided I!aRk = N 1..1.. 
But this solution is obtained only asymptotically. Let us de
finefj = 1 - fj and let us write the recursion relations in the 
form 

N - N 00 

- (1 - r - S) = - - ~ Rk A Jj J A£"" 
J 

N - .
j:<Rj + Rj_ 1 )(1 - fj) = Jfj. 

Making the approximations 

Sj+I<~' Rr<Rj _ l , R/<~, .,1;<1. 
we arrive at 

N -
-(J; +S) =R, A J J J 

N S = -jR, A J J 

N -;:Rj _ 1 =jJ;. 

These equations have the solution 

R = (N I A )2 1 R _ I , 
J j(j+l) J 

A, 
S= -LR 

J N J' 

- A . 
fj = N (J + I)Rj • 

(4. 24a) 

(4. 24c) 

(4.2Sa) 

(4.2Sb) 

(4.2Sc) 

(4.26a) 

(4.26b) 

(4.26c) 

Equation (4.26a) can be satisfied approximately by the 
solution 

R
j 

= c(AjleN)-2j = c(Axle)-2Nx, (4.27) 

where x = j/ N. Here C may depend on A but not on N. So we 
see that this is an exponentially small solution as N- 00 and 
has no liN expansion. 

Formula (4.27) is a good approximation for Ax>2 but 
has to be modified in the vicinity of AX ~ 2, as we show in 
Appendix B. 

In order to check the results (4.23) we compared them 
with the known series for R o' R I , SI'/I: 

R = 11(2N IA) = 1 _ ~ _ ~ 
o lo(2N IA) 4N 32N 2 

A 3 2SA 4 

- 64N 3 - 2048N 4 + "', (4.28a) 

R _ ~ 1210 - 112 = 1 _ _ 3A~ _ _ L_2_ 
1-10//-102 4N 32N 2 

3A 3 121 A 4 -------+ ... , 
64N 3 2048 N 4 

(4.28b) 

A A 2 3A 3 

- 2N + 4N 2 + 64N 3 

(4.28c) 

I 2 A A 3 A 4 7S A 5 

fl = 1 - I> = 2N + 64N 3 + 64N 4 + 4096 N 5 + .... 
(4.28d) 

Substituting x = 0 in R of (4.23a) andx = liN in (4.23) one 
can compare the two expansion and see the agreement. The 
terms of order lIN 5 predict thatf5-0, S5 O. 

Using the recursion relations (3.19), (3.22), and (3.23) 
we have carried out computer calculations of the various 
functionsfj, Rj' Sj' for various values of Nand A. The results 
agree very well with expression (4.23) withjlN substituted 
for x, except for x in the vicinity of2/A. For A> 2 andj-N 
the results agree well with (4.26) or (4.27). 

We shall write Eq. (4.23c) in the form 

(
A 2 1 9A 4 6 + AX ) 

f(x) = 0 x 1 + 32N2 (1 _ 0 X)2 + 4096 (1 _ 0 X)5 + ... . (4.29) 

Taking the logarithm we obtain 

A 2 1 A 4 26 + SAX 
Inf(x) = In0x + 32N2 (1 _ 0 X)2 + 2048N 4 (1 - 0 X)5 + .... (4.30) 

Hence 

1 N 1 N (I [ A 2 1 - L (1 - piN) Inf(pIN) = - ~ (1 - piN) In0plN + Jo (1 - x) 32N2 (1 _ 1;X)2 
N p ~ I N p -lOy' 

A 4 26 + SAX ] 1 [ A 2 1 - x ] I 
+ 2048N 4 (1 - 0 X)5 dx + 2N 32N 2 (1 - 0X)2 0 

1 {A2 [A(I-X) 1 ]}I 
+ 12N2 32N 2 (1 - 0X)3 - (1 - 0X)2 0 + .... (4.31) 

After evaluating the various terms (4.31) reduces to 

~ f (1 - L) Inf(!...) = ~ f (1 - L) In0 L 
N p~1 N N N p~1 N N 

1 ( A 1 ( A )) A 2 1 ( 3A 3 1 2SA 3 ) 
+ N2 -1"6-"8 1n 1- 2 -64N 3 + N 4 1024 (1-0)3- 3072 + .... (4.32) 
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Combining Eqs. (4.16), (4.17), and (4.32) we finally obtain 

1 1(3A
3 

1 1) -Eo(A)=2/A+!ln!A-~+ N2(-b-A--b.lnN-iln(1-!A» + N4 1024 (1_yt)3+ 240 +"', (4.33) 

which is valid for A < 2. We note that the coefficients of the 
1/ N expansion become singular as A-+2. 

We shall also write down the expression for the expecta
tion value of the Wilson loop [see Eqs. (2.7)-(2.9)]' For A < 2 
one has 

A 1 A 2 1 1 9A 4 1 
w-1----------- + .... 

- 4 N 2 32 1-~ N 4 2048 (1_0)4 
(4.34) 

For A > 2 one cannot repeat blindly the manipulations 
done so far since it becomes evident immediately that one 
already encounters a divergent result at order 1/N2 due to 
the fact that the integral appearing on the right-hand side of 
(4.33) diverges at the point x = 2/ A. As we will show imme
diately, there are no 1/ N corrections in this phase, and there
fore the 1/N 2 corrections coming from (4.33) will have to 
cancel a term (1/N2) InN coming from (4.18) and therefore 
diverge. This means that one should seek a way to avoid 
passing through the singularity at x = 2/ A. And in fact such 
a way does exist. Let us note the following identities (see Eq. 
(3.10) 

COO (2N /A) = IT hk(2N /A) 
k=O 
N-l 00 

= II hk(2N /A). II hk(2N /A) 
k=O k=N 

= cN(2N /A). IT hk(2N /A). (4.35a) 
k=N 

Hence 

IncN(2N /A) = lnc oo (2N /A) -In IT hk(2N /A). 
k=N 

(4.35b) 

From this it follows that 

1 1 
N 2 InZ(A,N) = N2lncoo (2N /A) 

1 00 + - I k InfN+ k(2N /A). (4.36) 
N 2 k= 1 

We shall now use a famous theorem due to G. Szeg613 

which gives the limit of a T6plitz determinant of infinite size. 
C N of (3.10) is such a T6plitz determinant and Szeg6's theo
rem implies (see Appendix C) that 

COO (2N /A) = exp(N 2/A 2). (4.37) 

Therefore 

1 1 1 00 

-zlnZ(A,N) =-2 +-2 I klnfN+k(2N/A) 
NAN k= 1 

1 1 00 -

::::-2 - -2 I kfN+k(2N /A). 
A N k=1 

(4.38) 

Note that we need here only 1; with} > N which, for A> 2, 
decreases exponentially with N!. So we avoid passing 
through the singularity by going from x = 00 to x = 1 in
stead of from x = 0 to x = 1. Of course this form is not suit-
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able for A < 2 because then the singularily is at x = 2/ A > 1 
and therefore one will again find divergent corrections to the 
result 1/ A 2, which is known to be wrong in this phase. 

An estimate to the correction in (4.38) for A>2 is ob
tained using Eqs. (4.26c) and (4.27): 

1 1 
NZ InZ(A,N) - AT 

1 - 1 
~ --2fN +1 = --C(A)(A/e)-2N. (4.39) 

N N 2 

These corrections start to diverge for A < e (instead of 
A = 2) but, as we mentioned before, (4.27) has to be modified 
for A close to 2. 

We would like to add that our computer calculations 
verified the exponential decay of the corrections in the high 
temperature phase and agree with our theoretical estimates. 

5. CONCLUSIONS 

Using the method of orthonormal polynomials we were 
able to calculate the first few terms in the 1/ N expansion in 
the low temperature phase. Up to the order we have calculat
ed we found that there are only corrections with even powers 
of 1/ N. In fact, using the remark made after Eqs. (4.28), it is 
possible to show that the correction to 0 (1/ N 5) also vanish
es. The fact that these terms vanish is due to nontrivial can
cellations. For the continuous theory it was proved by 't 
Hoofe, by topological agruments, that there are always cor
rections with even powers in 1/ N. This result still holds in 
perturbation theory (small coupling expansion) on the lat
tice. 12 Here this result seems to hold beyond perturbation 
theory, in two dimensions at least. We have found also that 
the 1/ N 2k corrections diverge when A-+2 from below. In the 
high temperature phase we demonstrated that there are no 
1/ N corrections to the N = 00 result, but the corrections fall 
exponentially with N. This is a new feature of the interesting 
phase transition which occurs in the two-dimensional lattice 
gauge theory in the large N limit. 
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APPENDIX A 

The equations to o (1/N) are given by 

1 LX -7-(/1 - SI) =!(1 - R) + RI dy, 
A 0 

- ~ (2S1 + S' +2RR 1) 
A 
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= xR I + !(1 + R ) + LX R I dy, 

~(2Rd +2RII - R 'I) = -xii' 
A, 

(Alb) 

(Alc) 

For A, < 2, 0 < x < 1 or A, > 2, 0 < x < 21 A, these equations take 
the form 

=xRI+l-!A,x+ f RldY, 

1 
-(A,xR I +2(1-¥x)/1 +!A, Zx)= -xii' 
A, 

which can be reduced to a single equation for R I: 

(1 - ¥x)R I' - A,R I -!A, z = O. 

The solutions are 

RI = - A, 14, 

SI =0, 

11=0. 

(A2a) 

(A2b) 

(A2c) 

(A3) 

(A4a) 

(A4b) 

(A4c) 

For A, > 2 andx > 2/ A, it is required, in order to avoid the 
singularity at x = 2/ A" to start from Eqs. (4.24) instead of 
(3.19), (3.22), and (3.23). In this region we obtain 

N 100 

-( -II +SI) = RI dy, 
A, x 

(A5a) 

(A5b) 

(A5c) 

The solution with the right boundary conditions is 

RI =0, SI =0, II =0. 

In the following we shall write explicitly only the equa
tions valid for A, < 2, or A, > 2 and x < 2/ A,. To order liN zone 
obtains 

1 LX - (Iz - S2) = R z dy + HRI(O) 
A, 0 

- RI(x» + n[R '(x) - R '(0)], (A6a) 

- ~(2Sz + ~S II + R l
z +2RR2) 

A, 

= xR z + f R z dy + ~[RI(O) + RI(x)] 

+ MR '(x) - R '(0»), 

1 [ 5A, 2 ] - - 2S2 + -- +2(1 - ¥x)R z A, 16 

= xRz + f R z dy - .\A, 

1 
T[2(I- ¥x)/z +A,xRz)] = -xlz· 

These give 

(2-A,x)R z -A, f R z dY+A, z/I6=0, 

from which we obtain 

A, z 1 
R - ------

z - 32 (1 _ ¥x)z ' 

A, 3X 1 

Iz = 64 (1 _ ¥x)Z ' 

S _ A, 3x (3 - A,x) 
z - (1 _ ¥x)Z . 

For the order liN 3 one has. 

1 LX - (f3 - S3) = R3 dy + !(Rz(O) - Rz(x» 
A, 0 

+ MRI'(x) - RI'(O»), 

- ~(2S3 + Sz' + f,S 11/ + 2RR3 + 2R IRz) 
A, 

= XR3 + f R3 dy + HRz(O) + Rz(x» 

+ n(RI'(x) - RI'(O», 

~ [/(2R3 - R z' + !RI" - ~R 11/) 

+ (2R I - R ') Iz + 2R 13)] = - X 13' 

which, using known solutions, reduce to 

1 r A,Z[ 1 ] T (f3 - S3) = Jo R3 dy + 64 (1 _ ¥X)2 - 1 , 

I(S A,3 1 A,31+A,x 
-- 2 +- +----""7 

A, 3 32 1 - ¥x 64 (1 - ¥x)Z 
A, 4 X 

+ - +2(1- ¥X)R3 
64 (1 - ¥X)3 

+£ 1 ) 
64 (1 - 0-x)Z 

Lx A,2( 1 ) 
= XR3 + R3 dy - - 11 )Z + 1 , 

o 64 (1-Y.x 

~ (¥X(2R3 + ~ 1 3) +2(1 - ytX).t;) 
A, 32 (1 - ¥x) 

= -xI3 • 

(A6b) These equations have the solution 

~(2RI2+2R2/+!R"I-RI'I)= -xlz· (A6c) 
A, 

Using the previous known solutions these equations 
become 

(A7a) 
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A, 3 1 
R - ------::-

3 - 64 (1 _ ¥X)3 ' 

.t; =0, 

S3 =0. 

To order liN 4 the equations are: 

Yadin Y. Goldschmidt 

«A7b) 

(A7c) 

(AS) 

(A9a) 

(A9b) 

(Age) 

(A lOa) 

(A lOb) 

(AlOe) 

(AlIa) 

(Allb) 

(AIle) 

(AI2a) 

(A I 2b) 

(A I 2c) 
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= f R4 dy + HR3(0) - R3(X)] 

+ -MR2'(X) - R2'(0)] - !; [R "'(x) - R '''(0)], 

(A13a) 

- J.- (2S4 + !S/ + f4S IV + 2RR4 + 2R lR3 + R22) 
A 

= XR4 + f R4 dy + HRiO) + R3(X)] 

+ -.L[R '(x) - R '(0)] -.!!.-±- [R "'(x) - R "'(0)], 12 2 2 4! 
(AI3b) 

1 f(2R R' + lR " _ IR '" + -.LR IV) T 4- 3 22 6 I 24 

+f2(2R2+!R"-R1')+ 2Rf4) = -xft· (A 13 c) 

These equations reduce to 

1 LX ,13 1 ,13 
T (/4 - S4) = 0 R4 dy + 192 (1- !AX)3 - 192' 

(A 14a) 

1 1 3,1 4 X 
- T S4 - T (1 - 0 x)R4 - 512 (1 - !Axt 

,13 1 ,14 X 

- 2048 (1 - 0-xt - 256 (1 - 0x? 
3,1 3 1 ,13 1 

- 256 (1 - !AX)3 - 128 (1 - 0xi 

L

x ,13 1 ,13 
-!rR +1 R dy--- ---
-r4 20

4 192 (1-0X)3 384' 
(A 14b) 

R 2 I' A 4X 1 (A14 ) 
x 4 + T /4 = 1024 (1 _ !AX)4' c 

which have the solution 

9,1 4 1 llA 4 1 
R4 = - -- + ------:-

512 (1 - !Ax) 2048 (1 - 0X)4 ' 
(AI5a) 

9,1 5 x 9,1 5 X 

ft = 1024 (1 - !Ax) - 4096 (1 - 0X)4 ' 
(AI5b) 

9,1 4 x 27,1 4 1 

S4 = 512 (1 - !AX)5 - 2048 (1 - 0 X)4 

9,1 4 1 
---

2048 (1 - !AX)3 . 
(AI5c) 

APPENDIX B 

One can substitute the following continuous approxi
mation for the functions 1;, R j' Sj' for j > 2N /,1. 

1;-f(x) = fP (x)K (x) ~ Nx, 
Sj-S (x) = s(x)K (x) ~ Nx, 

Rj_R (x) = r(x)K (x) ~ Nx, 

For ~ + 1 and Rj ~ lone should take 
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(Bla) 

(BIb) 

(Blc) 

Sj+l_s(x)K(x)~NX~1 exp[ -xK'(x)/K(x)], (B2a) 

Rj_I_r(x)K(x)~NX+1 exp[xK'(x)/K(x)]. (B2b) 

Then the recursion relations (4.24) take the form 

fP (x) + s(x) = 0, 

- s(x)(1 + K-1(x) exp[xK '/K] = Axr(x), 

r(x)(1 + K exp[xK '/ K]) = AXfP (x). 

Denoting 

L (x) = K (x) exp[xK '(x)/K (x)], 

one finds 

L 2 + (2 - (P)L + 1 = 0, 

where 

(3 = AX. 

This equation has the solution 

L=![P2_2+(3V(32_4] . 

Equation (B4) can be written as 

InK ( (3) + (3 d InK ( (3) = InL «(3), 
dx 

which has the solution 

InK «(3) = ~ [ f InL «(3) d(3 + c], 
where c is some constant. 

(B3a) 

(B3b) 

(B3c) 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

For (3)2 one has L «(3)_(32 and therefore 

(32 
K«(3)--2 . (B1O) 

e 

This coincides with (4.27), but of course the solution will be 
modified for (3 - 2. Assuming c is determined by the condi
tion K (2) = 1, one can proceed to estimate K for (3 - 2. 

APPENDIXC 

Consider a T6plitz determinant 

DN = det(dn ~ m)' n,m = I, ... N, 

where 

and 

dn = _1_ (211" dO e - inlJ d (eilJ) 
21T Jo 

Ind (e2ni) -lnd (eOi
) = o. 

Szeg6's Theorem states that 

lim D~ = exp( ! ng ~ngn)' 
N~", f.l n~ I 

where 

1 i2
11" f.l = eXI>-:- dO Ind (e ilJ ) 

21T 0 

and 

1 (211" 
gn = 2; Jo dO e ~ inlJ Ind (e ilJ ), 

provided that as Inl-oo 
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(CI) 

(C2) 

(C3) 

(C4) 

(C5) 

(C6) 
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en = O(K -In l), 

whereK> 1. 
In our case 

(} 2N 
d (e' ) = ex~ cose 

A 
and one finds immediately that 

f.l = 1, 
N 

gn = g - n = j:5n.l' 
Since for fixed a = 2N lA, and n- 00 

In(a)~-I- 1 (2nlea) - n, 
21T Y2n 

condition (C7) is satisfied and hence 

D 00 (2N 1 A ) = exp(N 21 A 2). 
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(C7) 

(C8) 

(C9) 

(ClO) 

(CII) 
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Narrow resonances as an eigenvalue problem and applications to high 
energy magnetic resonances: An exactly soluble model 
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We formul~te the problem of finding the narrow positive energy resonances in a deep potential 
well as an eIgenvalue problem (thereby extending the scope of the discrete spectrum problem). We 
determine the number of resonances in an exactly soluble case. The method is then applied to a 
nonpertur?ative treatment of the magnetic resonances occurring in charge-dipole interactions, 
and the eXIstence of the previously conjectured high mass narrow resonances in this model is 
proved. 

I. INTRODUCTION 

The study of quantum bound states as an eigenvalue 
problem is as old as the Schrodinger equation. Its mathemat
ical theory is based on the Sturm-Liouville method! and 
Weyl's extension2

.
3 thereof. In practice however, one finds 

that most states of composite systems are not truly station
ary, but they can still be described as resonances. The energy 
spectrum is not discrete, but there is a spectral concentration 
around certain energies. In low-energy physics the photo
decay of excited states is very well described in the frame
work of perturbation theory as "radiative effects" on the 
bound states. In problems involving radiationless decay, 
(e.g., autoionization in atoms, molecular predissociation, al
pha decay in nuclei, to mention but a few) and especially in 
particle physics, the resonance behavior is an intrinsic effect 
and it must be accounted for from the beginning. In the case 
of sharp resonances, one can understand this decay starting 
from a potential function, though it might turn out to be 
energy dependent. 

In the present paper we shall be particularly interested 
in a potential well like the one shown in Fig. 1, which can 
support positive-mass narrow resonances. Indeed, magnetic 
forces between spin-~ particles lead to effective radial poten
tials4

•
5 of the type shown in Fig. 1, with one or more deep 

narrow wells, even in a relativistic treatment. In the single 
well model there appear at most a few resonances, but no 
negative energy bound states. A model for hadrons has re
cently been proposed6 involving the magnetic interactions 
between stable particles (proton, electron, and neutrino). 
The narrow positive energy resonances in these models are 
missed if the magnetic dipole-dipole and charge-dipole po-

"'Permanent address: Physics Department, University of Colorado, Boul
der, Colorado 80302. 

"'On leave of absence from Instituto de Fisica, Universidad de Mexico, 
Mexico 20, D.F. 

tentials are treated perturbatively, as is done for the posi
tronium, or even the charmonium. In our case, we find it 
necessary to solve the problem starting with the complete 
potential. 

The purpose of the present work is to adopt analytic 
techniques to determine the spectrum of magnetic reson
ances for the relativistic and nonrelativistic cases. In fact, the 
theory amounts to a generalization of the usual eigenvalue 
problem to include also the case of resonances. The method 
is particularly useful if the resonances are narrow and isolat
ed, i.e., nonoverlapping. The magnetic resonances are pre
cisely of this type. 

Physically one might question the use of the concept of 
a potential for relativistic problems at short distances. We 
must realize, however, that we are dealing with interactions 
of highly localized states. In such an event, as it is also true 
for bound states, the potential concept is proven to be superi
or to the use of perturbation theory. 

In Sec. II we introduce the concept of a Gamow state, 
and its relevance to the problem of resonances, for the poten
tial problem. Section III contains a general theory of the 
analytic solution for resonant states, and the particular case 
of a potential behaving like r -4 at the origin. In Sec. IV we 
use these results for the case of magnetic resonances with 
further corrections from the perturbation theory worked out 
in Sec. V for resonant states. We end with a brief discussion 
in Sec. VI. 

II. GAMOW STATES 

We start from the eigenvalue problem for A 2 

[ :; + A 2 - V(A,I, };r)]t/J (r) = 0, r>O, (2.1) 

where V(r) is an effective potential which might depend on 
the linear momentum (or energy) A, the orbital angular mo
mentum I and the total angular momentum}, and presenting 
the general shape of Fig. 1. Let us assume that near the origin 
the potential is repulsive and behaves as 
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FIG. I. Schematic radial potential for magnetic interactions Eq. (A9) at two 
different energies. 

(2.2) 

Then r = ° is a singular point of the differential equation 
(2.1). Asymptotically the potential vanishes as r-+ 00 (if it 
does not, we redefine A 2 so that it does). Hence infinity is also 
a singular (irregular) point, due to the presence of the con
stant ,1,2. 

Physically, Eq. (2.1) will betaken to represent the radial 
equation for a charged particle in the field of a magnetic 
moment, or, alternatively, for a charged particle with a mag
netic moment (both normal and anomalous) in the field of a 
fixed charge.4

•
5 The square momentum A 2 is taken as 7 

,1,2 = E2 - m; (2.3) 

for relativistic problems. In the nonrelativistic limit 

,1,2 = 2mrE, (2.4) 

where E is the total energy and m r is the red uced mass of the 
particle. The centrifugal potential [l (/ + 1) - a 2]1r and the 
Coulomb interaction air are both included in the potential 
V (r). Its explicit expression is spelled out in the Appendix. 

The Gamow states8 are defined as the eigensolutions of 
Eq. (2.1), subject to boundary conditions 

tP(r=O)=O, (2.5) 

and purely outgoing wave behavior asymptotically 

tP~(r)ltPn(r)-+iAn' r-+oo. (2.6) 

In general, these boundary conditions are not homo
geneous 9 since the value of A n depends on the state. Further
more, from flux conservation, it is easy to see that A must be 
complex. 10 Hence, unless An is purely imaginary (A ~ < 0), 
the differential operator is not self-adjoint either. Bound 
states of the potential are included for the particular case 
An = + ikn since, according to (2.6), the function tP (r) 
would vanish asymptotically in this case. As we should ex
pect, for bound states we recover homogeneous, self-adjoint 
boundary conditions and the problem reduces to a (general
ized) Sturm-Liouville problem. 1-3 

The interest in the more general Gamow states stems 
from the fact that the complex eigenvalues A 2 correspond to 
the poles of the S matrix. Indeed, the physical radial wave 
functions behave asymptotically as 

tP (r )-+N [e - iAr - S (A )eiAr
], r-+oo. 

From causality considerations, these poles can be shown. 10 
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to occu~ either on the lower half plane of A or on the imagi
nary aXIs. The connection between isolated poles lying close 
to the real A axis and narrow resonances is well 
established. 8. 10-12 

111. ANALYTIC SOLUTIONS 

We now turn our attention to the solutions of Eq. (2.1). 
Close enough to the origin, tP is determined from (2.2), so 
that 

tP (r )-c 1 exp(cr - ') + c2exp( - cr -'), r-+O , (3.1) 

s = (N - 2)/2, for N> 2 . (3.2) 

To have a regular solution at the origin, we must choose 
c I = 0, while asymptotically the Gamow states should be
have like exp(iAr ), from Eqs. (2.5) and (2.6). To ensure the 
proper behavior, we write the solution as 13 

tP (r) = F(r )exp[ g(r)] , (3.3) 

andg is chosen appropriately. The new function Ffulfills the 
equation 

F" + A (r )F / + B (r )F = ° , (3.4) 

with 

A (r) = 2g'(r) , 

B (r ) = g" (r ) + g/2(r ) + A 2 - V (r ) . (3.5) 

We now concentrate on the case in which V(r) can be 
expanded as a power series in r - 1 

N Uk 
V(r)= I-. 

k~ 1 r' 
(3.6) 

For a normal solution, 14 g/(r) is a polynomial in r - I (or in 
r -1/2 for the case of odd N) so, recalling (3.2), we have 

N-2 

g(r) = I gmr m/2 + vlnr + iAr. (3.7) 
m= 1 

For even N, there are no fractional powers in the sum above. 
Furthermore, gN _ 2 is already fixed 

gN-2 = -2VuN I(N-2). (3.8) 

If we now expand the function F in a Taylor series 

F(r) = I an"', (3.9) 
n=O 

the coefficients [an J fulfill a recursion relation determined 
by substituting (3.9) into (3.4), and ao can be taken as the 
normalization9

.
14 constant. 

For a more general class of potentials, the expression in 
(3.9) is a Laurent series, IS i.e., it should also include negative 
powers. In any event, the recursion relations for the a's con
stitute a homogeneous set of linear algebraic equations. The 
condition for the existence of a nontrivial solution is that the 
associated (infinite) determinant l5 vanishes. For the case of 
Eq. (3.9), the determinant reduces to a semi-infinite one, in 
general. This is the quantization condition. 

Let us now apply the general theory described above to 
the case of magnetic interactions. The dominant term at the 
origin for the effective potential,4.5 Eq. (A9), yields N = 4, so 
thats = 1, from (3.2), and c2 = U4• We hence writeg(r), Eq. 
(3.7), as 
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g(r) = - V v41r + iAr + vlnr (3.10) 

and v is chosen so that B (r) in (3.5) has no term in r - 3 i.e., 

2ve -2e = v3 • (3.11) 

The explicit expressions for (3.5) are 

A (r) = 2elr + 2vlr + 2iA , 

B(r)= ~(V-v+2ieA-v2)+ ~(2ivA-VI)' (3.12) r r 

The recursion relation for the coefficients appearing in the 
Taylor expansion (3.9) is 

2e(n + l)an + I + [D + n(n +2v -1) Jan 

+ [2iA (n + v-I) - VI Jan _I = 0, 

where we have defined D as 

D = V - v + 2ieA - V2 , 

and depends on v2 and V3, from the condition (3.11). 

(3.13) 

(3.14) 

We shall next argue that the power series for F(r) in 
(3.9) cannot involve very large terms. Hence a sufficient con
dition to obtain a convergent solution to Eq. (2.1) is that this 
series terminates. To this end, we look at the recursion rela
tion for (3.13) for large values of n, in terms of the ratio 
between successive coefficients 5 = an + I lan, 

2c5 2 + n5 +2iA=0, 

with solutions 

51 = - nl2e + o(l/n) , 

D 2e 

-2iAM D-2M 

0 -2iA(M -1) 

0 

0 0 

(3.15) 

0 

4c 0 

D+2(1-2M) 6c 

From the definition of D, Eq. (3.14), we see that it is linear in 
A. Hence Eq. (3.19) is a secular equation for 2iA which yields 
(M + 1) roots. 

Let us summarize briefly. For a potential of the form 

V(r) = v41r4 - [2(M + I)V~>r] + V21r, (3.20) 

the quantization condition for the eigenvalue A is given by 
the secular equation (3.19), with 

D = M2 + M +2iV-;;:A - V2, (3.21) 

where M is a quantum number, and v2 and V4 the parameters 
of the potential. 

IV. THE MAGNETIC RESONANCES 

In view of the application of the method developed in 
Sec. III to the magnetic resonances,4,5 we shall first find the 
solutions explicitly for a few10w-Iying quantum numbers, 
namely, M = 0 and 1. For M = 0, the quantization condi
tion is D = 0, so, using Eq. (3.21), we find 

A = - iv2/2Y-;;: . (4.1) 
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(3.16) 

For the first root, 51' the series in (3.9) is an asymptotic 
series. The second root implies the wrong asymptotic behav
ior of the wavefunction rP (r )---+exp( - iAr ). If the series in 
(3.9) terminates, i.e., F(r) is a polynomial in r, we obtain a 
solution with the proper boundary conditions. This can be 
achieved by imposing two conditions in the three-term re
cursion relation (3.13). 

Since we are looking for the magnetic resonances,4,5 the 
Coulomb term is very weak in the region of interest and can 
be neglected, so we take VI = 0 in (3.13). In this case, the first 
of the two conditions is that v = - M, a negative integer, so 
that Eq. (3.13) will involve only two terms for the case 
n=M +1 

2e(M+2)aM + 2 + [D+(M+l)(M+2)]aM + 1 =0. 
(3.17) 

From Eq. (3.11) we see that this is a condition imposed on 
the form of the potential, namely that the ratio 

v3N-;;: = -2M -2 (3.18) 

is a negative even integer. 

In order that the series terminate, we now choose 
aM + 1 = 0, so, from Eqs. (3.13) and (3.17), aM + 2 = aM + 3 

= ... = O,andF(r)isapolynomialofdegreeM. The quanti
zation condition for the complex momentum A is the vanish
ing of the tridiagonal determinant of order M + 1 

o 

=0. (3.19) 

-2iAD+M( -M -1) 

There is one bound state ifv2 < 0, or one antibound state ifv2 
is positive. If M = 1, we have a determinant of order two, 
with solutions 

A= ~ ~ [(2-V2)i± [2(V2-2)]1/2l. (4.2) 
2V v4 

In case v2 > 2, there are two complex poles, A and - A·, 
corresponding to an isolated resonance. 8

-
1O Otherwise A is 

purely imaginary; at V2 = 2 the two poles coincide and we 
have a "zero-energy" bound state or resonance. 16 Similarly, 
the complex poles for M = 2,3,"'can be explicitly evaluated. 

It is remarkable that magnetic spin-spin and spin-orbit 
interactions between two spin !-particles lead to a potential 
of the form (3.20). In the Appendix we have discussed a few 
models of charge-dipole interactions. In the case of the Dirac 
equation (including the anomalous magnetic moment) the 
effective potential is actually energy-dependent and quite 
complicated. But at very high energies, the potential has the 
characteristic l/r4, l/r and l/r terms. Also, a scalar 
charged particle moving in a dipole field, or a massless parti
cle with an anomalous magnetic moment moving in the Cou-
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lomb field lead to the same effective potential of the form 
(3.20). To these we must add the spin-spin terms which will 
modify the coefficient of the 1/,-3 terms. 

The importance of the exactly soluble model reported 
here lies in the fact that we can now develop a perturbation 
theory around this new nonperturbative solution. Previous
ly, magnetic interactions have been treated as perturbations 
around the Coulomb solution. Inspecting the potential wells 
shown in Fig. 1, we see that a perturbation theory around the 
Coulomb well can never reveal the existence of new states in 
the deep second (or third) well at shorter distances. This is 
truly a nonperturbative phenomenon, and a remarkable 
physical example of a quantum system with two distinct 
ground states. 

The perturbation theory and numerical applications to 
magnetic resonances will be reported elsewhere. 

v. CONCLUSION 

We have extended the analytic methods used in the so
lution of bound state problems to the case of general Gamow 
states. The solutions are expanded in power series of the 
variable and the quantization condition appears as an (infi
nite in principle) secular equation which follows from the 
recursion relation for the expansion coefficients. The result
ing energies are complex in general, the bound states being a 
particular case. For the particular case of potentials of the 
form (3.20), the corresponding determinant is finite and we 
obtain explicitly solutions for the poles of the S matrix. 

APPENDIX 

In this Appendix we reduce the Dirac equation for the 
case of a point charged dipole interacting with a fixed charge 
and including the anomalous magnetic moment of the di
pole. This shall be taken as a model for the interaction of two 
electrons (of either charge), considering one of them as fixed. 
We shall follow closely Refs. 4. In natural units (fz = c = 1), 
and € being the relative sign of the charges, the Dirac equa
tion including the anomalous moment a is 

{CL'P - (E - €;2 ) + /3mr} tf! = - a ;: ~ i/3ar tf!, (AI) 

wherea r is the radial component of the Dirac CL matrix, m is 
the mass of the particle and mr its reduced mass. Using the 
angular constants of the motion J2, J z ' and 

K=/3(aoL+I) , (A2) 

we can separate the angular part and obtain two coupled 
equations4 for the radial partsfand g 

f'(r) = (K -1 + a€e
2 

)f(r) 
r 2mr 

( 
€e2 ) + mr - E + -;:- g(r) , 

, (K + 1 a€e
2

) g(r)= - --- -- g(r) 
r 2mr 

( 
€e2 ) + mr + E - -;:- f(r), (A3) 

where K = ± (j + 1/2) is the eigenvalue of K. Introducing 
the radial component u = rf(r ) and eliminating g, we get a 
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second-order equation 

d 2U _ ~!!!!:.. _ {[ K(K + 1) + 
dx2 A dx x2 

+ ~' ( : + ~2) + AB }u = 0 , 

in terms of the reduced variable 

x = (m/aa)r, 

(A4) 

(A5) 

where a ~a/2rr for the electron, and the functions A and B 

A (x) = a(a/m)(mr + E) - €a/x, 

B (x) = a(a/m)(mr - E) + €a/x, 

depend on the energy. 

(A6) 

To eliminate the first-order term in (A4) and normalize 
the x - 4 term to one, we further introduce 

tf!(y) = u/\/"A , 
y=2x, 

A 2 = a2(a2/4m2)(E2 - m;). (A7) 

The resulting equation has the form of a radial eigenvalue 
equation with an effective potential 

[ :y: + A 2 - V(y) ] tf!(y) = 0, (AS) 

where 

V() 
K(K+I) a 3 E 

y = +€---+ 
y2 2rrm y y2 

X [ €(K + 1) 3 1 2 ] 

h (y) +"4 h 2(y) - a 

+ ~ [2€(K + 1) + _1_] + .;-, 
y h (y) y 

(A9) 

where 

a mr +E 
h(y)= -€+ - y. 

4rr m 
(A 10) 

The part of the potential which does not depend on the ener
gy is given by 

V,( )- K(K+I)-a
2 

2(K+I) 1. (All) 
oY- 2 +€ 3 + 4' 

Y Y Y 
If the anomalous magnetic moment is neglected, the 

Dirac electron with its normal magnetic moment (g = 2) 
leads to Eq. (AS) with 

V(x) = _K..:..(K_+_I..:....)_-_a_
2 

+2€ (E) a
2 

x 2 m x 
K+ 1 + € -::---......:.----

x2[(1 +E/m)x+I] 
3 1 +- . 
4 x2[(1+E/m)x+I]2 

It is interesting that a scalar charged particle moving in 
the field of a fixed magnetic potential A = /-l(a X r)/r also 
leads to the eigenvalue equation (AS) with 
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A 2 = (E 2 _ m;)e21l2, 

V (y) = 1 (l + 1) - a
2 

y2 

Here 

y = r/ell , 

+ E 2C(/,]) + 
y3 

C(/,]) = -1+1, for I=j+! 

= I, for 1 = j - ~ , 

4' 
Y 

in the state with orbital angular momentum 1 and total angu
lar momentumj. 17 Furthermore, the same equation is ob
tained for a particle with total magnetic moment Il in the 
field of a fixed charge in a different formalism. 18 

Finally, the pure anomalous magnetic moment limit of 
(A 1) (i.e., dropping from the beginning the term Ee2/r on the 
left-hand side) also leads immediately to this same potential 
(All). 
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Orbital angular momentum of "lumps" a) 
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We formulate the external orbital angular momentum of a "lump" so that L = r X p on any space
like hyperplane. The systems considered are scalar, spinor and vector fields with e iM time 
dependence, each interacting with its own electromagnetic field. Particular attention is given to 
cases involving nonzero dipole moments. 

1. INTRODUCTION 

Recent interest in localized classical fields ("lumps") as 
possible models for extended particles has emphasized the 
question of their stability. In this paper we direct our atten
tion to the description of their angular momentum. 

Ifwe imagine a classical particle at rest, then its external 
orbital angular momentum is zero and we may consider its 
angular momentum as being entirely intrinsic. If the particle 
is a composite, then the intrinsic angular momentum may 
consist of internal "orbital" and "spin" angular momenta. 
However, for such a bound state the division into "orbital" 
and "spin" is not in general meaningful. 

If we consider now a field theory with localized solu
tions, to what extent can we define the external orbital angu
lar momentum of a "lump" so that it conforms to what we 
intuitively expect for a classical particle? More specifically, 
given a classical relativistic field theory, can we ensure that 
the expression for the external orbital angular momentum is 
independent of the space-like surface on which it is 
evaluated? 

Here we will examine this question within the frame
work of three complex fields-a scalar field, a spinor field, 
and a vector field, each interacting with its own electromag
netic field gauge invariantly. That is, each field with its elec
tromagnetic field constitutes a self-contained free system 
(without singularities). 

Assuming a harmonic (e iw) time dependence for the 
complex fields and restricting the space-like surface to hy
perplanes, we show that it is possible to have a meaningful 
description of the external orbital angular momentum. 

Given a Lagrangian !.t'(ifJ) (we choose c = 1, x 4 = it), 
the invariance of S !.t' d 4X with respect to variations in x and 
ifJ yields the conservation laws I 

ai' GI' = 0, (1.1) 

where the Noether current GI' can be written 

a!.t' 
Gil = !.t' 8xI' + 8ifJK + a",(WTI'V 8xv)' (1.2) 

a(al' ifJK) 

Included in (1.2) is a divergence involving the quantity 
W TIH., which is antisymmetric in (T/-t). This will not contrib
ute to (1.1) but one must ensure that no surface contributions 
appear at spatial infinity for the integrals of energy, momen
tum, and angular momentum. In addition to this divergence 

"'Work supported in part by the Natural Sciences and Engineering Re· 
search Council of Canada. 

we will add appropriate divergence terms to the Lagrangian 
as needed. 

Under a translation, 

8x" = e,., 8ifJK = - evavifJK' 

the Noether current becomes 

with the energy-momentum tensor 

Tin' = T;:v + aT WTl'v' 

where 

T;'v = !.t' 81''' - a(~~,J a,.ifJK 

(1.3) 

(1.4) 

is the usual canonical energy-momentum tensor. In general, 
the Tl'v defined by (1.3) is not symmetric. 

Under a rotation 

8x,. = tuvaXu' 

8ifJK = - tuvUXO'avifJK + !ituvO'(SVU)K{3ifJ{3' 

the Noether current is 

GI' = tuvO'(Xa TI'" + ~. a(~~K) (SVU)K{3ifJ{3 + WO'l'v). (1.5) 

Making use of the antisymmetry of tu vo- and S vu' one 
obtains from (1.5) the total angular momentum density 

_ _ T _. a!.t' (S ) A-
Jl'v;' - XI' T;.l' xv;'1' I a(a;. ifJK) I'l' K{3'1'{3 

+ (WI';'l' - W v;',')' 

The total three-angular-momentum is 

We divide J k into "orbital" and "intrinsic" parts, 

Jk=Lk+Sk, 

where 

and 

Sk = eklm J ( - i a!.t' ) --- (Slm)K/3ifJ/3 + W1;'m da;.. 
2 a(a;. ifJK) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

In Secs. 2, 3, and 4, which deal with the scalar, spinor, 
and vector fields, respectively, we will show that it is possible 
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to make Lk = ° in the rest frame on an arbitrary space-like 
hyperplane and also consider the case for a moving system. 

2. SCALAR FIELD 

For the Lagrangian we take 

X = -! F!v + (D!l/> *)(DIl-l/» + Vel/> *l/» + X d' 

(2.1) 

where X d is the divergence 

X d = Kall- (All-av Av - Avav All-) (2.2) 

and K is an arbitrary constant. Also, Fll-v = all- Av - av All-' 
D = a 1 - ieA ,and V (l/> *l/» is a suitable self-coupling PIll- .. 
function of l/> *l/>, with l/> (r,t) = ¢> (r)e ."'t. The e .",t time de-
pendence leads to a time independent energy-momentum 
tensor that thus defines the rest frame of the system. Also, 
the electric current is time independent so we can choose a 
time-independent electromagnetic four-potential All-' 

We consider first the integrations for Lk andSk in (1.9) 
and (1.10) on the hyperplane X4 = const. (d(74 = - i d 3X). 
One obtains for their integrands 

T4m = - (1 -2K)A4.n An.m -2KAa .a A4.m 
- (w - ieA4)(¢> '!:n¢> - ¢> *¢>.m) + Wn4m.n (2.3) 

and 

iaX 
---(Slm)K{3 A{3 = - (1 -2K)( Al A4.m -Am A4./), 
a(a4 A K ) 

(2.4) 

where we have used in (2.4) the spin matrix appropriate for 
vectors 

(2.5) 

To simplify the expression (1.9) involving (2.3) we 
make use of the equation for the space and time parts of All- ' 

An.mn - Am.nn + ie(¢> '!:n¢> - ¢> *¢>.m) - 2e2 Am¢> *¢> = 0, 
(2.6) 

(2.7) 

Multiplying (2.6) by A4 and (2.7) by Am' adding and 
integrating with respect to iCklmXI d 3x yields the identity 

iCklm J XI [An.mn A4 + (Am A4.nn - Am.nn A4) 

+ ieAi¢> '!:n ¢> - ¢> *¢>.m) + 2iewA m ¢> *¢> ] d 3X = 0. 
(2.8) 

Now, adding (2.8) to (1.9) using (2.3), we can write 

Lk = iCklm J XI [(1-2K)( An.mA4),n 

+ (Am A4.nn - Am.nn A4) + (2KA n.n A4).m 

+ w(¢> '!:n ¢> - ¢> *¢>.m) + 2iewA m rfJ *¢> 
- Wn4m.n J d 3X. 

Integrating by parts, we have 

Cklm f x /( An.m A4).n d 3X = cklm f Al A4.m d 3X, 

cklm J x/(Am A4.nn -Am.nn A4)d 3x 
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(2.9) 

(2.10) 

(2.1 1) 

and 

Cklm J XI (2KA n.n A4).m d 3x = 0. (2.12) 

Thus 

Lk = - iCklm J (2K - 3)AI A4.m d
3x - iCklm 

X J XIW[(¢> *¢>.m - ¢> '!:n¢» -2ieAm¢> *¢> ] d 3x 

- iCklm f Wn4m.n d
3x. (2.13) 

For K = ~ the first integral in (2.13) is zero. In the sec
ond integral we make use of (2.6) to write the integrand 

- w [(rfJ '!:n ¢> - ¢> *¢>.m) + 2ieA m ¢> *rfJ ] 

= (iw/e)(Am.nn -An.nm)· 

In the right side of (2.14) cklm f XI An.nm d 3X = 0, so 
(2.13) becomes 

(2.14) 

Lk = - iCklm J XI [(iw/e)Am.nn + Wn4m.n ] d 3x. 

(2.15) 

The first term in (2.15) can be written 

J XI Am.nn d
3
x= J an (XI Am.n)d 3x- J alAm d 3x. 

(2.16) 

Both integrals in (2.16) can be expressed as surface integrals 
that are nonzero only if the system has a magnetic-dipole 
moment. In that case (2.15) suggests that, in order that 
Lk = 0, the simplest expression for Wwlv should be linear in 
the derivatives of Au and include a 4-vector whose fourth 
component would match w. The most general form for such 
a combination antisymmetric in (/-LA) can be expressed as 
follows 2

: 

~,,,V = (Av.ll- a" - Av.,tall-) + (AIl-.vb,t -A".vbll-) 

+ (AIl-.,t -A,t.p)cv· (2.17) 

The expression (2.17) involves three arbitrary 4-vectors 
all-,b,l , and cll-' which, in this paper, we will take to be con
stant. We thus find that 

Wn4m.n = Am.nn a4 +An.nm b4 - (A4.mn bn +A4.nnCm)· 
(2.18) 

Hence, choosing a4 = - iw/e and substituting in 
(2.15), we get 

(2.19) 

The first term in (2.19) can be expressed as a surface 
integral by partial integration: 

Cklm J x 1 A4.mn d 3x=Cklm Jam(XIA4.n)d3X 

= Cklm i~XmXl A4.nr dfl = 0. 
s r 

The second term on the other hand in (2.19) gives a 

S. Ahmed and H. Schiff 1857 



                                                                                                                                    

nonzero contribution if the system has an electric dipole mo
ment, consequently either Cm = 0 or we would have to ex
clude solutions with electric dipole moments. However, the 
above considerations apply only to the expression for Lk on 
the hyperplane X 4 = const. More than three 4-vectors are 
needed to take into account the requirement that Lk should 
be zero on any space-like surface; also there must be no sur
face contributions at spatial infinity to the energy, momen
tum, and total angular momentum due to dipole terms in 
W,tA", as well as surface terms due to nonzero electric 
charge. 

To augment the three 4-vectors introduced in Eq. (2.17) 
we can add to (2.17) terms linear in the 4-vectors, of the form 

(2.20) 

where W~Av is similar to (2.17) with aIL' blL , andclL replaced 
by a new triplet a~, b ~, and c~, i.e., 

W~Av = (A".,ta~ -Av,Aa~) + (AIL,l'b~ -AA,vb~) 
+ (AIL,A - AA".)C:" (2,21) 

Any number of triplets of 4-vectors (say N + 1) can 
now be used to construct 

N 

~'Al' = I (X(Ta(TYW~Av' (2,22) 
s=o 

We observe that (2.22) is not translationally invariant, 
resulting in origin-dependent contributions to the angular 
momentum from terms linear in the translation parameters 
if the system has electric charge. However, these terms can 
be made to cancel by choosing suitable relations between the 
4-vectors. 

If we confine ourselves to spacelike hyperplanes, then 
dUA for any hyperplane can be expressed in terms of dc/;., 
corresponding to the hyperplane X 4 = const by a boost 

(2.23) 

Let TILl' = an WnlLv,then for the 4-momentum to be un
affected by the addition of WILAv on any hyperplane requires 

f TAlt dUA = -iaH f TAIL d
3
x=0. 

Since a A 4 is arbitrary, we require 

(2.24) 

f TAIL d 3X = O. (2.25) 

Now S Tij d 3X = 0 because these integrals convert to 
surface integrals involving derivatives of the magnetic-di
pole potential. Hence we need consider only 

(2.26) 

Contributions to the integrals in (2.26) come only from 
the electric charge and one needs at least two 4-vectors to 
nullify them. 

For the total angular momentum to be unaffected by 
the addition of WILAVon any hyperplane requires, again using 
(2,20), 

1858 

f [(XIL TAl' - Xv TAIL) + (WILAV - WVAIL )] d 3X = O. 

(2.27) 
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For each value of A. there are six homogeneous equa
tions for the 4-vectors, consequently (2.27) requires in gener
al at least five 4-vectors. In addition, the orbital angular mo
mentum must be zero on every hyperplane, 

Lk = Eklm f Xl TAm dUA = 0, (2.28) 

which represents 12 inhomogeneous equations for the 4-
vectors 

(2.29) 

where T~m is the canonical energy-momentum tensor (1.4). 
The nine equations of (2.29) for A. = 1,2,3 make an in

teresting statement relating the symmetry of the solutions of 
the field equations to the magnetic dipole moment. Namely, 
if not all of the integrals Eklm S xlTjm d 3x equal zero, then 
the system must have a magnetic dipole moment in order 
that (2.29) be satisfied, because the coefficients of the con
stant 4-vectors in the integrals Eklm S XITjm d 3X are propor
tional to the magnetic dipole moment, 

Thus, with the use of (2,22), we are able to ensure that 
Lk = 0 in the rest frame on every space-like hyperplane and 
that the addition of ~lAv does not change the integrals for 
the conserved quantities. 

With Lk = 0 the intrinsic angular momentum is equal 
to the total angular momentum. Making use of(2.15), (2.27), 
and (2.4), with K = ~, we have 

(2.30) 

Writing the asymptotic dipole term as 

(2.31) 

one gets for the second term in (2.30) 

(2.32) 

In vector notation, then 

f 8ffW 
S= 2(AXE)d 3x- -e-j.t· (2.33) 

The results (2.15) and (2.33) for W = 0 correspond to those 
previously obtained. 3 

We now examine the orbital angular momentum when 
the system is moving. 

First, it is easy to show that with Lk = 0 in the rest 
frame L k , for the moving system is orthogonal to the velocity 
on every spacelike hyperplane. 

Consider the 4-vector 

(2.34) 

for the moving system, on an arbitrary hyperplane, where v~ 
is the system's 4-velocity. The fourth component of (2.34) is 

V~ = E4ijk V'i f X;T~k du~ = v'·L'. 

In terms of rest-frame quantities, 
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v ~ = a4{3 V{3 = a4{3E{3al'-v Va f XI'- TAv dUA 

= - a4iE4ijkV4 f XjTAk dUA' 

since Vi = ° in the rest frame. So 

V~ = - v4a4i L i = 0, 

because Li = ° in the rest frame. 
Since the total angular momentum is independent of 

the hyperplane, it follows that the component of the intrinsic 
angular momentum in the direction of motion is indepen
dent of the hyperplane. In other words, with L k = ° in the 
rest frame one obtains a meaningful helicity for the system. 
However, we can go further. Making use of the constant 4-
vectors available in (2.22), we can obtain a hyperplane-inde
pendent orbital angular momentum for the moving system 
as follows. 

In the frame in which the system is moving with veloc
ity v' we write 

Lie = !Eklm L ;m' 
where 

L;m = f (x;T~m - x;" T~I) du~ 

(2.35) 

(2.36) 

on an arbitrary space-like hyperplane. In terms of rest-frame 
quantities, 

L;m = all'-amvLl'-v = al4amjL4j + aljam4Lj4, 

since Lij = ° in the rest frame. Therefore 

L k = Eklmaljam4Lj4' 

with 

(2.37) 

Lj4 = f (xjT).4 -x4TAj )duA· (2.38) 

Now S TAj dUA = 0, since the integral is just the 3-mo
mentum that is zero on every hyperplane. Thus 

(2.39) 

The arbitrary hyperplane in (2.39) is related to the hy
perplane X4 = const by dUA = ii).4 dcl1, = - iii).4 d 3X, 
where the iiA 4 are boost coefficients. So 

Lj 4 = - iii).4 f x j T).4 d 3X. (2.40) 

We can use our available constant 4-vectors to make each of 
the integrals in (2.40) zero, ensuring also that the transla
tionally dependent terms from Ww1v give no contribution. 
Now (2.39) is the defining integral for the center-of-mass 
coordinates on the hyperplane in the rest frame and we have 
arranged to place the center of mass at the origin of the co
ordinate system independent of the hyperplane. With a dis
placement of the origin to an arbitrary position RiO Lj4 now 
becomes 

Lj4 = Rj f T).4 dUA = iRj M o, (2.41) 

whereMo is the rest mass of the system. Thus (2.35) becomes 
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(2.42) 

or 

L' =RXp, (2.43) 

independent ofthe hyperplane in the frame where the system 
has momentum p = yMov'. This final result is actually the 
justification for referring to E kim S X I TAm du A as the external 
orbital angular momentum. 

In the following sections the above arguments regard
ing the external orbital angular momentum apply as well, 
mutatis mutandis, to both the spinor and vector fields. 

3. SPINOR FIELD 

The Lagrangian is taken as 

.!£ = -! F~v - tftYI'-Dl'-lJI + V(tftlJl) + .!£ d' (3.1) 

where lJI (r,t) = tP(r)e iwt is a four-component spinor, V(tftlJl) 
is a suitable self-coupling function, the YI'- are the Dirac ma
trices, and 

.!£d =Kal'-(Al'-avAv -AvavAI'-) 

is the same as (2.2). For the integrand in (1.9) we have 

T4m = - (1 - 2K )A4,n An.m - 2KAa ,a A4.m 
+ iirr4t/J,m + Wn4m.n + W~4m.n' (3.2) 

where WI'-Av is the same as (2.22) and we have added the 
divergence of 

W~Av = i¢YvS ~A t/J, (3.3) 

where the spinor spin matrix 

S ~A = !-II'-A = (1I4l)(yl'- YA - YA YI'-)' 

so that 

(3.4) 

W ~4m =! i¢y m~n4 t/J = -! iiirr ~nm t/J + ! iirr48mn t/J. (3.5) 

For the integrand of (1. 10) we have 

i a.!£ (S ) A i a.!£ S' ./, 
2 a(a4 Ak) 1m K{3 (3 - 2'" a(a

4
t/J) 1m 'f/ 

+ WI4m + W;4m' 

where the first term is obtained from (2.4) and the second 
term 

i a.!£ S' ./. _ i .7. ~ ./, - 2'" a(a
4

t/J) Im'f/ - "'4 'f/Y4 Im'f/' (3.6) 

In order to simplify the expression for the orbital angu
lar momentum, we will need the field equations for A k' A4 , t/J, 
and ¢; these are 

-Am,nn +An.nm -ie¢Ymt/J=O, 

A4,nn + ie¢r4t/J = 0, 

Ykt/J,k + (j)Y4t/J - ieyv Avt/J - V't/J = 0, 

¢.kYk - (j)¢Y4 + ie¢yv Av + ¢V' = 0, 

where 

V'= a! . 
a(t/Jt/!) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Multiplying (3.7) by A4 and (3.8) by Am and adding 
yields the identity 
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An.l1m A4 + Am A4.nn - Am.nll A4 

- ie¢(r m A4 - r4 Am)tll = O. (3.11 ) 

Also, multiplying (3.9) by ¢r4r m and (3.10) by r m Y4tP 
and subtracting yields the identity 

(¢r4tP,m - ¢.mr4tP) - ian(¢r4~nmtP) -'2uJ¢rmtP 

(3.12) 

Now, multiplying (3.12) by ~, adding it to (3.11), and 
integrating with respect to iEk1mX1 d 3X, we get the identity 

iEklm f X{ An.nm A4 + (Am A4,nn - Am,nn A4) 

+ H¢r4tP.m - ¢.m r4tP) 

(3.13) 

where we have used (3.7) to obtain the last term in (3.13) by 
the relation 

f iUJ d 3 f - 3 Eklm x1-;Am.nn X= + Eklm X,UJtPrmtPd x. 

Using (3.2), the orbital angular momentum can be 
written 

Lk = - iEklm f x 1[ - (l-2K)A 4.n An.m -2KAa •a A4.m 

+ ~(¢r4tP.m - ¢.m r4tP) + Wn4m.n + W ~4m.n ] d 3X, 
(3.14) 

where we have used, for I =1m, 

f X,¢r4tP.m d 3X = - f x1¢.m Y4tP d 3X. 

To (3.14) we now add (3.13). For K = ~ the terms that 
depend only on A I' , including Wn4m,n, cancel, as was the case 
for the scalar field, leaving 

Lk = -iEklm f X/(~ an(¢r4~nmtP)+ W~4m.n)d3X=0, 
using (3.5). 

The AI' contribution to the intrinsic angular momen
tum is formally identical to the scalar-field case. So, making 
use of (2.33), (3.5), and (3.6), we get 

(3.15) 

4. VECTOR FIELD 

For the vector-field Lagrangian we use the one intro
duced by Corben and Schwinger4 with the mass term 
m2<p !<P" replaced by a suitable self-coupling term 
V(<P !<P,') 

if = -! F~" - !(D:<P ~ - D ~<P :)(Dp. <P" - D" <P,') 

+! ier~,,,(<P :<P" - <P ~<p,J + V(<P !<PJ.l) 

+ if d + if'~, (4.1) 

where r is an arbitrary dipole parameter and again we use 
the divergence 

Xd = Kap.(AJ.lav A" -Ava" Ap.), 

plus the divergence 

if~ = Cap.(<P!av<p" - <p~av<pp.)' (4.2) 

where C is a constant. The time dependence is again of the 
form <Pp.(r,t) = <pp.eiwt

• 

For the energy-momentum tensor one gets 

T4m = - [(1 - 2K)A4.n An.m - ier(<p ~<P4 - <P Nn )An.m 

+ 2KA a .a A4.m ] - (1 - C)(<p ~.m<P4.n + <P tn<Pn.m) 

+ ieAn(<p ~.m<P4 - <P t<Pn.m) + (UJ - ieA4) 

X(<P~.m<Pn -<P~<Pn.m)-C(<P~.n<P4.m + <Pt.m<Pn.n) 

+ Wn4m.n + W~4m.n' (4.3) 

where Wp.A" is the same as (2.22) and we choose 

W;A" = - ie(r -1) [AI' (<p !<Pv - <P ~<PA) 

- AA (<p :<Pv - <P ~<pp.)] + 2ie(<p !<PA - <P !<pJ.l)Av 

+ [hi' (<p !<p" - <P ~<PA) - hA (<p !tPv - <P ~tPJ.l)]' 
(4.4) 

where hI' is a constant 4-vector. 
For the intrinsic angular momentum (1.10) we find 

Sk = -iEklm f (1-2K)A 1A4.m +(1-C) 

X(<Pr¢>4,m +<Pt.mtPl)-ie 

X [(r -1)A ,(<p !<P4 - <P t<Pm) - 2<p r<Pm A4] 

-2UJ<pr<Pm + W I4m + W;~ml d 3x. (4.5) 

For the orbital angular momentum we will need the 
field equations. The ones for Am, A4 are, in terms of <Pm and 

<P4' 

-Am.nn +An.nm -ier(tP'::.<Pn -tP~<Pm).n -ie(<p~.m<Pn -<P'::..n<Pn)+ie(tP~<Pn.m -<P~<Pm,n)+2e2Am(tP~tPn +tPttP4) 

- e2An (<p '::. <p" + <P ~<Pm) - ie(<p tm <P4 - <P t<P4.m) - ie(UJ - ieA4)(<p :. <P4 + <P ttPm) = 0, (4.6) 

- A4.nll - ier(<p t<Pn - <P ~<P4),n + ie(<p't,n<Pn - <P ~<P4,n) - e2An(<P ~<P4 + <P ttPn) + 2ieUJ<p :<Pn + 2e2A4<P ~<Pn = O. (4.7) 

The equations for <Pm' <P 4 are 

Dv(Dm <P,. - D,,<Pm) - <Pm V' - ier<PvFmv = 0, 

D,,(D4 <P,. - D,,<P4) - <P4V' - ier<PvF4v = O. 

We now construct the following identity, 

[Ai4.6) - Am (4.7)] + [<P :(4.8) - <P '::. (4.9)] + [<Pi4.8)* - <Pm (4.9)*] = 0, 

where, for example, <P4(4.8)* means the complex conjugate of the left side of (4.8) multiplied by <P4, etc. 
After carrying out the time derivatives in (4.10), we obtain an expression of the form 

Mm -UJNm =0, 
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where the term independent of W 

Mm = An,nm Ai Am A4,nn - A4 Am,nn) + (ifJ ~,nmifJ4 + ifJ tifJn,nm) + (ifJ '!ifJ4,nn - ifJ ,!,nnifJ4) + (ifJ't,nnifJm - ifJ tifJm,nn) 

+ ie(y -1) [(ifJ tifJn - ifJ ':ifJ4)Am - (ifJ '!ifJn - ifJ ~ifJm)A4L + iey(ifJ ':ifJ4 - ifJ tifJn)An,m 

+ 2ie [(ifJ tifJm - ifJ '!ifJ4)An 1.n - ie(ifJ tifJn,m - ifJ ~,mifJ4)An - ie(ifJ ~,mifJn - ifJ ~ifJn,m)A4' 
and 

N m = 2ieA m (ifJ ~ifJn + ifJ tifJ4) + (w - ieA4)(ifJ tifJm + ifJ '!ifJ4) 

+ (ifJ '!ifJn,n - ifJ ~,nifJm) - ieAn(ifJ '!ifJn + ifJ ~ifJm) + (ifJ 't,mifJ4 - ifJ tifJ4,m)' 

From (4.11) we construct the integral identity 

iEklm IX,(Mm -wNm)d 3x=O 

and add it to the orbital angular momentum involving (4,3) to get 

(4.12) 

Lk = iEklm I xd [(1-2K)A4 An,m 1.n + (1- C)(ifJ~,mifJ4 + ifJtifJn,m),n + (Am A4,nn -A4 A m,nn) + (ifJ '!ifJ4,nn - ifJ'!,nnifJ4) 

+ (ifJt,nnifJm -ifJtifJm,nn) + ie(y-1)[(ifJtifJn -ifJ~ifJ4)Am -(ifJ,!ifJn -ifJ~ifJm)A41.n +2ie[(ifJtifJm -ifJ'!ifJ4)AnL 

+ [2KA n,n A4 + C (ifJ ~,nifJ4 + ifJ tifJn,n)],m + W [ - Nm - (ifJ ~,mifJn - ifJ ~ifJn,m)] - Wn4m,n - W~4m,n l d 3X. (4.13) 

Integrating (4.13) by parts, we obtain 

Lk = - iEklm I [(2K - 3)A, A4,m + (C - 3)(ifJ rifJ4,m + ifJ 't,mifJl) + ie(y - 3) 

X (ifJ '!ifJ4 - ifJ tifJm)A1 + 2ie(y -1) ifJ rifJm A4] d 3X - i€klm 

X I WX1[ +Nm +(ifJ~,mifJn -ifJ~ifJn.m)]d3x-iEklm I XI (Wn4m,n + W~4m,n)d3X. (4.14) 

The second integral in (4.14) can be simplified by making use of(4.6), Multiplying that equation by iEklmXI and integrat
ing yields an identity that can be written, after one partial integration, as 

iEklm I XI! An,nm - Am,nn - iey(ifJ '!ifJn - ifJ ~ifJm),n - ie[2ieA m(ifJ ~ifJn + ifJ tifJ4) + (w - ieA4)(ifJ '!ifJ4 + ifJ tifJm) 

- ie(ifJ '!ifJn + ifJ ~ifJm)An + (ifJ 't,mifJ4 - ifJ tifJ4.m) + (ifJ ~,mifJn - ifJn,mifJ~) 

-(ifJ~,nifJm -ifJ'!ifJn,n)]l d 3x+iEklm I 2ieifJrifJm d 3x=O. 

With the help of (4.15), the second integral in (4.14) can be expressed as 

-iEklm Iwxl [ +Nm + (ifJ':.mifJn -ifJ':ifJn,m)]d 3x 

= e:) iEklm I XI [An,nm - Am,nn - iey(ifJ '!ifJn - ifJ ':ifJm),n ] d 3X - iEklm I 2wifJ rifJm d 3X. 

(4.15) 

(4.16) 

Since the integral of An,nm is zero and integrating the y bracket by parts, the orbital angular momentum (4.14) becomes 

Lk = -i€klm f [(2K-3)AIA4,m + (C-3)(ifJrifJ4,m +ifJ't,mifJI)]d 3x-i€klm IxIC: Am,nn + Wn4m,n)d
3
X 

- iEklm I ! ie[(y - 3)(ifJ '!ifJ4 - ifJ tifJm)AI + 2(y -1) ifJ rifJm A4] - 2w(y - 1) ifJ rifJm + XI W~4m,n l d 3x, (4.17) 

Putting K = ~, C = 3 makes the first integral zero. The second integral is zero, as for the scalar case. In the third integral, 
using (4.4) with hi = 0 and h4 = w(y - 1) and integrating the last term in (4.17) by parts makes that integral zero. 

Finally, proceeding to the intrinsic angular momentum (4.5), we obtain 

Sk = -i€klm I [-2AIA4,m -2(ifJrifJ4,m +ifJ't,mifJJ 

- 2ieAI (ifJ '!ifJ4 - ifJ tifJm) - 2y(w - ieA4)ifJ rifJm ] d 3X - (81Tw/e)Pk' (4.18) 

5. DISCUSSION 

For Abelian systems in which the complex fields have 
elM time dependence, we have shown that, with the use of a 
number of auxiliary 4-vectors, it is possible to define an ener-
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r 
gy-momentum tensor (not necessarily symmetric) that 
yields an orbital angular momentum L = r X p independent 
of the space-like hyperplane on which it is evaluated. We 
expect that this should also be possible for systems with more 
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complicated time dependence, but the analysis would then 
be appreciably more complicated because of the time depen
dence of the energy-momentum tensor. Also, we would ex
pect the above to apply as well to non-Abelian fields. 

The selection of hyperplanes for the space-like surfaces 
was dictated by the choice of making the 4-vectors in WI'AV 

constant. For more general spacelike surfaces the 4-vectors 
could be considered as functions of the coordinates. This 
would lead to coupled first-order partial differential equa
tions for the 4-vectors, but whether a consistent set of solu
tions exists is still to be determined. 
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'See, for example, D. Lurie, Particles and Fields (Interscience, New York, 
1968). 

2(2.17) can also be written in terms of the vector spin tensor, 

W".h = i(S"").{3 [ A, .. ,a(3 + A,.",(b(3 + c(3) 1 
+ i(S",,).(3 A~., C(3 + i(S",'),{3 A" .• c/l' 

3D.S. Phillips and H. Schiff, J. Phys. A 12, 999 (1979). 
'H.C. Corben and J. Schwinger, Phys. Rev. 58, 953 (1940). 
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The dynamics of classical spinning particles is studied from the point of view of gauge 
supersymmetry. The central idea is that the natural way of introducing intrinsic spin degrees of 
freedom into a physical system is to take the square root of the Hamiltonian generators of the 
system without spin, which is equivalent to rendering the system gauge supersymmetric. This is 
accomplished by describing the spin degrees offreedom by means of "anticommuting c-numbers" 
(odd Grassman algebra elements) and relying on Dirac's theory of constrained Hamiltonian 
systems. The requirement of gauge supersymmetry fixes completely the action principle and 
leaves neither room nor need for ad hoc subsidiary conditions on the relative direction of the spin 
and the velocity as in the more traditional treatments. Both massive and massless particles free 
and in interaction with electromagnetic and gravitational fields are discussed. It is found that 
there exists a supergauge in which the spin tensor of a massive particle in a gravitational field is 
transported in parallel but the particle does not follow a geodesic. Massless particles on the other 
hand have the property of possessing a supergauge where their helicity is conserved and in which 
at the same time the worldline is a geodesic. Special attention is paid to the meaning and properties 
of the supergauge transformations. The main aspects of that discussion are applicable to more 
complicated systems such as supergravity. In particular phenomena such as necessity of invoking 
the equations of motion to close the gauge are analyzed. 

I. INTRODUCTION 

This article approaches the old problem of defining and 
studying the dynamics of classical spinning particles from 
what one could perhaps call a "modem" point of view, 
namely that of gauge supersymmetry. The central idea is 
that the natural way of introducing intrinsic angular mo
mentum (spin) degrees offreedom on a physical system is to 
take the square root of the Hamiltonian generators of the 
system without spin (see for example Ref. 1 and references 
therein). This is accomplished by relying on Dirac's theory 
of constrained Hamiltonian systems. 

The square root procedure, actually discovered by 
Dirac himself in connection with the electron wave equa
tion, is equivalent in today's parlance to requiring that the 
spin degrees of freedom should enter in such a way so as to 
make the system invariant under a gauge supersymmetry 
transformation. The demand that the system by supersym
metric fixes completely the action principle and there is nei
ther room nor necessity for physically significant ad hoc re
strictions on the relative directions of the spin and the 
velocity of the system as in more traditional approaches. 2-4 

The price for demanding that the system be supersym
metric is that the spin degrees offreedom must be classically 
described by odd elements of a Grassmann algebra ("anti
commuting c-numbers") and have no direct physical signifi
cance. This a reflection of the fact that what is being de-

a)Research supported by National Science Foundation Grant No. PHY79-
19887 to the Institute for Advanced Study. 

h)On leave of absence from Centro Brasileiro de Pesquisas Fisicas. Rio de 
Janeiro. and Dept. de Fisica. UFRN. Natal. Brasil. Supported by CNPq. 
Brasil. 

C)Alfred P. Sloan Research Fellow. 

scribed is a microscopic spinning particle (of spin one-half in 
our case) and not a macroscopic rotating system. 

However the fact that the classical spin degrees of free
dom do not have a direct physical meaning should not be 
taken as indicating that the approach itself is devoid ofutil
ity. First of all, this way of treating the problem puts it in 
direct relationship with more complicated systems such as 
supergravity.5 Indeed it appears that a classical spinning 
particle may be regarded as supergravity in zero dimensions. 
This analogy permits one to gain insight both into the dyna
mics of the spinning particle and also on some puzzling as
pects supergravity itself-such as the closure of the gauge 
algebra-which also appear here in a technically simpler 
context. 

Second, a well-defined canonical quantization proce
dure exists for these systems so that the classical theory can 
be used as a starting point for canonical quantization. Al
though this possibility is quite important for more compli
cated systems such as supergravity it is really not so useful in 
our case where the quantum system as a primary goal is well 
understood (Dirac equation in an external field). It may be 
nevertheless valuable as testing ground for quantization pro
cedures of more complicated gauge supersymmetric 
theories. 

Furthermore there is a reason to believe6 that a semi
classical approximation for systems described by anticom
muting c-numbers may be developed. If this is so the results 
obtained here-such as the fact that there exists a super
gauge in which a massless spinning particle in a gravitational 
field follows a geodesic, might be translated in a precise man
ner into a clear physical statement. 

The plan of the article is as follows. Section II reviews 

1863 J. Math. Phys. 21 (7). July 1980 0022-2488/80/071863-18$1.00 @ 1980 American Institute of Physics 1863 



                                                                                                                                    

the dynamics of nonrelativistic spinning particles with par
ticular attention paid to boundary terms in the action princi
ple and to conservation laws. Section III develops, starting 
from the Dirac equation, the relativistic, supersymmetric 
generalization of the action given in Sec. II. It contains a 
detailed general discussion of the meaning of the gauge in
variances of the action both in phase and configuration 
spaces. The phenomena of a gauge algebra that "closes only 
when the equations of motion hold" which has played an 
important role in supergravity theory is also found to arise 
here. Section IV discusses Poincare invariance of the action 
and the notion of spin for both massive and massless parti
cles. In the latter case it is shown that the notion of spin 
vector is not a meaningful one but that one has to deal only 
with the helicity. Section V treats the dynamics of a super
symmetric particle under the action of an external electro
magnetic field as a problem of interest in itself but also as 
preparation for Sec. VI which deals with the gravitational 
interaction. In that last section the case of massive and mass
less particles is considered separately. In the massive case 
there exists a supergauge where the spin is "covariantly con
served" (transported in parallel) but the particle does not 
follow a geodesic, whereas in the massless case, in a special 
supergauge, the helicity is also conserved and in that same 
supergauge the orbital motion is geodesic. In this sense mass
less spinning particles couple minimally to the gravitational 
field whereas massive ones do not. 

Finally Appendix A presents some standard material 
on Hamiltonian dynamics on a Grassmann algebra whereas 
Appendix B contains a discussion of the Dirac equation in 
curved space-time. 

Some well-known results of other investigators are re
derived for the sake of clarity and in order to set the new 
work in proper perspective. Thus, Secs. II, lIa-c, V, and 
Appendix A are to a large extent contained in the work of 
Berezin and Marinov7 and Casalbuoni et al.8 The presenta
tion ofSecs. IIId-f, IV, and VI seems to be largely new. 
Appendix B contains standard material and is included 
mostly to fix the notation. We would like, however, to stress 
that we have no pretense whatever of systematically review
ing the interesting and numerous previous works in this 
field. 

II. NONRELATIVISTIC SPIN ONE-HALF PARTICLE 
A. Constraints 

As a simple example we outline the discussion of the 
nonrelativistic spinning particle. The analysis of this system 
will provide us with concepts we will need for the develop
ment of the more complex systems discussed in the following 
sections. 

We consider a nonrelativistic free particle (interactions 
will be considered for the relativistic case in Secs. V and VI 
below) with position coordinates x i(t), i = 1,2,3. For the 
purpose of describing the spin degrees offreedom we associ
ate with the particle three real anticommuting variables 

(J i = (J i(t) 

in addition to the position coordinates. The (J i will be as
sumed to behave as the components of a vector under spatial 
rotations. 
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In order to construct the kinetic part of the free Lagran
gian L we recall that it must be an even function (see Appen
dix A) and since the (J 's are odd it is not possible to use e 2 as a 
kinetic term. However, we now have a new possibility which 
was not available in the ordinary case, namely the term e·(J 

which is not a total derivative. Thus, we write the Lagran
gian for the free nonrelativistic spin one-half particle as 

L = ~m:i2 + (i/2) 9·9 . (11.1) 

It is clear that the equations of motion derived from the 
Lagrangian (11.1) are invariant under rotations and also un
e'er Galilean transformations if the (J 's remain unchanged 
under the latter. It is worthwhile to observe that the Lagran
gian (11.1) exhibits a general feature which is a distinctive 
property of Fermi systems, namely the linearity in the time 
derivative. As it will be seen in the following sections the 
quantum mechanics based on (11.1) is that of a nonrelativis
tic spin ~ particle. 

To pass to the Hamiltonian we define the conjugate 
momenta 

JL 
P - - =mx,., 

i - JXi 
(11.2) 

JL i 
1Tk = -.- = - (Jk , (11.3) 

J(Jk 2 

whose generalized Poisson brackets are (see Appendix A): 

I Xi 'Pj J = oj , 

I (J \ 1T, J = Ok, , 

all others being zero. 

(11.4) 

(11.5) 

From Eq. (11.3) we obtain the primary constraints 

(11.6) 

which are consequences of the linearity of L in e. To check 
whether there are secondary constraints we write down the 
total Hamiltonian 

HT=Hc+AXi 
2 

L+A,X' ., 
2m ' 

(11.7) 

(11.8) 

where the A i are anticommuting Lagrange multipliers. The 
consistence conditions 

Xi= IXi,HTj:::::O 

lead to A i = O. Therefore we have no secondary constraints 
and the Xi are second class: 

lXi' Xk j = iOik . (11.9) 

It is now possible to introduce Dirac brackets based on 
the second class constraints X k; after this is done one may 
consider X k = 0 as strong equations thus eliminating the 1T k 

from the theory, which leaves the (Ji as the only Fermi varia
bles, with modified brackets 

(11.10) 

B. The action principle 

The equations of motion are obtained by extremizing 
the action under small deformations of the history of the 
system. The allowed deformations must obey boundary con-
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ditions the number of which is equal to the number of inte
gration constants in the general solution of the equations of 
motion. Now, for the Bose variables Xi' we demand as usual 
that Xi be fixed at the initial and final times. It is not possible 
however to impose a similar requirement on the () 's, as this 
would imply two boundary conditions for a first-order dif
ferential equation. As a consequence the action for our sys
tem cannot be taken to be just the time integral of the La
grangian but must be supplemented by a boundary term. 
Instead of following an inductive procedure we will simply 
exhibit the correct action principle and show that it satisfies 
all the necessary requirements. 

We write the action as 

S = L'L dt + (i/2) O(tl)' 0(t2) (11.11) 

and state that the solution of the equations of motion are 
those histories which yield no variation of S under the 
conditions 

8x(t I) = 0, 8X(t2) = 0, 

80(t1) + 80(t2) = o. 
(11.12) 

(11.13) 

In order to verify that this action principle is a suitable one 
we must verify two properties: (i) Extremization of Sunder 
conditions (11.12,13) should yield just the equations of mo
tion without additional restrictions; (ii) Those equations of 
motion should have a unique solution (with possible excep
tion of some "unfortunate" choices of the boundary condi
tions) consistent with arbitrary given values ofx(tl)' X(t2)' 
O(t I) + 0(t2)' 

The x-dependence of the action is the usual one so it 
need not concern us any longer. The novelty is in the () part. 
If we vary () (t) we find 

8S = fro dt iO.80 + ~[80(2)-0(2) - 8 0(1)·0(1)] 
r, 2 

+ ~ [80(1)·0(2) + 0(1)·80(2)] 
2 

= fro dt iO.80 - ~ [80(1) + 8 0(2)].[0(1) - 0(2)], 
r, 2 

where we abbreviated 8 O(tl) = 8 0(1), etc. The boundary 
term vanishes on account of condition (11.13) and extremiza
tion of S yields just 

Ok =0 (11.14) 

as needed. 
Now, let us suppose that 0(1) + 0(2) is given as 25, say. 

In that case there is a unique solution to Eq. (11.14) with that 
boundary condition, namely O(t) = S for all t so that require
ment (ii) is fulfilled. 

It should be mentioned that had we attempted to fix 
0(1) - 0(2) instead of 0(1) + 0(2) we could have also satis
fied requirement (i) by properly adjoining the boundary 
term to the action, but we would not have been able to satisfy 
(ii) since in that case the boundary condition would not have 
fixed the solution of the equation of motion. 

The action can be rewritten in Hamiltonian form as 

S = fr

, dt (i.P + ~ 0.0 - L) + ~ 0(1).0(2). 
'. 2 2m 2 (11.15) 
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C. Conserved quantities 

Having an action principle we can discuss conservation 
laws. The action (11.11) is invariant under translations, rota
tions, and Galilean transformations. The () 's are only affect
ed by spatial rotations so that in the other two cases we just 
obtain the standard results for a spinless particle. Let us 
therefore analyze the case of rotations. Under that transfor
mation we write: 

8Xi = UJ~ x J , 

8pi = UJ~ pJ, 

8(} i = UJ~ (}J , 

with UJ iJ = - UJji' 

(II. 16a) 

(II. 16b) 

(II. 16c) 

The action (11.11) is clearly invariant under this trans
formation. On the other hand, following Noether's proce
dure, we can rewrite the variation of the action as 

8S=8x·pl:; - ~ [80(1)+80(2)].[0(1)-0(2)] 

+ (terms vanishing when the equations of motion 
hold). (11.17) 

Now, the () term in the above equation can be rewritten in 
this case as 

~ UJJk [() k(l) + () k(2)] [(}J(l) - (}J(2)] 
2 

= ~UJJk [(}J(2)(}k(2) - (}J(1)(}k(I)] . 
2 

(11.18) 

Ifwe now insert (11.18) into (11.17) and recall (11.16) we find 
that 

J ik = Lik + Sik 

is a constant of motion, where 

Lik = Xi Pk - Xk Pi , 

Sik = i(}i(}k . 

(11.19) 

(11.20) 

(11.21) 

The dynamical variable Jik is the generator of rotations 
and should then be identified as the total angular momen
tum. It splits into an orbital part Lik which is not invariant 
under translations or Galilean transformations and an in
trinsic or spin part Sik which is invariant under those two 
kinds of transformations. In terms of their Dirac brackets 
Lik and Sik obey the customary algebra. For example, if we 
define the spin vector 

Si = - !€ijkSJk , 

we have 

lSi ,SJJ* =€iJkSk' 

(11.22) 

(11.23) 

It is interesting to mention here that had we neglected 
the surface term in (11.11) and applied Noether's procedure 
naively to the action S = S L dt we would have arrived at a 
definition for the spin of opposite sign to (11.21). From the 
point of view of conservation laws this would be of no impor
tance for a free particle given that Lik and Sik are conserved 
independently in that case. But if interactions are brought in 
the wrong sign would give a wrong answer since only the 
sum of Lik and Sik is conserved in that case (and not their 
difference). However if one wants to identify J ik as the gener-
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ator of rotations the wrong sign of Sik would give the wrong 
answer even for the free particle as J ij would not generate the 
transformations (II. 16a,b,c) in such case. 

1. Quantization 

In order to show that the system described by the action 
(11.11) corresponds to the classical limit of a nonrelativistic 
spin one-half particle we briefly outline the canonical quanti
zation procedure for that system. 

The key step is to convert the dynamical variables of the 
classical theory into operators by means of the prescription 

(A,B J *--+(ifi)-l [A,Bj ± ' (11.24) 

where the plus sign denotes an anticommutator (to be used 
when A and B are odd) and the minus sign corresponds to a 
commutator (to be used when at least A or B is even). 

Applying this prescription to (11.10) we obtain 

[0; ,OJ], = lU5ij , (11.25) 

from which we conclude that we have a Clifford algebra. In 
terms of operators acting on a vector space we know that 
there is just one irreducible representation of this algebra. In 
this representation we have 

A _ (~)1/2 °i - 2 (Ii' 
(11.26) 

where the (Ii are the Pauli matrices. 
The quantum spin vector is then given by 

s= , 

(11.27) 

From Eq. (11.27) we see that our theory corresponds to that 
of a (nonrelativistic) spin one-half particle. 

III. RELATIVISTIC SPIN ONE-HALF PARTICLE 

A. Constraints 

We shall now proceed to discuss the relativistic general
ization ofthe model studied in the last section. A naive gen
eralization would simply replace the three ak by a four vec
tor a Il and would keep the form of the action (11.11) 
otherwise unchanged. However that procedure would in
crease the number of Fermi degrees offreedom and it would 
not therefore be possible to interpret the new system as cor
responding to a relativistic spin one-half particle. 

In order to find the correct classical description we will 
work "backwards" from the known quantum mechanical 
equations of a relativistic spinning particle, namely the 
Dirac equation. This way to proceed seems the most direct 
and convincing one, as there appears to be no purely classical 
argument of similar simplicity. Conversely, one obtains in 
this way valuable insights which can be used in other cases 
when the quantum description is not fully understood and a 
classical analog is desirable as a starting point. The most 
valuable of these insights appears to be the idea ofsupersym
metry which emerges directly from the classical limit of the 
Dirac equation as we shall see below. 

Let us therefore start from the Dirac equation 

(IIl.la) 
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which implies the Klein-Gordon equation 

( - lfo2 + m 2
) '" = O. 

We first introduce the operators 

Oil = i(fz/2)1/2 ysyll , 

Os = (fz/2)1/2 Ys , 

which obey the anticommutation rules 

[OIL, 0"] = -fzrfv, 

[es ,{~s] = - fz , 

and recall that 

[ill ,p,,] = ili£5ll" , 

with 

in the coordinate representation. 

(111.1 b) 

(1II.2a) 

(1II.2b) 

(lIL3a) 

(IIUb) 

(I1I.4) 

(IlLS) 

Now, the key step in passing to the classical limit is to 
interpret Eqs. (IIl.1a,b) as two first class constraints acting 
on allowed states. To this end we first multiply (III.1a) from 
the left by Ys in order to rewrite it as 

(ellp" + mOs) '" = 0 

and, of course (III. I b) reads 

(~Pll + m 2
) '" = o. 

(III.6a) 

(1I1.6b) 

The advantage ofform (III.6a) over (IIl.1a) is that it is ho
mogeneous in the 0 's which will become odd Grassmann 
variables in the classical theory because they obey anticom
mutation rules [Eqs. (11I.3a,b)] in the quantum case. 

The classical theory is now formulated in terms offour 
pairs of Bose (commuting) real variables x Il .p" andfive (an
ticommuting) real variables all,as the only nonvanishing 
Dirac brackets among which are 

(a ll a"J* -' IlV , - lTf , 

(as ,a5 J* = i, 

(x" ,pV) * = rfY. 

(Ul.7a) 

(Ul.7b) 

(III.7c) 

The dynamics of the system is fully contained in the 
classical analog of (I11.6a,b), the first class constraints 

Y = allpll + ma5::::;0, 

cW'=p2+m2::::;0, 

which obey the algebra 

!Y,YJ* =icW', 

[Y,cW'J * = 0, 

! cW',cW'J * = o. 

(III.8a) 

(Ul.8b) 

(III.9a) 

(III.9b) 

(III.9c) 

We have here denoted our brackets with a star in order to 
make contact with the nonrelativistic results of Sec. II and 
with the action functional treated below. 

B. Relativistic action functional 

f. Hamiltonian form 

Since the whole dynamics of the theory is contained in 
the constraints (III.8a,b) we know that the effective Hamil
tonian of the theory will simply be a linear combination of.f? 
and cW' with arbitrary Lagrange multipliers. Moreover the 
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structure of the kinetic term in the action is fixed by the 
brackets (1I1.7a,b,c), which according to our experience 
with the nonrelativistic particle, correspond to a term of the 
form XP + (iI2)0(J. Therefore our action functional includ
ing the appropriate surface terms is 

5 = I"" d1'[XIl-PIl- + ~01l-(J1l- + Os(Js) 
T, 2 

- N (1')(p2 + m2) - iM (1')«(JIl-PIl- + m(Js)] 

+ ~ [(J a(l)(} a (2) + (Js(1 )(}s(2)] , (111.10) 
2 

where Nand Mare, respectively, even and odd real Lagrange 
multipliers. 

The equations of motion are obtained by demanding 
that (111.10) should not change under small variations of 
xll- 'PIl- ' (J a ,(Js, N, M subject to the conditions 

8xll-(l) = 0 = 8xll-(2) , 

8(J1l-(1) + 8(J1l-(2) = 0 , 

8(Js(1) + 8(Js(2) = 0 . 

2. Lagrangian form 

(11I.lla) 

(1II.IIb) 

(1II.IIc) 

Although (111.10) is satisfactory as an action principle 
it is interesting to eliminate the momentaPIl- in favor of the 
velocities x Il- in order to obtain an equivalent action principle 
in Lagrangian form. This is of interest to analyze as it brings 
to light some features which also appear in more complicat
ed problems, and which may be potential sources of confu
sion, especially when the Lagrangian form is taken as the 
starting point in the construction of a theory. 

The elimination of the momenta is achieved by observ
ing that in general if we have an action of the form 
5[[(1'), g(1')] and the equations8S 18g = 0 maybe solved to 
expressg = g[f] then we may insert this solution for g back 
into the action and obtain a new action S [11 = 5 ( f, g[[] J 
which upon extremization with respect tofgives the correct 
equation of motion for that variable. If on the other hand it is 
not possible to solve for g as function off, the insertion of 
85 18g = 0 into the action will lead in general to equations of 
motion for the remaining variables which are different from 
the ones obtained from the original action principle, thus 
rendering the procedure illegitimate in that case. 

We now apply this technique taking for g the set 
(PIl- ,N). From 8518PIl- = 0 and 8518N = 0 we obtain, 
respectively, 

xll- -2NpIl- - iM(J1l- = 0, 

p2+ m2 =0, 

from which it follows that 

N(1') = (112m)\! - Z2 , 

with 

and 

pIl- = m zIl-N - Z2 • 

Substituting (111.13) and (111.15) in (111.10) yields 
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(111.12a) 

(III. 12b) 

(111.13) 

(111.14) 

(111.15) 

S = f d1' [ - my' - r + ~ (01l-(J1l- + Os(Js) - iMm(Js] 

+ ~[(Ja(1)(}a(2) + (Js(1)(}s(2)]. 
2 

(111.16) 

Extremization of S with respect to xIl-, (J Il-, (J s, M under condi
tions (111.1Ia,b,c) gives the correct equations of motion for 
xll-, (J1l-, and (Js' 

Now it is tempting to try to eliminate M (1') and (Js' 
From 8818(Js = 0 and 88 IBM = 0 we obtain 

05 = mM(1') (111.17) 

and 

(J tl-p Il- + m(Js = 0, (111.18) 

with P given by (111.15). However, these two equations do 
not pe~it to eliminate M and (Js as a function of the remain
ing variables due to the boundary conditions (1II.IIc) on (Js' 
In fact, if we use the identities 

y'----::2 ( '2 +2'JI(J ')1/2 _ y'--'2(1 iM(J.x) -z;- = -x 11,,~I'X - -x - --- , x2 

I I (I iM(J.x) 

~ + '2 ' '2 X -x 
we obtain 

m 
(J1l- PIl- = (J·x . 

y' _x2 

Therefore we can write 

11I.17a) 

(11I.18a) 

However it is not permissible to use (III. 18a) to express (Jj 
and M as a function of the other variables because since x is 
free at the end points the right-hand side of (III. 18a) does not 
fulfill the boundary condition (111.1 Ie). 

It is not legitimate either to use (111.17) to eliminate M 
in favor of (Js as is sometimes done. 7 Indeed, that procedure 
would be equivalent to using 8' = 8 - f d1' A. (1')[Os 
- mM (1')] as an action instead of S, where A. (1') is an anti

commuting Lagrange multiplier. This action gives rise to 

88'· 88 ({j8') --" =(Js-mM(1'), - - --
8,1. 8xll- - 8xll- Ii. = mM ' 

88 (88' ) 
{j(J1l- = {j(J1l- 8, = mM ' 

{j8' 88 
- = - +mA.(1'), 
{jM {jM Ii. = mM 

88' . 
- =,1. (1'). 
{j(Js 

Thus, by extremizing 8' with respect to (Js we obtain A = 0 
but not A. = 0, and instead of (tJ81{jM) = 0 we find the 
weaker statement (d Id1') (88 18M) = O. We see that it is not 
correct to use Eq. (111.17) to eliminateM (1') from the action 
and it is therefore not possible to have an action principle in 
terms of (J1l-' (Js, and xIl- only. 

3. Gauge invariance 

In this section we will denote collectively JY and .Y by 
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<P a' This will make the calculations more compact and will 
also bring out clearly that most of the discussion below is not 
restricted to the system at hand but is of general 
applicability. 

The Hamiltonian for the spinning particle is a linear 
combination of the constraints JY and Y: 

(111.19) 

Since the constraints are first class they are automatically 
preserved in time under the evolution generated by the Ha
miltonian (111.19). Therefore the functions N (an even real 
element of the Grassmann algebra) and M (an odd real ele
ment) are not restricted by the equations of motion, but re
main rather arbitrary functions of time. As a consequence, if 
we give the values of the canonical variables at an initial time 
70 their value at a later time 7 will not be uniquely deter
mined but will depend on the choice of Nand M for 7> 7 0, 

Now, by definition one regards as physically meaning
ful only that information which can be predicted unambigu
ously from the initial conditions. Hence one should consider 
two histories which evolve from a given initial condition 
with two different choices for the functions Na as physically 
equivalent or, as one says, as being related by a "gauge 
transformation. " 

The infinitesimal mapping which reiates two histories 
which branch off at 70 due to two different choices Na, Na 
for 7 < 70 of the multipliers in the Hamiltonian (111.19) is 
generated by the constraints themselves, i.e., it takes the 
form 

~F(7) = [F,€"(7) <Pa I ' (111.20) 

with 

E"(70 ) = 0, 
for any function F of the canonical variables of the theory. If 
7 is infinitesimally close to 70 Eq. (111.20) follows simply by 
subtracting 

F(70 + d7) = F(70 ) + [F,Na<pa I d7 
from 

F(70 + d7) = F(70) + [F,Na<pa I d7, 
so that 

F(70 + d7) - F(70 + d7) = [F,E"<Pa I , 
with 

(111.21a) 

(111.21b) 

(111.22) 

For later times the simple form (111.22) is not valid but Eq. 
(111.20) still holds after iterations due to the first class prop
erty of the <Pa [Equation (111.23) is understood to hold when 
E a and 1] a do not depend on the canonical variables. The only 
reasons why we do not write dropping E and 1] simply 
! <Pa ,<Pb I = Kab c<pc is that some minus signs arise for odd <P 's 
and it is better bookkeeping to always keep the parameter 
attached to the corresponding generator.] 

! E"<pa ,1]b<Pb 1 = E"Kab cr/<Pc . (111.23) 

Equation (111.20) may be implemented as a symmetry 
transformation of the action provided one adds a corre
sponding prescription for the multipliers N C

: 

~Nc = C + E"Kab cN b . (111.24) 
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(Note that for 7 = 70 (111.24) reduces to (111.22) as should be 
the case.) 

In fact if one studies the variation of an action of the 
form 

~S = f' (in + ~ 0·0 - Na<pa) d7 + ~ 0 (1) 0 (2) , 

(111.25) 
one finds that it reduces to a boundary term 

( J<Pa )/T' i ~S=E" p-- <Pa - -[0(2)-0(1)] 
Jp T, 2 

xU 0, E"<Pa }(I) + ! 0, E"<Pa 1(2)] . (111.26) 

(A non vanishing first class Hamiltonian H ' may be added to 
the Na<pa term without changing the conclusions.) 

4. Transformations of histories versus transformations of 
states 

The boundary term in (111.26) is crucial for the inter
pretation of the transformations (111.20), (111.24). In fact 
only if that term is zero is the action invariant. Now it is easy 
to convince oneself that in the case at hand expression 
(111.26) vanishes for arbitary values of x, p, and 0 if and only 
if 

(111.27) 

Now, the fact the requirement of invariance of the action 
does not restrict the time dependence of the E a at points 
other than the endpoints is the origin of the arbitrariness of 
the N a in the solutions of the equations of motion and hence 
is what indicates that the transformations (111.20), (111.24) 
relates physically indistinguishable histories. 

The necessity of fixing th"e E a at the endpoints 7\>72 ac
cording to (111.27) points to another crucial fact. Namely it 
indicates that the correspondence between histories defined 
by (111.20), (111.24) cannot be refined to a correspondence 
between states at a given time. In fact, in order to deduce a 
mapping between states from a mapping between histories 
one must collapse two equivalent histories to individual 
points by letting 72 approach 7 2, If the mapping is not trivial 
in that limit [i.e., if E(7\)#0] the two histories will collapse 
into different points and one will obtain from the mapping 
between histories a mapping between individual points in 
phase space, i.e., a mapping between states. 

In our case since (111.27) must hold it is not possible to 
deduce a mapping between states from (111.20), (111.24). 
Therefore it would be mistaken to conclude that (111.20) 
maps a state at a given time 7 onto another, physically indis
tinguishable state at that same time. That this conclusion is 
correct could have been anticipated by recalling that the mo
tion of the system is itself of the form (111.20) and interpret
ing it as a transformation which does not change the physical 
state would have led to the conclusion that there is no dyna
mics at all in the system. 

5. Configuration space 

Additional light is shed on the preceding remarks and 
on some other points of interest by passing to configuration 
space as described in Sec. III B. 
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One would expect that the gauge freedom associated 
with the appearance of arbitrary functions of time in the 
solution of the equations of motion would be also present in 
configuration space. This is indeed the case but the corre
spondence is not as direct as one could think and some sub
tleties arise. 

The subtleties in question are not just a peCUliarity of 
the problem at hand here but they also occur in more compli
cated systems such as supergravity theory (see, for example, 
Ref. 9). 

Generally speaking the complications in going to con
figuration space come from the fact that the algebraic struc
ture of the gauge transformation is not preserved by this 
"projection" operation. In fact if we write (111.20) 

8F = {F,u~ + ivY J , (111.28) 

and we apply this and (111.24) to our variables we find 

8x" = 2upl' + ivO" , (III. 29a) 

801' = vpi' , (III. 29b) 

805 = vm, (111.29c) 

8M=v, (l1I.29d) 

8p1' = 0, (11I.30a) 

8N=u +ivM. (111.30b) 

Now we can use Eqs. (11I.29a-d) to define a transformation 
between our configuration space variables xl', 01',05 , Mby 
replacing PI' by its expression 

PI' = m( - z2yl/2z " ' 

with 

z" = XI' - iuO" . 

(111.31a) 

(11I.31b) 

One can easily convince oneself, either by a general reason
ing or by explicit calculation that Eqs. (111.29a-d) leave the 
configuration space action 

S = i~' dr[ - m V - Z2 + ~ (81'01' + 85( 5)] 

+ [~ oa(1)Oa(2) + 05(1)05(2)] (111.32) 

invariant. Therefore (111.29a-d) define a gauge transforma
tion in configuration space. 

So far everything appears to be quite straightforward. 
However if we study the composition of two transformations 
the simplicity seems to fade away. Consider, for example, the 
commutation of two transformations generated by Y. That 
is, look at the successive action of two transformations of the 
type (l1I.29a-d) with parameters VI' V2 and u I = U2 = O. The 
commutator is obtained by letting V2 act first and VI second 
and then subtracting from that result what is obtained by the 
same operation with the roles of VI and V2 reversed. Now, in 
phase space the result of that commutator acting on all the 
dynamical variables is equivalent to another transformation 
of type (111.29) with V = 0 and 

u = iV I V2. (111.33) 

This is a consequence of the closure relation 

{Y,YJ =i~. (111.34) 
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However in configuration space the same operation yields. 

..1x" = 2iv l V2p1' , (11I.35a) 

..101' = 2iv l v2m( _Z2)-1/2[8" + (lIm2)(p.8)pI'] , 
(11I.35b) 

..105 = 0, 

..1M=O. 

(111.35c) 

(l1I.35d) 

Now, Eqs. (111.3 5a,c,d) are in agreement with the phase 
space result, but (11I.35b) is not. In fact according to the 
phase space prescription one should have..1 01' = 0 instead of 
expression (111.35b). The difficulty can be traced to the fact 
that in phase space the momentum PI' is invariant under 
both Y and ~ [Eq. (111.30a)], but if we calculate its vari
ations from Eqs. (111.31), (111.35) we obtain the non vanish
ing result 

8p" = 2up" + ivm( _Z2)-1/2[8" + (lIm 2)(p.8)p,,]. 
(111.36) 

Therefore we see that in configuration space the trans
formations (111.29) do not form a closed algebra in spite of 
the fact that their phase space counterpart does. It is interest
ing to realize, however, that if the equations of motion hold 
the right-hand side of (111.36) vanishes and so does (III.29b). 
Thus we learn that the price paid for reducing the number of 
dynamical variables (i.e., passing from phase space to con
figuration space) is that the equations of motion get mixed 
up with the algebraic properties of the gauge transforma
tions. This statement is sometimes phrased in field theoretic 
systems by saying that "the gauge algebra closes only on 
shell." 

Suppose now that one were given the configuration 
space action to start with. He would then have regarded the 
lack of closure of the gauge algebra as an undesirable fact 
and could have cleverly realized that by introducing the ad
ditional variables PI" N in the description of the system the 
algebra can be made to close without utilizing the equations 
of motion. In that context one would regard PI' N as "auxil
iary variables" used merely to close the algebra. 

The necessity of introducing auxiliary variables to close 
the gauge algebra appears to be a general feature of gauge 
supersymmetric systems. It should however be observed 
here that in more complicated cases it is not sufficient to go 
to phase space to close the algebra. This can be seen from 
taking the commutator of two transformations of the form 
(111.20) with parameters CI a, C2 a. Using the Jacobi identity 
then yields 

F={F,{ClatPa ,cb2tPbJ} 

= {F,claKab cC2btPc J + {F, ~IKab c~2J tPc . (111.37) 

Now, the first term on the right side of(1I1.37) is again a 
transformation of the form (111.20) with 

(111.38) 

but the second term is not of that type unless the Kab Care 
independent of the dynamical variables ("c-numbers"). In 
our case the Kab C are indeed independent of the dynamical 
variables (and deserve to be called structure constants) but in 
more complicated systems (such as general relativity and 
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supergravity) this is not so. When the Kab C do not have the 
same value all over phase space the transformation (111.37) is 
of the form (111.20) only when tPc ::::::0, i.e., again the algebra 
closes only "on shell" (or, more precisely, "weakly"). In that 
case it may be necessary to introduce additional auxiliary 
fields beyond phase space to close the algebra. [So far there 
appears to be no systematic way to deal with this problem. 
For example, in pure general relativity the Kab C are field de
pendent but the gauge algebra of the configuration space 
action ("general covariance", "reparametrization invari
ance"-see below for its analog here) closes "off shell". 
Therefore in that case eliminating the momenta actually ap
pears to simplify the problem! See in this context the idea of 
"rank" of a theory introduced in Ref. to.] 

6. Reparametrization invariance 

Equations (III. 35a-d) are the result of a composition of 
transformations of the form (111.29a-d) each of which leaves 
the action invariant. It follows therefore that the action 
should also be invariant under a transformation under which 
only the 8 ft change by an amount 

88 ft = a(1')[8 ft + (l/m2)(p.8)pf'] , (111.39) 

where a is an arbitrary function of time. The action (111.32) 
is indeed invariant under (111.39) as one can easily verify. 

Now as we already saw the transformation (111.39) is 
not of the form (111.29b) and so it is a new gauge invariance 
of the action. It does not however introduce a third arbitrary 
function besides Nand M in the general solution of the equa
tions of motion. This follows simply from the fact that there 
are only two first class constraints JY and Y in the problem, 
and can also be seen by observing that (111.39) does not map 
an extremal history onto a different one, since it vanishes 
when the equations of motion hold. We learn therefore that 
superficial counting of the independent gauge symmetries of 
the configuration space action may lead to erroneous 
conclusions. 

Equation (111.29) is not the only "spurious" gauge sym
metry of the theory. Others appear from relating Eqs. (111.29 
to reparametrization invariance as we proceed to do now. 

If we insert expression (11I.31a) for Pft in the transfor
mations (III.29) and define 

t = 2umN - Z2 (lII.40a) 

and 

E = V - (2umM N - Z2 ), 

so that 

v=E+tM. 

We obtain after some rearrangements 

8x ft = iE8 ft + txft , 

with 

1870 

88 ft = Epf' + t8 ft + ~8ft , 
885 = Em + t05 + ~85 , 
8M=i+tM, 
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(II I. 4Ob) 

(111.40c) 

(l1I.41a) 

(III.41b) 

(III.41c) 

(III.41d) 

(111.42a) 

(II1.42b) 

Now, the E-dependence of those equations is just the v
dependence of Eqs. (111.29) and is what we call a supersym
metry transformation. We set therefore E = 0 and study the 
remainder: 

8xft = txft , 

88 ft = tOft + ~8ft, 
885 = t05 + 885 , 

8M = (d I d1')(5M). 

(III.43a) 

(III.43b) 

(III.43c) 

(1II.43d) 

The reason for isolating the ~-part in Eqs. (III.42a,b) is 
that if we set ~ = 0 in Eqs. (111.42a,b), what is left, namely 

8xft =txft , 

88 ft = tOft, 

885 = t05' 

8M = (d Id1')(5M) , 

(III.44a) 

(1II.44b) 

(III.44c) 

(lII.44d) 

is just the effect of a change of parameter 1'-+1' + t (1') under 
which x ft , 8 ft , and 8s transform as scalars while M appears 
transforming as "density". One can see by inspection that 
the action (111.32) is invariant under such a reparametriza
tion. But thjs can be so only if the action is separately invar
iant under 8 alone and again one can verify that this is indeed 
the case. 

Now 8 defined by (lII.42a,b) is yet another "spurious" 
gauge transformation different from (111.39) but sharing 
with it the property of reducing to the identity when the 
equations of motion hold. Thus we see that the "spurious" 
transformations proliferate quickly when the algebra closes 
up to the equations of motion. Nevertheless from the Hamil
tonian point of view the situation is much clearer as every
thing is contained in the two first class constraints JY, Y. 

Lastly we should emphasize that the reparametrization 
(III.35) results as combination of a transformation generat
ed by JY with a particular supersymmetry transformation 
[recall Eq. (111.39)] and a "spurious" transformation 
(lII.42a,b). Furthermore it can be obtained in this way only 
in configuration space. Therefore calling JY the "generator 
of reparametrizations" as is sometimes done appears to be an 
ill-ad vised terminology. 

On the other hand the fact that JY and Yare related to 
reparametrizations in the way just discussed illustrates 
clearly that those constraints cannot be thought of as gener
ating transformations which relate two physically indistin
guishable states. In fact a reparametrization is an operation 
which continuously maps each point of the worldline onto 
another different point on the same line and hence clearly 
relates states at different times. Further one clearly cannot 
speak of reparametrization of a simple point but has to deal 
with a whole segment of a line in agreement with our pre
vious discussion on transformations of histories versus 
transformations of states. One can also apprehend here the 
necessity for having the transformation to be the identity at 
the end points [Eqs. (III.27)] as ifit were not so one would be 
mapping a segment of the worldline not onto itself but on a 
different one. 
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IV. RELATIVISTIC CONSERVATION LAWS 

As discussed in the previous sections the action (III.lO) 
is invariant under reparametrizations and supersymmetry 
transformations. The corresponding parameter may vary ar
bitrarily as a function of the time T which is the characteristic 
feature of a "gauge transformation." The conserved quanti
ties associated with gauge transformations are just the con
straints which generate the transformations and which have 
numerical value zero for all possible solutions of the equa
tions of motion. In this sense these conservation laws are 
trivial. 

However besides its gauge invariance the action (111.10) 
is not changed by other transformations, the parameters of 
which must be identical for all times. The corresponding 
conservation laws are then nontrivial. The transformations 
in question are, of course, those of the Poincare group which 
we pass on to study now. 

We define the Poincare behavior of our dynamical var
iables by 

/)x" = 01" vxv + e" , 

r5Pl t = W" V Pv , 

b()" = 01" v() v, 

b()s = 0, 

(IV.la) 

(IV.lb) 

(IV.lc) 

(IV.ld) 

with WI'''' = - wy ". Applying Noether's procedure for the 
transformations (IV.la-d) to the action (III. 10) yields now 

0= f>S = e' [p" (2) - P" (1) J + ~01""'[J"y(2) - J"y(l)] , 
(IV.2) 

where 

Jl"V = xl'py - xVJl' + iO l'() v (IV.3) 

are the canonical generators of Lorentz rotations which we 
identify as the total angular momentum of the particle. To
gether with P" these generators obey the Poincare group 
algebra, 

IxI' ,P ... 1 * = D"" , 
IJI"',xa)*= -XI'7Jva+ x v7Jl'a, 

IJI'Y,PaJ*= -JI'bV

a cf-pV?Y'a' 

(IV.4a) 

(lV.4b) 

(IV.4c) 

{J ltV ,JaP I * = J"a7Jvp - JI'P1]va - J vaifP + J vP1]"a . 
(lV.4d) 

Since the Hamiltonian is a linear combination of the 
constraints with arbitrary coefficients, the fact that J"v and 
Pv are conserved quantities may be restated as saying that 
both of these quantities have zero Dirac brackets with the 
constraints cW' and Y. This assertion may of course be 
checked directly. Thus, in particular the conserved quanti
ties are "supersymmetric invariant." 

A. The definition of spin 

We will now deal with the problem of separating the 
to~al angular ~omentum J"v into an orbital part L"v and a 
spm part S"v 10 analogy with the nonrelativistic splitting 
(11.19-21 ). 

The spin will be defined as the projection of the total 
angular momentum on the subspace orthogonal to p". This 
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definition is satisfactory when the particle has a mass differ
ent from zero since the spin so defined is unambiguous and 
has the following properties: 

( 1) It is conserved for a free particle. In particular it is 
invariant under supersymmetry transformations. 

(2) It is translation invariant ("intrinsic" property). 
(3) It obeys the algebra of the Lorentz group. 
If the particle has zero mass the above definition be

comes ambiguous and is therefore not satisfactory. That case 
will be treated separately. 

A. Massive particles 

As stated above we define the spin tensor by 

Sl'v;:::;J,(l'pJ,(v). JP)., (IV.5) 

where J,(1t P is the projection operator on the subspace or
thogonal to p: 

(IV.6) 

Since J,( is defined in terms of P only and both P and 
J ap d . ~ I . " are conserve, It 10 lows Immediately that S"v is con-
served. This means that the brackets of SltV with both Y and 
cW'vanish, so in particular the spin tensor is supersymmetri
cally invariant. 

Furthermore, since 

vII"p pP;:::;O, (IV.7) 

it follows that S!,V is translation invariant. In fact under a 
translation alt 

JI'V-J!'v + alt Pv - av PI' (IV.S) 

and the terms containing a drop out when projected with J,( 
on account of (IV. 8). In other words 

(Sl'v,Pal*;:::;O. (IV.9) 

Lastly, it is straightforward to verify that 

IS!,v safJj*_Cl'vap s)'p 
, ........, Ap , (IV. 10) 

where 

C~vap = -1]vP8a),?Y' + nltPba b V _ nvafjP + nlta£v ,,8 
p p .[ ). p .[ p .[ u), (J' p 

(IV. 11) 

are the structure constants of the Lorentz group. [The tensor 
(IV.6) is a projection operator only whenpltp + m 2 = 0 
. It ' 
I.e., when the constraint cW' = 0 holds. Therefore the defini-
tion (IV.5) and Eqs. (IV.7-1O) hold only weakly. This is 
sutfcient for our purposes. J 

If we insert the explicit expression (IV.3) for J P). into 
(IV.S) we find after using the constraint Y;:::;O and JY' ;:::;0: 

S"V ;:::;i()l'() v + (Um) ()5«() It pV - () v JI') . (IV. 12) 

Equation (IV. 12) gives the spin for a relativistic massive 
particle. 

Now, it is straightforward to verify that 

(Iv.n) 
and 

SltV() ... ;:::;O. (IV. 14) 

As a consequence of Eqs. (IV.n, 14) and {IV. 12) it follows 
that we also have 
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(IV. IS) 

It is worthwhile to realize that as a consequence of 
(III.12a) .x Y is not proportional to p Y in a general super
gauge. However in spite of that fact S J1-Y is orthogonal to both 
.x v and p v. In the approaches where only commuting varia
bles are used (see Ref. 11 and references therein) conditions 
(IV .14), (IV. 16) cannot be simultaneously enforced and a 
great deal of controversy has arisen in the past over which 
one is to be preferred. In our approach both conditions fol
low simultaneously from the action principle. 

B. Massless particles 

We want to extend the discussion of the preceding sec
tions to include classical massless spin one-half particles. 
Since a rest system for such particles does not exist we can
not proceed exactly along the same lines as in the m:pO case. 
So, certain modifications of the procedure are necessary; 
however, the starting point once again consists of the con
straints which [cf. Eqs. (1I1.8a,b)] now assume the form 

Y = OJ1- PJ1-:::::0, (IV. 16) 

(IV. 17) 

The spin tensor should be defined through a projection 
of the total angular momentum which possesses no compo
nent alongp which is now null. This cannot be done by 
means of the projection operator (III.9) which is not defined 
when m_O. In fact as we shall see below it appears that no 
non ambiguous projection operators can be constructed. 

A natural definition for the subspace complementary to 
that of p when p is null is achieved by introducing two space
like vectors err) and a additional null vector kJ1- obeying the 
relations 

p.k= 1, 

p·e(r) = 0, 

k'e(r) = 0, 

err) ·e(s) = Drs' 

(IV.18a) 

(IV. 18b) 

(IV. 18c) 

(IV. 18d) 

In this basis any arbitrary vector v J1- can be decomposed as 

Vii = vp p" + vk kJ1- + vrefr) 

= (v·k) pi1- + (v.p) ki1- + (v·e(r» efr) . (IV. 19) 

Once p is given the vectors k, err) are determined only 
up to a Lorentz transformation which leaves p invariant. 
Using (IV.20) it is straightforward to find the infinitesimal 
form of that ambiguity. In fact the most general variation 
compatible (IV.18) turns out to be (allowing also for a 
change Dp inp): 

DkJ1-= -(-k.Dp)k"+ure"(r) ' 

DeI'(r) = - (e(r) .Dp) k" - U r pi1- + ur'eI\s) , 

with ur
, = Urs = - u" . 

(IV.20) 

(IV.21) 

The"coefficients u', U rs in (IV.21) are arbitrary. There 
are therefore three arbitrary parameters in (IV.20). 

Since we are interested in constructing a translational 
invariant S"Y, the projection we are interested in is that 
which has no component alongp, namely that for whichp 
itself has zero projection [see Eq. (IV.7)]. This is given by 
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if' = II' - vp pi1- = (v·p) kJ1- + (v.e(r» e"(r) , 

which may be rewritten as 

(IV.22) 

(IV.23) 

with 

(IV.24) 

The operator (IV.23) is an attractive choice, but unfor
tunately it suffers from the major drawback of being ambigu
ous due to the fact that as mentioned above the null vector k 
is determined by relations (IV. 19) only up to the subgroup of 
the Lorentz group which leaves p invariant, and under these 
transformations:J;J1-Y is not invariant, in contrast with what 
happens in the massive case. The unavailability of a good 
projection operator means that one cannot define a spin ten
sor S J1-Y for a massless particle. 

There is however a possibility in the massless case 
which is not present in the massive case. Namely one can 
define a scalar projection of the total angular momentum 
which is unambiguous, translational invariant and con
served. The scalar in question is the component of J"p on the 
e(l) ,e(2) plane, which we will denote by ~: 

(IV.2S) 

The key point is that this projection is invariant under 
the Lorentz transformations which leave p invariant. This 
can be seen as follows. On account of (IV.21) we have 

D(e' I 'e' 2 ') 

= e~I)( - u2pv + u~e?» + eS2)( - ulp" + u~e~2» 
= _ (e(l)p u2 + e(2)p ul) + u (e(1)e(i) _ e(2)e(2» 

J-l v V).l- 21 ).l v v J-l • 

(IV.26) 

Now, if we contract (IV.26) with J
,iV 

given by (IV.3) we 
obtain zero on account of the constraints (IV .16,17) and of 
the properties (IV.18) of the basis. Therfore ~ is unambigu
ously defined by (IV.2S). Furthermore it is evident that ~ is 
translation invariant since the e~) are orthogonal to PJ1-' This 
means that ~ represents an "intrinsic" property of the parti
cle, much in the same way as the spin tensor S J1-V does for the 
massive case. 

The physical meaning of ~ is put in evidence simply by 
realizing that it represents the projection of the total angular 
momentum along the direction of motion in any Lorentz 
frame. Thus, ~ is the helicity of the particle. To see this we 
start from the relation 

C,ivpa k Pp" = - sign(pO)(e(t)" e(2)v - e(l)ye(2)IJ , 
(IV.27) 

which follows readily from (IV.18) by considering the frame 
where e(l) = (0,0,1,0). e(2) = (0,0,0,1). Thus we have the al
ternative expression for the helicity 

~ = -! sign(pO) E,ivpa jP'"kPpCT. (IV.28) 

Now, since (IV.27) has the same value for any choice of 
k compatible with (IV. 19) we may choose, for example, 

k'i = (2/p/2yl( _ pO,p) (IV.29) 

without loss of generality. Inserting now (IV .29) into (IV.28) 
yields 
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~ = _ (21p1 2t l sign(pD) Emnro Jmn p'pD 

+1 JmnL = J.--L. 
'lEm"r Ipi Ipi (IV. 30) 

Thus, ~ is indeed the helicity of the particle. An explicity 
expression for it may be obtained by inserting the form 
(IV.3) of J into (IV.30). This yields 

'\"' . OjOk pi (IV 31) 
..:, = /Eijk IPT' . 

A useful expression for ~ may be obtained writing 

o(r) = e~) O!' 

and returning to expression (IV.25). This gives 
~=iO(I)0(2). (IV.32) 

Finally let us determine the vector S!' for this case. We 
have according to (IV.3) 

S!, = - !E"vpo.Jvppo 

= - !iE!'vpoO vOPpo . 

However we may write 

OP = (O·k) pi> + (O-p)k p + 0 (r)efr) 

Z (O·k) pi> + 0 (r)efr) . 

If we now insert (IV.35) into (IV.34) we find 

SI' = - VEpvp"e(r) £1,) pOO (r)o (s) , 

(IV.33) 

(IV.34) 

(IV.35) 

which according to the inverse relation of (IV.27) yields 

S!, = iO (1)0 (2)(k!, Pa - kupp)P" 

z(iO(l)O(2)pp' 

So we have, on account of (lV.32) 

S"Z~P!' . (IV.36) 

It should be emphasized here that there is no more in
formation on spin contained in the vector Sp than that car
ried by the scalar ~. In particular it is at least misleading to 
say that (IV.36) shows that for massless particles the spin 
points point along the momentum. As we have seen before 
the spatial components Si do not generate rotations around 
an arbitrary axis and hence cannot be interpreted as the spin 
of the particle (except in the rest frame which here does not 
exist!). The spin is given by the spatial components S ij of the 
antisymmetric spin tensor which cannot be defined for a 
massless particle. Thus, the only meaningful concept is the 
component of spin along the direction of motion, ~. But, 
again, one cannot infer from it expressions for the compo
nent of the spin along any other axis. The latter concept does 
not exist for a massless particle. 

We should emphasized here that the conclusions of this 
section are, of course, familiar and well-known in the context 
of relativistic quantum mechanics. The only reason for hav
ing gone into such detail in the analysis is to show that the 
same results can already be reached at the classical level. 

V. ELECTROMAGNETIC INTERACTION OF CLASSICAL 
SPIN ONE HALF PARTICLES 

A. Constraints 

In the presence of an electromagnetic field the Dirac 
equation is 
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r'"(ap - ieAp (x» t/J(x) + mt/J(x) = 0, (V. I) 

where Ap (x) is the vector potential. 
Introducing the anticommuting classical variables de

fined in (III.2a,b) we obtain the following first class 
constraint 

Y = Opp!, + m05 zO, 

where 

P" = Pp - eAp . 

Here Pp is canonically conjugate to x P: 

(xP,p,,)* =8'v, 

(P!"Pv)* = 0, 

while Pp is not. It obeys, for example 

(P", Pv)* = eFi'v' 

(V. 2) 

(V.3) 

(VAa) 

(V.4b) 

(V.5) 

as one can easily verify from (V.3). (We keep using the starin 
the bracket to make contact with our earlier notation. It 
reminds us that the momenta conjugate to the 0 's have been 
eliminated. No gauge has been fixed, though.) Using (V.5) 
one can check that the constraint Y satisfies relations 
(1.27,a-c) with 

JY' = PPPp + m2 - ieF"vO!'O v zO . (V.6) 

The action principle can now be written as 

S = ('-' {x!'Pp + ~ (iJpop + iJ505 ) + eApxP J, 2 
- [NJY' - iMY] . (V.7) 

From a physical point of view the variable Pp is more 
relevant thanpp because the former is invariant under 
changes of the electromagnetic gauge 

I 
Ap_Ap + - apA , 

e 
whereas the latter is not. 

(V.8) 

This point is an interesting one and deserves some 
elaboration. In the quantum problem one has, under an elec
tromagnetic gauge transformation 

t/J(x)-t/J'(x) = eiA (x) t/J(x) , 

A,,(x)_A ~(x) =A!'(x) + ~ap A (x), 
e 

(V.9a) 

(V.9b) 

a,,-a;, = ai' . (V.9c) 

The primed variables satisfy then an equation identical in 
form to (V. I). 

Now, in order to interpret correctly (V.9a-c) in the 
classical theory one has to distinguish between the transfor
mation of the states and that of the dynamical variables as it 
is the latter which has a direct analog in the Hamiltonian 
mechanics. 

To this end we start from (V.9) which say that states are 
changed according to a unitary operator 

It/J') = Ult/J) , 

where U is diagonal in the basis where x is diagonal and with 
matrix elements 

U (x,x') = eiA (x)o(x, x'). (V.lO) 
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The dynamical variables transform then as 

A'=UAU- I
• (V.ll) 

If we apply (V .11) to the dynamical variables of our theory 
we find 

i'=x, 

~, 1 a aA ~ aA 
p = i ax + ax =p + ax ' 

O'f' = Of', 

0' =05 , 

(V.12a) 

(V. 12b) 

(V.12c) 

(V.12d) 

Equation (V. 12a) follows immediately from (V.lO) whereas 
(V .12b) is obtained most easily by using the fact that p' and x' 
obey canonical commutations relations. Finally (V.12c) and 
(V.12d) follow simply from the fact that the operator U re
duces to the identity in the "internal index" which labels the 
different components of the spinor t/J. 

Equations (V. 12a-d) can be applied as they stand to the 
classical dynamical variables. They have to be supplemented 
by 

(V.13) 

in order to leave the Hamiltonian invariant. 
Now, it should be stressed that even though we may 

allow A to be a function of x and 7 in the classical theory the 
in variance of the Hamiltonian under (V.12a-d) and (V.13) is 
not associated with any first class constraint. The reason for 
this is that on account of (V.13) the transformation does not 
only alter the dynamical variables but it also explicitly alters 
the external field Af' (x) and therefore it is not a canonical 
transformation and has no canonical generator. [If the dyna
mics of the electromagnetic field were included in the action 
principle (i.e., if we were dealing with a closed system) the 
transformations (V .11,12) would be a gauge symmetry with 
an associated first class constraint generator.] 

The variable Pf' is the classical analog of the gauge co
variant derivative operator 

1 1 
-:- Vii = -:- alt - eAlt , 
I I 

which is not changed at all under the transformations (V.9), 
(V. 12a-d) and which obeys the characteristic commutation 
rules with itself 

(V f' V v - V v Vf') t/J = Ff'v t/J, 
in agreement with (V.S). 

The canonical momentum p, on the other hand, is the 
classical analog of (llt)(a/ax) and obeys 

(af'a" - altay ) t/J = 0, 

in agreement with (V.4b). 

B. Supergauge constraints and the equations of motion 

The equation of motion for a dynamical variable F (7) is 

£(7)= (F,Hl·, (V. 14) 

with the Hamiltonian given by 

H = N(7):lr + iM(7).Y ~O, (V. IS) 
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where N(7) and M (7) are arbitrary functions of the param
eter 7. Taking F = f)5 in (V. 14) gives 

85 = mM(7). (V.16) 

This result tells us that the variable f)5 can be made to take on 
any prescribed value during the evolution of the system by 
appropriately choosing M (7). We can use this arbitrariness 
to choose the supergauge so that 

(V.17) 

[This supergauge choice may of course be also made for the 
free case and will also be made for a gravitating particle in 
Sec. VI. One may use Dirac's technique to find the modifica
tion of the brackets induced by the gauge condition (V.17). 
Those brackets may then be used to study the motion of a 
position operator in quantum mechanics. We refer the read
er to Ref. 12 for the treatment of that problem for the free 
particle. Since we confine our attention here just to the equa
tion of motion we do not need to use the modified brackets.] 
Now, from (V. 16) we see that also here (V. 17) implies 

M(7)~O. (V.18) 

Thus, when working in this gauge we can drop the term M 
from the Hamiltonian. 

Having fixed the supergauge freedom we are still free to 
fix the parametrization of the world line. The obvious choice 
is to take the parameter 7 as the proper time (in the super
gauge f)5~O), namely one would like to have 

xf'xf'=-l. (V.19) 

Condition (V .19) can be attained by an appropriate 
choice ofthe function N(7), which henceforth remains no 
longer arbitrary. In fact it follows from the equations ofmo
tion for x f' that 

xf' = 2Np lt, 

which combined with (V.19) and (V.6) yields 

N(7) = ~(m2 - eFf'"Sf',-1/2, 

where 
Sf'V = j()f'() " 

is the spin tensor (111.15). 

(V.20) 

(V.21) 

From the canonical point of view one would like to ob
tain (V.21) from a gauge condition on the dynamical varia
bles of the theory, much in the same way as (V. 17) follows 
from (V. 16). While this is indeed possible in the free case [the 
gauge condition isxo = (po/m)7] there appears to be no sim
ple way to achieve a similar step in the interacting case. We 
therefore simply choose N (7) without fixing a gauge. While 
this is permissible to examine the equations of motion it has 
the drawback of not permitting the elimination of any of the 
canonical variables from the theory. 

We observe that (V.21) is well defined since there is no 
possibility for the quantity under the square root sign in 
(V.21) to become zero, since Ff'YSf'V is in a different part of 
the algebra from the real number m 2

• Thus, one has 

N (7) = _1_ (1 _ .!!.... F,tv SliV) -1/2 
2m m 

=_1_(1 + _e_ F SltV_ ~(F SIt\)2) 
2m 2m 2 I'V 8m4 liV 
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;::::: _1_ (1 + ~FI'YSI'Y). (V. 22) 
2m 2m 

The second equality in (V.22) follows from the fact that a 
product of more than four () 's vanishes identically whereas 
the last (weak) equality is a consequence of the constraint 
()-p;::::: 0 which leaves only three independent () 'so Since N nev
er changes sign we may conclude that the trajectories never 
bend backwards in time. 13, 14 

Using (V.22), Eq. (V.20) assumes the form 

(V.23) 

Finally, assuming that Maxwell equations al'FI'Y = 0 hold 
we obtain the following equations of motion for the dynami
cal variables: 

pa;:::::~(l+ _e_ FA SAP) Fa pl'+ ~(aaFv)SI'Y, 
m 2m2 P I' 2m I' 

o a;::::: ~ (1 + _e_ FA SAP) Fa ()I', 
m 2m2 P I' 

saA;::::: ~ (FI' a SI'A + FI' Asal') , 
m 

xa;::::: ~ (1 + _e- FA SAP) Fa xl' + 
m 2m2 P I' 

+ ~(Fl'ySI'Jpa. 
2m 

(V. 24) 

(V.25) 

(V.26) 

(V.27) 

(V.28) 

We see from (V.24-28) that the presence of the spin intro
duces alterations in the Lorentz force arising from the cou
pling of the spin with the electromagnetic field and its first 
derivatives. The appearance of electromagnetic field gradi
ents is an indication that in a physical sense the particle is 
"extended." On the other hand the equation of motion for 
spin, Eq. (V.26), is just the equation of motion for a particle 
of gyromagnetic ratio 

g=2. 

In fact, in the rest frame xj = 0 we have 

ds
i 

= ~Fi sj 
dt m J ' 

which means that the magnetic moment is 

~=2C~ S), 
so the gyromagnetic ratio is equal to two (see Ref. 8). 

VI. GRAVITATIONAL INTERACTION OF CLASSICAL 
SPIN ONE HALF PARTICLES 

A. Constraints 

We deal in this section with the motion of a spinning 
test particle in a gravitational field. This problem has been 
analyzed by several authors in terms of commuting variables 
for the spin. Our analysis will treat the basic spin degrees of 
freedom as anticommuting. The system in consideration will 
therefore be a microscopic (spin one-half) particle and the 
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interaction will be totally fixed by the requirement of gauge 
supersymmetry invariance. There will be no arbitrary ele
ments (such as nonequivalent choices of subsidiary condi
tions for the spin) in the dynamics, in contrast with earlier 
treatments. 

The treatment is quite analogous to the one given in the 
previous section for the electromagnetic coupling. We start 
from the Dirac equation in a gravitational field (See Appen
dix 2 for conventions.): 

(VI.1) 

The classical first class constraint associated with (VI. 1 ) is 

y = ()1'91' + m()s;:::::O, (VI. 2) 

where 

9 i ()A()B 
I' = PI' - '2 OJI'AB . (VI.3) 

The analog in this case of the electromagnetic gauge 
freedom is the possibility of rotating arbitrarily the tetrad 
field: 

L I' AX)---+€A B (x) L I' B(X) , 

with EAB = - EBA · 
Under (VI.4) the connection changes as 

OJI'AB~I'AB + VI'EAB 

with 

VI'EAB =aI'EAB -OJI'AcECB -OJI'BcEAC' 

(VI.4) 

(VI. 5) 

The vector 9 I' is invariant under a local rotation of the 
frame, whereas the canonical momentum PI' changes as 

i 
PI'-.Pl' + '2 VI'EAB . 

The odd dynamical variables ()A also rotate as 

()A-.()A + ~B()B. 
On the other hand xl',()s and 

()I'=LAI'(X)OA 

are invariant under rotations of the local tetrad. 

(VI. 6) 

Equations (VI. 5) and (VI. 6) are the analogs of (V .13) 
and (V. 12b). Since the gravitational field is a given back
ground, there is no conservation law or constraint associated 
with the invariance under local tetrad rotations, exactly as it 
occurred for the electromagnetic case. 

The only nonzero brackets among the basic canonical 
variables are 

Ixl',pv]* =8"v, 

I () A, () B ] * = irtAB , 

I ()s, ()s] * = i . 

Other useful brackets are 

{()IL, 9 a J * = - r~f3()f3 , 

I()C, 9 a]* = OJa CA()A, 

19 9] * - i R ()IL() Y cr' f3 - '2 af3l'v . 

(VI.7a) 

(VI.7b) 

(VI.7c) 

(VI. 8) 

(VI. 9) 

(VI. 10) 

The dynamical variable 9 a is the classical analog of 
the gravitational covariant derivative 
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1 
-:- VI-' t/J = (al-' - !WI-'AB [y\ yB])t/J , 

I 

of a Dirac Spinor t/J, and Eq. (VI.1 0) corresponds to the basic 
property (definition) of the curvature tensor 

(VI-' Vv - Vv VI-') t/J = ~Rl-'vAB [y\ yB] t/J. 
A new first class constraint is obtained by taking the 

bracket of (VI.2) with itself, which yields 

(Y,Yj*=12, 

with 

(VI.1I) 

The action principle is now 

s= r'dr{xI-'91-' + ~(BA(}A + Bsf)s) + ~WI-'AB(}A(}BXI-' J,., 2 2 
- NeW' - iMY} . (VI. 12) 

It is interesting to realize that the analog of the term 

Fl-'v(}l-'(} v , 

which appeared in the electromagnetic case is absent from 
(VI.I 1 ). This is due to the fact that the contraction 

(VI. 13) 

is identically zero. 
Now, if one applies twice the Dirac operator appearing 

in (VLl) one finds that (VI. 1 ) implies 

(VI.14) 

This equation differs by the kR term from what one would 
obtain by simply replacing f!? I-' by - iV I-' in eW' given by 
(VI.l2) and demanding eW't/J = O. The origin of the scalar 
curvature term in (IV. 14) can be understood by recalling 
that classically one has 

elte v + evel-' = 0 

so that (VI. 13) holds, whereas quantum mechanically this 
equation is replaced by 

el-'e' + eVelt = fl gltV 

so that (V.13) is no longer valid in the latter case. Thus, the 
!R term in (VI. 14 ) can be traced to a "factor ordering" prob
lem which one faces only upon quantization and which is not 
present classically. 

The correct quantum equation is of course (VI. 14) with 
the curvature term included as it follows directly from the 
Dirac equation. However, in the classical limit one should 
demand that the Compton wave length fI/ me be much small-

er than the radius of curvature vvlRT of the background. 
This amounts to neglectingR in frontofm 2 in (VI. 14) in that 
limit, in agreement with our earlier reasoning. 

B. Supergauge fixation and equations of motion 

1. Nonzero mass particle 

The reasoning given for the electromagnetic coupling 
may be literally taken over to the present case. Equations 
(V.14)-(V.20) remain valid, and in place of(V.21) we obtain 
simply 

N= (VI.1S) 
2m 
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When (V .15) is used the equations of motion read 

D(}a 
- = 0, (VI. 16) 
Dr 

Dsa/3 
= 0, (VI.l7) 

Dr 
Df!?a 1 R a f!?/3SI-'V, (VI.l8) 

Dr 
- BI-'v 
2m 

D 2xl' ~ R I' 'AsaP (VI. 19) 
Dr 

Aa/3 X . 
m 

The result that a classical massive spinning particle 
does not follow a geodesic in spacetime due to the coupling of 
the spin tensor to the curvature, Eq. (VI. 19), is not a new 
one. In fact this problem has been studied by Papapetrou2 

and Eqs. (VL17 -19) are formally similar to the equations 
obtained by him. However a key element in Papapetrou's 
case is the choice of a subsidiary condition on the spin tensor 
to obtain a system of equations capable of predicting the 
future from a specification of initial conditions. In his ap
proach different choices of subsidiary conditions give rise to 
physically different equations of motion (which have indeed 
been proposed by other authors3

.
4
). In the present analysis 

however the theory is fully determined by the requirement of 
gauge supersymmetry invariance and the only ambiguity is 
that inherent in the choice of the supergauge, which is by 
definition physically harmless (much as the choice of the 
parametrization ofthe worldline). 

It is also interesting to anticipate here a result of the 
next section where we shall see that for a massless particle 
there exists a supergauge where the worldline is a geodesic. 
One may therefore wonder whether one could also devise, 
for m~O, a gauge choice (other than es::::;O) which would 
lead to the same conclusion. Whereas we have at the moment 
of this writing no proof that this cannot be done, there is no 
resonable condidate for that gauge condition and we believe 
that there is no supergauge where the particle's world line 
will be a geodesic. 

2. Zero rest-mass particle 

The preceding treatment applies only when the rest 
mass of the test particle is not zero. While we did not discuss 
electromagnetic couplings of zero mass particles as this 
seems to be a totally academic problem, given that charged 
particles with zero rest mass do not appear to exist, it is of 
interest to consider gravitational couplings of massless spin ~ 
particles. The analysis should apply, for example, to 
neutrinos. 

For m = 0 the constraints (VI.2) and (VI. 1 1) reduce to 

Y = el-'f}J 1-'::::;0, (VI. 20) 

jy' = gafJ,go a 9!3;::;0, (VI.2I) 

and the Hamiltonian is 

(VI.22) 

We see that the variable Os drops out from the formal
ism and the supergauge cannot be fixed by setting 85 ;::;0. 
There is however a natural supergauge choice in this case 
which is implemented in terms of the basis defined in 
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(IV . 19a-d) with the P IL of flat space replaced by fJi IL. We fix 
the gauge by setting 

(JP = (J.k;:::;O . (VI.23) 

The gauge choice (VI.23) is not suitable for m # 0 since the 
vector k is not available in that case. 

It should be noticed that since k is fixed only up to a 
Lorentz transformation which leaves fJi IL invariant the 
gauge condition (VI.23) is ambiguous. We will show that 
this ambiguity may be exploited to select a particular evolu
tion for k so that the corresponding worldline is remarkably 
simple: it becomes a geodesic. Therefore the main result of 
this section will be that there exists a supergauge where a 
massless spin one-half particle follows a geodesic. This con
clusion is in agreement with the results of Mashhoon 15 who 
studied the motion of massless spinning particles in a gravi
tational field along the lines of Refs. 2-4. It does not seem 
possible to achieve a similar result when m # 0 as we dis
cussed in the preceding section. [Incidentally, another con
sequence of the ambiguity (IV.20) in the definition of k is to 
make the derivatives Jk / Jp not well defined. Therefore con
dition (VI.23) cannot be used straightforwardly to pass to a 
new bracket where it holds strongly. This is relevant to the 
problem of defining quantum mechanical position operators 
for a massless particle, an issue that we plan to discuss 
elsewhere.] 

The analysis proceeds as follows. Before fixing a gauge 
the equations of motion read 

d I' 
~ = 2NfJi IL + iM(JIL, 
dr 

D(JIL = MfJi IL , 
Dr 

DfJi" = iR" (J P(J<'(2NfJi(3 + iM(J(3) Dr (3pa , 

(VI. 24) 

(VI. 25) 

(VI. 26) 

where D / Dr is the covariant derivative along the worldline. 
After imposing (VI.23) there are only two nonzero compo
nents of (JIL left: 

(J(r) = (J"e"(r)' r = 1,2. (VI. 27) 

In order to obtain their equations of motion we recall Eqs. 
(IV.20,21) which give the general variation of klL and ei"(r)' 
Applied to the change along the worldline of the particle 
they give 

DklL _ (k DfJi) k" rei" 
Dr - - . Dr + U (r)' (VI.28) 

(VI. 29) 
with ur, urs = - u" arbitrary. It follows from (IV.2?) and 
(V1.29) that 

d(J(r) 

dr 
which is particular implies that the helicity 

~ = ifJ(I)(J(2) 
is a constant of motion, 

1877 

d~ =0. 
dr 

J. Math. Phys., Vol. 21, No.7, July 1980 

{lV.30) 

(VI.31) 

In order to examine the equation of motion for x" we 
need to know the value of M (r), which is obtained by de
manding that the gauge condition (VI.23) be preserved in 
time: 

o = ~ «(J"k") = M + ur(J(r) . 
Dr 

So, we find 

M = - ur(J(r) . (VI.32) 

We will also need 

M = - (US + uru/) (J(S) uS(J(S) . (VI.33) 

Now, covariantly differentiating (VI. 24) with respect to 
time and using (VI.25) and (VI.26) we find 

D 2x" 
Dr 

= 2NfJi" + iM(J1' + 2NiR II(3pa(JP(J a(2NfJi(3 + iM(J(3), 

which taking into account (VI.32) and (VI.33) simplifies to 

D 2x" 
Dr = 2N" + i(usei"(r) + 4N 2 R "kr, (J(rAs) . (VI.34) 

Now, we have 

R ILkrs = R pkrsfJi" + R mkrs ei"(m) , 

so that we obtain 

D 2
X

" _ (2N' 4N 2 'R pkrs(J (J ) =" Dr - + I (r) (s) v 

+ i(ustrr + 4N 2 R mkr, (J(rAs) ei"(m) . (VI.35) 

The second term in the right side of (VI.3 5) vanishes if the 
arbitrary functions u s are chosen as 

(VI.36) 

where Esr is the two-dimensional alternating tensor defined 
by Ers = - Esr ' EI2 = 1. 

After Us are fixed by (VI. 36) one fixes N by demanding 

N + 2N 2 R pkrs i(J(r) (J(S) = 0 

or 

(VI.3?) 

which yields 

N (r) = No( I - 4No ~ r R pk 12(7) df) , (V1.38) 

where No is an arbitrary con~tant. [In order for the parame
terization to be nondegenerate N must have a nonzero com
ponent along unity in the Grassmann algebra. According to 
(VI.38) it is sufficient that No satisfies that demand in order 
for N (r)to be acceptable. One may take for example No = 1.] 

It is interesting to notice that on account of(VI.33) and 
(V1.35) the function M (r) is not zero in this gauge. In fact 
from (VI.33) we have 

M(r) = f' uS(J(S) = f _N 2 Esr(J(s)Rrk12df. (IV.39) 

This last relation shows in particular that M (r) is unaltered 
by a time-dependent rotation of the spatial vectors err) , the 
orientation of which remains therefore open. [The freedom 
in u r has however been fixed by (VI.35).] 
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With N,M given by (VI.38) and (VI.39) we have 

D 2x" 
--=0 Dr (VI.40) 

the geodesic equation. [Observing Eqs. (VI.31) and (VI.40) 
one cannot help feeling as if he were working on general 
relativity before the advent of tensor calculus. In fact, one 
should be able to develop a proper geometrical formulation 
by means of a "super-covariant derivative" in the (x,O) "su
perspace" in which those equations could be merged into a 
single geometrical statement which would make no refer
ence to a particular supergauge.] 

Lastly it is interesting to write down the equations for 
the propagation of the tetrad &", k", e" (r)' They are readily 
obtained from (IV.24,28,29) and read as follows: 

D&" = N &" _ i if oCr) e" . (VI.41) 
Dr N 2N (r) 

Dk" = _ N k" + u r 
e"(r) , (VI.42) 

Dr N 
De" . 

(r) _. M 0 k" m>" .,,",, (VI 43) ~ - I 2N (r) - Ur;::r + U r ~ (s) , • 

with N, M, U r given by (VI.38, 39, 32) and ur' arbitrary. 

We see that the local tetrad is not parallelly transported. 
There is in effect no way to fix M and N so that &" will be 
parallelly transported, as one can easily see from (VI.26). 
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APPENDIX 1: ANTICOMMUTING CLASSICAL 
VARIABLES 

In what follows we will merely describe the formal 
properties of classical anticommuting variables (odd varia
bles) and the canonical formulation of its dynamics. More 
details can be found in the existing literature. 7

,8.1
7 

The following properties of even variables (commuting 
c-numbers) and odd variables (anticommuting c-numbers) 
are dictated by the idea that these variables are the classical 
limit of Bosonic and Fermionic operators, respectively, 

oaO f3 + 0 f30" = 0 for oa, 0f3 odd, 

o aqi _ qiO a = a for 0 a odd, qi even, 

qiq _ qqi = a for qi, q even. 

(1.1a) 

(1.1b) 

(1.1 c) 

A function of a set of odd variables can be defined by 
formal expansion, 
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(1.2) 

The series necessarily terminates if the 0 a are finite in num
ber. Derivatives are defined by 

(1.3) 

with DO a on the left (left derivative). 
Another useful concept is that of complex conjugation 

(involution) which will be the classical analogue of Hermi
tian conjugation for operators. It has the properties 

(AB)*=B*A*, (1.4a) 

(A*)*=A. (l.4b) 
A variable is called real if A * = A and purely imaginary 

if A * = - A. Note that for odd variables 0 ao f3 will be purely 
imaginary if 0 a and 0 f3 are real. 

Canonical formalism in the presence of odd variables 

The equations of motion for a given system are assumed 
to follow by formally extremizing an action functional of the 
form 

S = f' L (qi, qi,O",e a) dr. (1.5) 

The Lagrangian L must be taken to be even so that the even
ness or oddness of a variable is preserved during the dynami
cal evolution. 

The canonical momenta are defined as usual by 

Pi = 
ail 

(1.6) 

aL 

ae a 
(1.7) 

and the canonical Hamiltonian is 

H=ij'Pi +e a1Ta -L. (1.8) 

The 0 a have been put in the left of 1T a in (1.8) because, on 
account of our convention (1.3) for the derivative, only in 
this way we get that H is a function of the coordinate and 
momenta: 

£H i£ o'a£ £.aL £oaaL U =quPi + u1Ta -uql--U --. 
aqi aoa 

(1.9) 

From this point on one can proceed formally in the 
same way as in the usual canonical theory for even variables. 

There are however two new features which appear 
when odd variables are introduced in the theory, namely the 
generalization of the Poisson bracket and the fact that, as a 
consequence its properties, the second class constraints, may 
be now odd in number. 

If we carry out the extremization of the action 
functional 

s= f (ilpi +e a1T" -H)dr, (1.10) 

we find the following equations of motion: 

. aH aH 
ql = api' Pi = - aq , (1.11) 

(1.12) 

Carlos A.P. Galvao and Claudio Teitelboim 1878 



                                                                                                                                    

Demanding now that 

F=!F,Hj, (1.13) 

one can show that the Poisson bracket in Eq. (1.13) has the 
general form 

!F,G j = (aF JG _ JF aG) 
aq' api api aq' 

+ € (aF aG + aF aG) 
F aea J1Ta a1Ta ae a ' 

(1.14) 

where € F is + 1 if F is even and -1 otherwise. The bracket 
(1.15) obeys generalized versions ofJacobi identity which 
take different forms depending on the even or odd character 
of the functions involved. 

The Dirac bracket is defined by the same formula as in 
the ordinary case, namely 

(1.15) 

and it may be shown that it has the same algebraic properties 
as the (generalized) Poisson bracket. 

If the constraints X m are second class the inverse matrix 
C mn exists in the generalized case. However it is important to 
realize that if some of the X m are odd functions the existence 
ofcmn does not imply that theXm are even in number. As an 
immediate consequence of this fact the dimensionality of the 
physical phase space may be odd. 

APPENDIX 2: SUMMARY OF NOTATIONS AND 
CONVENTIONS FOR RIEMANN SPACETIME AND THE 
GENERAL RELATIVISTIC DIRAC EQUATION 

We consider a Riemann manifold with metric tensor g 
of hyperbolic signature and local Minkowski structure. The 
tetrad field components L IL(A )(x),/1.A = 0,1,2,3, are defined 
by 

LI'(A)L V(B) gil" = 'T/AB = diag( -1, +1, +1, +1), 
(2.1a) 

L,,tA) L}B) 'T/AB = g,Lv . (2.1b) 

We denote by r;" the Christoffel symbols associated with 
the metric tensor gl'''(x). The covariant derivative ofa vector 
field VA (x) is defined by 

VA (X)IIIL = aiL VA - r;v Va (2.2) 

and the Riemann tensor R a (J,LV is defined by 

V(JIIILllv - V(J11vII1' = R a(J"v Va . (2.3) 

The constant Dirac matrices y4 constitute a representa
tion of Clifford algebra associated with the local Minkowski 
metric satisfying the anticommutation relation 

(2.4) 

A representation for the Clifford algebra associated with the 
spacetime metricgl'v(x) can be obtained from (2.4) with the 
help of the tetrad vectors, 

(2.5) 

with 

(2.6) 
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The extension of the special relativistic Dirac equation 

Y"a" t/J(x) + mt/J(x) = 0 (2.7) 

to general relativity is obtained (see, for example, Refs. 18 
and 19) by means of the minimal coupling to the gravitation
al field in the sense that we make the substitution a I' __ V" ' 
where V I' is the operator of covariant derivative for the 
spinor field tf;(x), defined by 

VI' =J" -rl" 
where r" (x) are the Ricci rotation coefficients (or spin con
nections) given by 

rl' = - AL v(A)L(B)lIv(y4yB - yBy4) 

= - !W"ABy4yB . (2.8) 

Thus, the general relativistic Dirac equation is 

Y"(al' + !W"ABy4yB) t/J(x) + mt/J(x) = O. (2.9) 

Note added in proof While this paper was in press sever
al colleagues kindly sent us copies of their interesting papers 
on the classical theory of spinning particles (Refs. 2~25). As 
we stated in the introduction, we make no pretense whatso
ever of reviewing here the extensive literature in this field 
and we apologize for the many references that we must un
doubtedly have left out of our bibliography. Also, since this 
paper was written, an approach to the quantization of grav
ity and supergravity based on their analogy with the theory 
of the point particle has been developed by one of us (Refs. 
26,27). The boundary term (11.26) plays a crucial role in that 
approach. 
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A perturbation method for the complex angular momentum poles of the multichannel S -matrix 
is developed. The inelastic residues of the S -matrix are also treated in a similar fashion. It is 
shown that the poles and residues are the second order in coupling between the channels. The 
closed channel Regge poles are also discussed and it is shown that their contribution in the 
perturbation series is finite, regardless of the asymptotic behavior of potential. 

1. INTRODUCTION 

In the Regge theory for the elastic scattering amplitude, 
the essential idea is to replace the partial wave sum by an 
integral in the complex angular momentum plane.,,2 After 
suitable transformations, the final form of the scattering am
plitude is given in two parts: (a) the sum over the complex 
angular momentum poles of the S matrix and (b) an integral 
along the imaginary angular momentum axis. The original 
derivation of Regge has been modified to take into account 
when the hard core is present, e.g., atom-atom potential.l It 
has been found that relatively few Regge poles contribute to 
the scattering amplitude, compared to the large number of 
partial waves involved in the original sum. However, the 
difficult part is to calculate the Regge poles and the appro
priate residues ofthe S matrix, but a suitable method can be 
found to overcome this.4 

Regge theory also gives a simple description of the scat
tering events in terms of orbiting and surface waves.' Each 
Regge pole represents either an orbiting state or a surface 
wave and gives a characteristic contribution to the scattering 
amplitUde. 

It is therefore tempting to use the Regge theory in the 
inelastic collisions. However, as in the elastic collision case, 
we must have a method for calculating the Regge poles and 
the appropriate residues. In this work we propose a pertur
bation method for solving this task. Instead of calculating 
the exact poles, we decouple the set of equations and define 
the Regge poles and residues for the uncoupled channels. 
When the coupling is "switched on" these poles move to 
another place in the angular momentum plane and the shift 
is determined by the magnitude of coupling. Similarly, the 
residues change their values. 

The article is divided into two parts. In the first part we 
describe the perturbation method for the Regge poles and 
residues in the elastic collisions. 

In the second part the theory is generalized for the in
elastic collisions. It is shown that the shift of the elastic 
Regge poles and residues is second order in the coupling, 
which indicates that the inelastic scattering amplitUde is well 
described by the unperturbed poles. Hence, not all the Regge 
poles in the uncoupled channels contribute equally to the 
scattering amplitUde. Channels which have poles close to the 
real axis dominate the scattering amplitude, and therefore all 
the poles with the large imaginary part can be neglected in 

a'The work was supported by grant NSF F6FOO6-Y. 

the first approximation. This conclusion is reached from the 
discussion of the elastic scattering amplitude.3

,5 

The perturbation method, described here, has been de
veloped for the poles of the Green's function by Titchmarsh.6 

However, we give two new points: (a) perturbation expan
sion for the residues and (b) extension of the theory to the 
multichannel equations. 

2. FORMAL DERIVATION OF PERTURBATION SERIES 
FOR ELASTIC SCATTERING 

The radial Schrodinger equation for a perturbed system 
is 

where E"V' is a perturbation. The regular solution has the 
form of a linear combination 

<p = j + ! - (r) + j - ! + (r) - j + eikr + j - e - ikr , (2.2) 

wherej ± are the Jost functions and! ± (r) are the two linear
ly independent irregular solutions of (2.1). The Regge poles 
are defined as the solutions of equationj - = O. Sincej - is E 

dependent, it follows that An' being the nth root of the last 
equation, is also E" dependent. Hence, for a small perturba
tion, we can write 

(2.3) 

Postponing the discussion about the restrictions of the ex
pansion series (2.3) to Sec. 3, let us find the coefficients A ;;" 
m = 0,1,2,.··. 

The roots of the equationj - = 0 are assumed to be 
simple; therefore they can be calculated from 

A = _1_ j dA A _1_ aj-
n 21ri'j j- aA ' (2.4) 

where the contour integration encircles only the nth root. It 
can be shown that for real k the solutions of (2.4) are com
plex2 with no value in the fourth quadrant, while for imagi
nary k they are either real or imaginary. 

From (2.4) the coefficients in the series (2.3) are de
duced as follows: 

, 0 1 ) 1 aAn 
I\, n = I\,n (E = 0, An = - (E = 0), aE 

(2.5) 
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Because j - is an analytic function, the contour integral is 
independent of E and the derivatives with respect to E can be 
taken into the integral. Thus, for A ! we get 

A ~ = _1_ rC dA A [_1_ B]- _ Br Br _1_]. (2.6) 
21Ti j j- BABE BA BE (j- f 

The first integral in (2.6) is simply 

a=A~ B]- (l!Bj-) (E=O), 
BABE BA 

(2.7) 

while the second is 

b = (A 0/ Bj- ) dlj- + (l/ Bj - ) Bj-. (2.8) 
n BA BA& BA BE 

The coefficient A! is now 

Al =a-b= _ 1 _'1 __ '1_ ( ; B'-) B'-
n BA BE' 

(2.9) 

where the limit E-o is assumed. By noticing that the S ma
trix is defined as 

S = (j + /j - )ei17(A + 1/2) 

and the residues by 

/3n = lim (A - An)S, 
A_A" 

the expression (2.9) can be put into another form: 

1 I _ /30 B S - I ( 
/I. n - - n - E = 0) , 

BE 

(2.10) 

(2.11 ) 

(2.12) 

where /3 ~ is the residue of the unperturbed S matrix. This 
form is often more convenient than (2.9). 

Similarly, we get for A ~ 

A 2 = _ (l/ Bj - ) (dlj - + U I dlj- + (A 1)2 dlj -) 
n BA Be n BABE n BA 2 ' 

(2.13) 

where we have used (2.9). Higher-order coefficients are cal
culated in an analogous manner. 

Let us tum our attention to the residues of the S matrix, 
defined by (2.11). SinceAn and the S matrix are E dependent, 
the residues are also E dependent. For a small perturbation, 
they are also expanded in a power series 

/3n =/3~ +E/3! +1e/3~ +''', (2.14) 

where 

/3 = _1_ rC dA L e i17(A + 1/2) (2.15) 
n 21Ti j j-

and the contour encircles the nth pole. The definition (2.11) 
is the result of the contour integration of (2.15). 

To find the coefficients in (2.14) we proceed in an analo
gous manner as for An' We get for /3 ! 
/3 ~ = _1_ rC dA (_1_ Br _ ~ Bj - )ei17(A + 1/2) • 

21Ti j j- BE (j-f BE 

The result of the first integration is 

a = po _1_ Bj+ 
n j+ BE ' 
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(2.16) 

(2.17) 

while the second integral is 

b = lim ~ (~(A -An)2 Bj- e i17(A+ 1/2»). 
A_A" BA (j - )2 BE 

(2.18) 

By taking derivatives of the expression in the bracket, and 
subtracting b from a, we get for /3 ! 
/3 ~ = P ~ Br + i1T A 1/30 _ (/3 a / Bj - ) B]-

j + BE n n nf . BA BEBA 

+ (A lIar) Bj + e i17(A + 112) _ (A 1/3 oj or ) 
n BA BA n n BA 

B2 '-

X B~ 2 ' (2.19) 

or in a more compact form 

(2.20) 

whereS- 1 is the inverse of(2.10) and A ! is given by (2.9) or 
(2.12). 

3. CONNECTION OF EXPANSION COEFFICIENTS WITH 
PERTURBATION POTENTIAL 

It has been shown how to calculate the expansion coeffi
cients of An and Pn and how they are related to the deriva
tives of the Jost functions. Derivatives ofj- with repect tOA 
can be taken without difficulty since the result is indepen
dent of the perturbation potential. However, derivatives in 
the variable E can only be taken after solving (2.1) first and 
subsequently letting E_O. 

Let us for the the moment assume that the limit E-o of 
q; exists. Formally we can write the integral equation forj ± 
in terms of V' 2 

j± =jo± ± ~ rOD lo±(r)V'(r)q;(r)dr, (3.1) 
21k Jo 

wherejo± are the Jost functions ofthe unperturbed system. 
Since q;(r) is a solution of 

q;(r)=q;o(r)- ~ r K(r,r')V'(r')q; (r') dr' , (3.2) 
21k Jo 

where q;o (r) is a regular solution of the unperturbed system, 
K (r,r') is defined as 

K(r,r') = 10+ (r)/o (r') - 10+ (r') 10 (r) . (3.3) 

The Jost functionsj ± are given as the power series in E. 

It is essential to realize that solving (3.2) by iteration pro
duces an absolutely convergent series for all k and E, pro
vided the first moment of V' is finite, 

1"" dr rl V'(r)1 < 00 , (3.4) 

and Re(A ) > 0. This is an impotant result because it shows 
that q; can be calculated by specifying E, A, and k only, i.e., q; 
has no branching points or other types of singularity. The 
restriction Re(A ) > ° imposes a limit on the variation orA but 
for a certain class of potentials the analytic continuation into 
Re(A ) < 0 is possible. However, in our applications, we will 
assume the potentials with a hard core, for which the Regge 
poles are confined to the first and third quadrant. Since the 
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poles of the third quadrant do not enter the Regge represen
tation of the scattering amplitude, 3 the power series obtained 
by solving (3.2) can be used in the calculation of the coeffi
cients (2.5). 

Calculating derivatives ofj ± is now straightforward; 
thus for example 

_'1_ = __ ._ fo-(r)V'(r)lfJo(r) dr; a'- 1 i oo 

aE 2lk 0 

(3.5) 

hence the coefficient 4 ~ is 

4 I = _1 (1 00+ a}o- ) (00 V'(r)lfJ 6(r) dr. (3.6) 
n 2ik Y J a4 Jo 

Similarly one calculates other derivatives, whence f3 ~ 
and 4 ~ are obtained: 

(3 1 =4 1(30 i1T- 1 ~ ~ [ ((
a·-)a2'-] 

n n n a4 a42 

((3 0 0k'+ aj o-) (00 V' alfJo dr (3.7) + nf I '10 a4 Jo lfJo a4 

and 

i
oo 

1 i oo 

X fo- lfJo V' dr - -- fo- V' dr 
o 2k2 0 

X f K (r,r') V' (r')lfJo (r') dr'] . (3.8) 

4. PERTURBATION EXPANSION OF INELASTIC REGGE 
POLES FOR SPHERICALLY SYMMETRIC POTENTIALS 

It was shown in the previous sections how to develop a 
perturbation method for the Regge poles and the appropri
ate residues in the elastic collisions. The same technique can 
be generalized to the inelastic Regge poles, taking the cou
pling matrix as a perturbation. In this article we will treat the 
spherically symmetric potentials since generalization to the 
nonspherical potentials is not straightforward, involving 
analytic continuation of the S matrix in two angular momen
tum variables. 8 

We write the radial Schrodinger equation for inelastic 
collision as 

lfJ" = [V + (4 2
_ !)lr _ k 2]lfJ, 

where V is a potential matrix. It is given by 

(4.1) 

V = Vo + EV' , (4.2) 

where Vo is a diagonal matrix and V' has zeros on the diag
onal. The channel energy matrix k 2 is diagonal, 

(4.3) 

For E = 0 the set ofEq. (4.1) is uncoupled and the solutions 
are n separate Schrodinger equations 

lfJJ" = [Jif,i + (4 2
_ !)Ir - k J]lfJ J, j = 1, ... ,n . (4.4) 

In an analogy to the elastic case, we define the Jost func
tions as 

1883 

lfJ = f-(r)j+ + f+(r)j

- fo-(r)j+ + fo-(r)j- , 
r_oo 
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(4.5) 

wheref; are the irregular solutions of the uncoupled Eqs. 
(4.4). The Jost functions) ± are now the (n X n) matrices. 
From the Jost functions we find the S matrix 

S = exp[i(1T12)(4 + -!)1 k ~+(j-) -Ik -l 

Xexp[i(1T12)(4 + !)1 . (4.6) 

The Regge poles are the singular points of S in the 4 variable 
and these are determined from Det(j -) = O. This condition 
is equivalent to asking which linear transformation on (4.5) 
produces a solution with only the outgoing waves, i.e., to 
find A with the property} - A = O. The set of equations has a 
solution if and only if Det(j -) = O. 

We will from now use a more convenient representation 
of the S matrix then that given by (4.6). It was shown by 
Newton9 that the diagonal elements of S are 

Srn,rn = exp[i1T(4 + !)1 D( - krn)ID (4.7a) 

and the off-diagonal 

S;n,n = Sm.mSn.n - [D(-km,-kn)lD] 

Xexp[2i1T(4 + Dl , (4.7b) 

where D = Det(j -). The function D ( - k m) is equal to D 
with k m replaced by - k m • This is also the case with 
D ( - km, - kn), where krn and k n in D are replaced by its 
negative values. The indices m and n refer to the open 
channels. 

The poles in the angular momentum variable 4 of the S 
matrix are now the roots of the equation 

D=O. (4.8) 

In the case of no coupling, i.e., E = 0, the Jost function re
duces to a diagonal form; hence 

D = J~ J~ "'J~ = 0 , (4.9) 

defining n independent equations of the type J'/" = 0, 
m = 1, ... ,n. Each equation defines a set of Regge poles, des
ignated by 4 ~,rn where the index p refers to the pth pole of the 
mth uncoupled Jost function. When the coupling is 
"switched on," each pole 4 p.rn moves in the A. plane and if £ is 
small, we can write 

4p,m = A. ~.m + £4 ;,rn + -!e4 ~,rn + ... . (4.10) 

The coefficients of (4.10) can be calculated by a procedure 
developed for the single channel case. Thus, for example, 
1 I . 

/l, p.rn IS 

A. ~.m = - ~~ / ~~, £ = 0, 4 = A. ~,m' (4.11) 

To find derivatives of D we use the representation lO 

D = Det(j-) = exp{Tr[ln(j-)]}, (4.12) 

where Tr designates the trace of the matrix. 
Therefore we have 

aD = DTr(j-)-1 aj- ). 
aE aE 

(4.13) 

In the limit E-o, the Jost functionj - is diagonal. As it will 
be shown in Sec. 6, in the same limit the derivative a}-laE 
has zeros on the diagonal, whence 

4 I _ aD = 0 E = 0 . 
p,rn aE ' (4.14) 
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In other words, the leading expansion coefficients in the 
series (4.10) is exactly zero, and the series starts with the 
order €2. The coefficient A ;,m is simply obtained from (2.13) 
with D replacingj - . Taking into account (4.14) we get 

A 2 = _ (l/ aD ) a
2
D . (4.15) 

p.m aA ac 

The second derivative of D is determined from (4.13) being 
equal to 

1 a
2
D _T('-)-laz.r ) 

Dac-
rJ 

ac 

_ Tr(r)-l ar (j-) _laj- ), (4.16) 
a€ a€ 

where we have used (4.14). We can simplify (4.16) by ex
panding the Jost matrixj - in a power series of €; hence for 
each matrix element we have 

'- .o{) '1 lC''2 J r,s = J s r.s + €J r,s + 2 J r,s + ... , (4.17) 

giving for A ;,m 

A ;,m = (1/ L ~ ajs- )(2 L j;,fls - Lj~). 
s Js aA s>r IJr s Js 

(4.18) 

By taking into account thatJ~-o, the last expression is 

( l a' - )( '1'1 ) A 2 = 1 ~ 2 ~ Jm,~s,m _ . '2 . 
p,m a.'l £.. :0 J m.m 

.... s=!em Js 
(4.19) 

It will be shown in Sec. 6 how the matrix elements ofj -
are related to the perturbation matrix. 

5. PERTURBATION EXPANSION FOR THE RESIDUES 

The residues are defined analogously to the elastic ones 

(5.1) 

Using the matrix elements notation (4.7) we can write for the 
diagonal residues 

{JP,;,r m = lim (A - Ap r)s m m , 
, A~A " 

Po' 

(5.2) 

and for the off-diagonal residues 

f3 ~.n = f3m .mf3n.n , (5,3) 

showing that the off-diagonal elements of /3 are not indepen
dent quantities. In other words, diagonal residues determine 
(5.1) completely, up to a sign. This implies that only the 
diagonal elements of /3 have to be expanded in the perturba
tion series since the off-diagonal residues are given by (5.3). 
We therefore write only one index, i.e., 

(5.4) 

where the superscript designates the Regge pole Ap,r essen
tial for the residue. 

We now write for /3 ~r 

/3~r = /3~r(o) + €/3~r(l) + !c/3~r(2) + ... , (5.5) 

where 

1 f D(-km ) 
/3~r = -. dA exp[i1r(A + !)] . 

2m D 
(5.6) 
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/3 ~r(o) is equal to zero for r=j. m since both D ( - k m ) 

andD are zero in the limitA-Ap •r • In other words, the chan
nel m is not, in the zeroth order, perturbed by the presence of 
a Regge pole in the channel r. 

Other coefficients in (5.5) are found by the procedure 
already described in Sec. 2. Thus for example/3~r(l) is given 
by (2.19) with replacementj - _D andr _D( - k m ). By 
the arguments given in Sec. 4 it can be shown that 

/3~r(l) = 0; (5.7) 

therefore the leading term in (5.5) is of the order € 2. Noticing 
that (4.14) applies toD ( - k m ) as well, thecoefficient/3~r(2) 
is given by 

a2/3~r 

a€2 
= _1_ i dA (~ a2

D( - k m ) 

21Ti J D ac 
xexp[i1T(A + !)] , (5.8) 

where the first integral is 

1 a2D ( k) 
a = /3p.r(o) m 0 

m D ( - k
m

) ac ,€ = , (5.9) 

while the second is 

b = i1T~ ~~r(ol ~~) ~~ + aD (~ k m
) (/3 ~r(of 

D( _ k ) aD) a
2
D + (/3p.r(O\) / aD) a

3

D 
m aA ac m '/ aA aCaA 

_ [/3p,r(o) l(aD)2] a
2
D a

2
D . (5.10) 

m 'I aA a€2 aA 2 

The coefficient /3 ~r(2) is now given by 

/3 ~r(2) = a - b . (5.11) 

Let us assume that r=j. m, i.e., the diagonal element of /3 
is from the mth channel while the unperturbed Regge pole is 
in the rth channel. The unperturbed residue/3~r(O) is zero in 
that case. Therefore, the terms from a and b not having 
D ( - k m ) in the denominator are exactly zero; hence the 
coefficient /3 ~r(2) gets the contribution only from a and the 
second term in b, giving 

/3 ~;r(2) = (exp [i1T(A ~.r + D] a~A r ) [ lr< - k m ) 

jr~ '2 +2 ". (j';; jLJ;,s - -Jrr £.. ---
jm' s¥r jr~ j, 

_ I"r( ~.~m)jr:~( - km») 
I, (-km ) 

(5.12) 

where the index - km indicates that in the matrix element of 
j -, k m is replaced by - k m , 

The case when r = m is more complicated and will be 
treated in the following section. 

6. CONNECTION WITH THE PERTURBATION 
POTENTIAL 

In the expression for the expansion coefficients of the 
Regge poles and residues of the S matrix, the essential role is 
played by the matrix elements of the Jost function. It is 
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therefore necessary to relate them to the perturbation poten
tial, defined in (4.2). 

The regular solution of (4.1), if (4.2) is assumed, is 

tp = tpo + ~ k - 1 i' K (r,r') V'(r')tp (r') dr' , (6.1) 
21 0 

where tpo (r) is the regular solution of the uncoupled equa
tions (4.1), and 

K (r,r') = 10+ (r')/o- (r) - 10+ (r)/o-(r') , (6.2) 

where 

(I l )p,s -8p,se 'Fik,/" • (6.3) 

By taking the limit r--oo in (6.1) and comparing with 
(4.5), we obtain the integral equation for the Jost functions 

j± =jo± ± ;jk- 1 1°Oll (r')V'(r')tp(r')dr" (6.4) 

In the first approximation we take tp = tpo andj ± is to the 
first order in E given by 

j± = jo± ± ~ k - 1 ioo 

Il (r') V'(r')tpo (r') dr'. (6.5) 
21 0 

Since V'(r) has zero diagonal elements, it follows that 

(6.6) 

where we have used the notation of (4.17). In general, the 
coefficientsj!.s are 

j!.s = - 2j~p 100 

Ip-(r)V;.s(r) tps(r) dr. (6.7) 

The second-order correction to the Jost function is obtained 
by iterating (6.1) once and subsequently replacing '11 in (6.4), 
in which case we get 

j~,s = _1_2:_1_ roo drlp-(r)Vp,q(r) 
2kp q kq Jo 

x f dr' Kq,q(r,r') Vq .• (r')tp. (r') . (6.8) 

We are now able to write the explicit relationship be
tween (4.19) and the coupling potential, hence obtaining 

,1~.m 

= - (2k~';; Ja.'<~ )-1 L k 1._ ( roo '11m Vm .• ls- dr 
/l s"'m sis Jo 

X f tps Vs,m tpm dr' + 100 

'11m Vm.stps dr 

X 1'''' Is- Vs.mtpm dr') . (6.9) 

Similarly, we get the expression for (3 f;,q, defined by 
(5.13), 

(3f;,q(2) = exp[itr(,1 ~.q +~) ](~f -1 ),1 ~,q 

_ exp [i1T{~ !': +~ 1)] (Jjq- ) - 1 

2kqkmlqimi~ J,1 

X (f" tpq Vq.mtpm dr r . (6.10) 

The most complicated case is when r = m. The reason is 
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that ,1p,m while being a zero of D is not a zero of D ( - k m)· 
Hence, all the terms in (5.9) and (5.10) must be included in 
the expansion coefficient (3 f;,m(2) and the result is 

In this way we found the relationship between the ex
pansion coefficients of the Regge poles and residues and the 
perturbation potential. However, the results need further 
discussion revealing some of the properties of the Regge 
poles and residues. 

7. DISCUSSION 

In the analysis of the scattering amplitude it is very 
often needed to calculate the contribution of the closed chan
nels. In the conventional methods, e.g., the distorted wave 
approximation, the closed channels contribute in the second 
order of perturbation, which often turns out to be infinite. II 
Therefore, such methods are only suitable for certain class of 
potentials e.g., exponentially decaying potentials, for which 
this contribution is finite. 

In our procedure the contribution of the closed chan
nels to the scattering amplitude is given via the Regge poles 
and residues, for which the perturbation series was devel
oped.1t is therefore worth noticing that the coefficients A ~.m 
and (3f;,'(2) are finite without imposing any restrictions on 
the form of the potential, except that it should go to zero 
faster than r-2. This is simply obtained from (6.9). 

Let us also notice that the leading term in the perturba
tion series of both the Regge poles and residues is of the order 
£2. The first-order contribution in E is exactly zero. 

Let us, on the example of a two channel problem, dis
cuss the various poles. We will assume that one channel is 
closed, i.e., k ~2 < O. The other channel is open, meaning k i 1 

> O. Furthermore we will assume that V22 is typical of the 
atomic potentials, i.e., it has a hard core and a minimum at 
r = ro. For r--oo, it goes to zero as some inverse power of r. 

For k ~2 < 0 the function 

(7.1) 
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has two turning points and the Regge poles corresponding to 
V22 (the unperturbed poles) are given from the WKB solu
tion of the Schrodinger equation. The appropriate J ost func
tions can be calculated and are given by 

j+ = -cosUbpdr+1T12) 

X exp[k22 b- LX> (1P1-k22 )dr] (7.2) 

and 

r = 2 sin( f p dr + 1T/2 ) 

X exp [ -k22b+ LX> (1P1-k22 )dr] , (7.3) 

where 

(7.4) 

The Regge poles, being the roots of j - , are then the 
solutions of the equation 

f p dr = (n + !)1T, n = 0,1,2,.·· (7.5) 

in the variable A. The residues are also obtained and are 
given by 

f3n = (1/ Un f ~:) exp [ i1TAn + 2k22b 

-2LX>(p-k22 )dr]. (7.6) 

The poles, the solution of(7.5), are either real or imagi
nary. The real poles correspond to the bound states, when 
they are half integer. The imaginary poles give negative cen
trifugal terms hence they lower p 2. In other words, the states 
with imaginary A are the solutions of the SchrOdinger equa
tion when k 2 is below the minimum of the potential. Such 
states are meaningless in a one-channel problem, but in the 
inelastic collisions they must also be included. 

The poles corresponding to the open channel are com
plex and are in the first and third quadrant of the A plane. 
For simplicity let us assume that k i I is much larger than the 
minimum of VII' The imaginary part of such poles is large. 3,5 

The result is that they only contribute to the forward space of 
the differential cross section, giving the rainbow and the dif
fraction oscillations. 5 In our treatment these poles will not be 
considered. 

Let us now discuss the closed channel poles when the 
perturbation is included. 

A. Imaginary poles 

The poles from the closed channels do not contribute to 
f31j (0); hence by introducing coupling we have 
approximately 

f3P _ i...- [(jt _ 1),1 2 + (ijaj2- ) (SO'P2 VI.2'PI dr)2] 
I 2 jl- P aA 2kl Ik2li2+ jnl-

Xexp( - 1TIA ~ I) (7.7) 

and 
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A ~ = (1}2+ a~~ ) 21~21 kl~1 
X (LX> 'P2 V2,I 11- dr f 'PI VI,2'P2 dr' 

+ fC 'P2 V2,1 'PI dr f= dr' I 1- VI'2'P2)' (7.8) 

Let us prove that any perturbation V2, I gives a contri
bution to A ~ with a positive real part. This is essential since 
the exact poles A P lie in the first quadrant. The leading term 
in the perturbation expansion, therefore, has to give a posi
tive real contribution. The real part is 

Re(A ~) = !(A ~ + A ~") . (7.9) 

From the relationship2 

'k'+ aj- _ 'lcc 'P2 d I';] -- - -/I, - r 
aA 0 ~ 

(7.10) 

it is easily deduced that the productj2+ (aj2- laA) is positive 
imaginary. Hence, (7.9) becomes 

Re(A2) = *1 1 (aj 2
- )-11_1 

P k2kd2+ aA jl-jt 

X a= 'P2 V2,I'PI dry, (7.11) 

being indeed positive. In (7.11) we have used the fact that 'PI 
and 'P2 are real. 

For large 1,1 ~ I, the residuef31j is small and therefore the 
contribution of the imaginary poles is negligible. However, 
there are cases when the imaginary poles are close to the real 
axis. Provided the integrals in (7.7) and (7.8) are not negligi
ble, the residue f31j have a noticeable value. In that case the 
contribution of such poles to the scattering amplitude is 
approximately 

(7.12) 

being a non oscillatory function of angle. Therefore, the 
imaginary poles, at best, give a contribution which is a 
smooth function of the angle (J. 

B. Real poles 

The residues and the poles are given by (7.7) and (7.8), 
however, the exponential factor exp( - 1TIA ~ I) is replaced 
by exp ( - 1TA ~), By similar arguments as for the imaginary 
poles, the imaginary part of A ~ can be proved to be positive. 
From 

(7.13) 

and using (7.10) we find that (7.13) is equal to (7.11), howev
er, 1m replacing Re. The properties of (7.6) are now essen
tially determined by the integrals appearing in (7.7) and 
(7.8). If the integrals are small, the residues are small, hence, 
the contribution of such poles is negligible. However, if Ap is 
half integer, the scattering amplitude is approximately 

11,1 -P"'
p
_!( - cos(J) , (7.14) 

having a noticable contribution to the differential cross sec
tion. A similar thing happens in the elastic collisions, howev-
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er, in the inelastic collisions this effect is due to the closed 
channels. We talk about the Feschbach resonances. This 
short discussion of the scattering amplitude reveals the con
sistency of the perturbation method approach for calculat
ing the inelastic Regge poles. We have shown the consistency 
for a two-channel case, but generalization to more channels 
is straightforward. 

8. CONCLUSION 

We have shown a method for generating the inelastic 
Regge poles and residues by a perturbation approach. In 
each unperturbed channel we have defined a set of poles and 
developed a method for finding their positions when a per
turbation is introduced. The unperturbed channels represent 
the elastic collisions; therefore this procedure provides one 
way of describing the inelastic differential cross section in 
terms of the elastic cross sections of each channel. By know
ing the properties of the Regge poles and the residues of the 
unperturbed system we deduce characteristic features of the 
inelastic cross section using such a perturbation method. 

There is an interesting feature of this perturbation 
method not directly related to the collisions. If the same 
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technique is applied for the poles of the S matrix in the ener
gy variable, formula (3.8) shows that the definition of a com
plete set off unctions, in the usual perturbation theory for the 
bound states, is redundant. Ifin this formula A is replaced by 
k, the second-order perturbation coefficient for the energy 
does not involve a sUm/integral over the complete set of 
functions. The coefficients depend only on the solution of 
that particular eigenstate. 

I A. Bottino, A.M. Longoni, and T. Regge, Nuovo Cimento 8, 107 (1962). 
2y. de Alfaro and T. Regge, Potential Scattering (North-Holland, Amster
dam, 1965). 

3S. Bosanac, Mo1ec. Phys. 35, 1057 (1978). 
's. Bosanac, 1. Math. Phys. 19, 789 (1978). 
's. Bosanac, Phys. Rev. A 19,125 (1979). 
6E.C. Titchmarsh, Eigenfunction Expansions (Clarendon, Oxford, 1958), 
Yol. II (19.20). 

7R.G. Newton, The Complexj-Plane (Benjamin, New York, 1964). 
"I.M. Charap and E.l. Squires, Ann. Phys. (N.Y.) 20, 145 (1962); 21, 8 
(1963). 

9R.G. Newton, 1. Math. Phys. 2, 29 (1958). 
IOK.M. Watson and 1. Nuttall, Topics in Several-Particle Dynamics (Hold

en-Day, San Francisco, 1967). 
"R.G. Newton, Ann. Phys. (N.Y.) 4,29 (1958). 

S. Bosanac 1887 



                                                                                                                                    

Partition permuting array approach to few-body Hamiltonian models of 
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The approximate Hamiltonian formulation of many-body scattering recently proposed by 
Polyzou and Redish is used to derive approximate Baer-Kouri-Levin-Tobocman (BKLT) 
integral equations. It is shown that these equations have connected kernels after a finite number of 
iterations and the approximation defined by them is unitary. Integral equations imbedding the 
approximation in the exact theory are also given. Some lemmas which relate to the connectivity of 
operator products are established and are employed to prove the connected-kernel properties of 
both the BKLT as well as the imbedding integral equations 

I. INTRODUCTION 

The standard model for nuclear reactions at energies 
below the threshold for pion production consists in the use of 
the non relativistic Schrodinger equation description of the 
dynamics of the N nucleons which comprise the entire sys
tem. 1 One of the set of assumptions which make up this pic
ture is the supposition that the internucleon interactions are 
mediated by static potentials of the pairwise, three-particle, 
etc. varieties. Given some particular initial state, such as a 
nucleon incident upon a nucleus, the correct formulation of 
the problem requires the specification of the boundary con
ditions appropriate to all of the possible outgoing configura
tions. Thus, a correct starting point for a complete discus
sion of nuclear reactions within this standard picture is a set 
of well-defined N-particle scattering integral equations. 2 

The condition that the kernels of these equations become 
connected operators after a finite number of iterations is 
thought to be an important criterion in determining such a 
set and this has led to the construction of many alternative 
equations. 2 

These equations are forbiddingly complex and it is un
realistic to propose calculational procedures which depend 
upon anything but the solution of some approximate version 
of them. Thus, except when N <4, the practical calculation of 
nuclear reactions inevitably involves the introduction of ef
fective few-body models whose specific realization is de
signed to reflect the dominant dynamical characteristics us
ing relatively few degrees of freedom. In most of the 
traditional treatments 1 of nuclear reactions, "few" is, in fact, 
equal to 2 as, e.g., in the optical model, resonating group, and 
coupled channels methods. It is only relatively recently that 
three-body models have begun to be developed seriously al
though calculations using these methods are still relatively 
rare.3 The number of systematic developments of such mod
els has been, until recently, even rarer. 

Polyzou and Redish4 have found an elegant formula
tion of the N-particle scattering problem which facilitates 
the introduction of certain types of few-body models in a 
consistent and controlled fashion. Central to their work is 
the introduction of an approximate N-particle Hamiltonian 
H (A ) appropriate to a reaction mechanism A. Here A refers 

to the dominant channels which are used to describe the 
reaction mechanism. H (A ) defines a unitary model for tran
sitions among the cluster states which enter into its spectral 
resolution. It is possible to develop connected-kernel inte
gral equations for the scattering operators which correspond 
to these transitions.4 Also, Ref. 4 contains a systematic pro
cedure for calculating corrections to the model represented 
by H (A ). Other advantages of this general type of approach, 
e.g., in comparison with those simple few-body models (for 
reactions or bound states) which assume the effective indivis
ibility of the constituent "bodies," are discussed at greater 
length in Ref. 4. 

One of the advantages of the model Hamiltonian ap
proach of Ref. 4 is that the model problem is stated in terms 
of definitions of the partition Hamiltonians, external inter
actions, transition operators, and the Green functions and 
the resolvent identities satisfied by them that are formally 
the same as in the untruncated problem. Thus any of the 
diverse methods2 for the development of connected-kernel 
partition-labeled scattering integral equations can be for
mally applied without substantial modification. In the pre
sent article we are concerned with the application of the par
tition permuting array (PPA)5 approach to the model 
problem defined by H (A ). 

As one might expect, the introduction of the PP A for 
the model scattering equations is trivial to carry out. What is 
not obvious is that this technique still works to yield the 
connected-kernel model counterparts of the Baer-Kouri
Levin-Tobocman (BKLT) N-particle equations. Similar 
questions were addressed in a previous article6 which con
tains an approach alternative to that of Ref. 4 for introducing 
few-body models within the context of the BKL T formal
ism. Connectivity questions are handled with the aid of a 
lemma proved in Appendix A concerning the structure of 
the class of operator products which appears in PP A-gener
ated theories. This generalizes some results proven in Ref. 6. 
Finally, we establish a new procedure for imbedding the 
model problem within the full N-particle dynamics. This 
provides a method for calculating controlled corrections to 
the model problem which is alternative to the method of Ref. 
4 but is similar to the modification of the Feshbach projec
tion operator technique employed in Ref. 6. 
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The work of Ref. 4 contains the application and devel
opment of some of the most sophisticated techniques avail
able in N-particle scattering theory. Since these are ideas that 
are as of yet not widely known, we review the relevant as
pects of Ref. 4 for the sake ofintelligibility. 

II. REACTION MECHANISMS 

In order to be able to treat even two-cluster initiated 
nuclear reactions in a comprehensive fashion, it is necessary 
to allow for the possibility of arbitrary intermediate and final 
configurations of the N particles which comprise the projec
tile and the target. There are many of these configurations 
for even moderately large N and thus an efficient notation is 
needed to handle this complexity. Central to such a notation 
is the idea of partitions of the N particles into sets a,b, ... , of 
na ,nb , ... , clusters of particles, where the order of the group
ings of the particles within the clusters and the order of the 
clusters themselves are regarded as immaterial. For exam
ple, for N = 6 a three-cluster partition is (123)(45)(6) 
= (312)(45)(6) = (45)(6)(312). The two partitions which 

correspond to na = 1 and na = N are often denoted as a = 1 
and a = 0, respectively. 

Evidently partitions COdify the possible asymptotic 
states of the N-particle system where interactions take place 
only among the particles within a cluster. A particular parti
tion actually can be identified with a physical asymptotic 
state only if it is dynamically possible for all of the particles 
in each of the clusters to be bound. Such partitions are said to 
be stable. We remark that a = 0 is always regarded as a sta
ble partition. 

The partition indexing of the Hamiltonians for the 
asymptotic states as well as the description of interactions 
among the various clusters requires a precise definition of 
the interaction internal or external to a partition. This can be 
done with the aid of the idea of a partition b, say, being 
contained in another partition a which we denote by a;]b, 
where we include the possibility of equality. Here a:::) b 
means that b can be obtained from a by breaking up one or 
more of its clusters into clusters containing fewer particles. 
The alternative possibility where b cannot be obtained in 
such a manner is denoted by a 1> b and then b is said to be not 
contained in a. 

The N-particle system is presumed to be described by a 
Hamiltonian H which we suppose decomposes into the ki
netic energy Ho of the system and a potential Vwhich repre
sents the interaction among the N particles: 

H = Ho + V. (2.1) 

The potential V in general decomposes into the sum 

V= I [VL, (2.2) 
a 

where [Vla is thea-connected part of V. We recall that anN
particle operator A is said to be a-connected if its momen
tum-space matrix elements have the form 

x it a[P'(a) - P(a)], (2.3) 
a~j 
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FIG. I. Disconnected structure of the operator described in the text. The 
wavy lines connecting the solid horizontal nucleon lines represent pair in
teractions. The diamond denotes the three-particle force and the vertical 
dotted lines correspond to the free Green functions Go. 

where 

P(a)===Pj" + .,. + Pk" 

is the momentum of the c.m. ofthe ath cluster, (ja, ... ,ka) 
correspond to the particles in the ath cluster, and the func
tions Aa ( P; , .. ·,P:V Ipj,· .. ,p N) possess no a-function singular
ties. Evidently (2.3) is related to the invariance of A with 
respect to independent translations of the clusters of parti
cles corresponding to the partition a. This can occur only 
because there are no interactions linking these clusters. The 
relationship between the connectivity structure of operators 
and their in variance properties with respect to the various 
translation groups associated with the different clusterings 
of the N particles has been investigated recently by Polyzou. 7 

We remark that an operator which is I-connected is usually 
referred to as beingfully connected or, simply, connected. 
For such operators (2.3) contains only a a function in the 
total momentum. 

Figure 1 provides a graphical illustration of the preced
ing ideas regarding connectivity. Let f(iJ) represent the pair 
interaction between particles i andj and V(123) a three-parti
cle potential. The free N-particle Green function 
Go = (z - Hoyl, where z is a complex parametric energy, is 
O-connected; however, the product 
f(67)GOV(4S)GOV(23)GOV(j23)GOV(67) depicted in Fig. 1 is 
(123)(45)(67)-connected. If N = 8 then this operator prod
uct is (123)(45)(67)(8)-connected. We note that 
V(23) Go V(I23) , e.g., commutes with the total momenta of the 
clusters (56) and (67). 

The partitions which enter into the sum on the right 
side of (2.2) are of a restricted type which conforms to the 
usual description of Vas a sum of pairwise, three-body, etc., 
forces. For example, a pair interaction V(ij) connects togeth
er only the particles i andj and therefore is a(lj)-connected. 
Here a(i]) is the (N - 1) cluster partition in which particles i 
andj are contained in a single cluster (Fig. 1). The three
particle force V(123) in Fig. 1 evidently is a(l23)-connected, 
where a(123) is the (N - 2)-cluster partition in which parti
cles 1,2, and 3 are contained in a single cluster. It is clear 
from these examples that corresponding to our usual ideas 
about interparticle potentials, [V] a = 0 unless a is a parti
tion which contains only a single cluster with more than one 
particle within it. 8 We note in particular that [V10 = 0, while 
[V]j refers to a possibleN-particle potential. For the sake of 
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simplicity in parts of the subsequent development we sup
pose that [V] I = 0, although this fully connected interaction 
can be incorporated without changing our essential results.4 

The interaction Va internal to the partition a is defined 
by 

and this leads to the introduction of the partition 
Hamiltonian 

(2.4) 

(2.5) 

If a is a stable partition the maximally connected eigenstates 
of Ha are the states ItPa ) for which all na clusters are in 
bound configurations, e.g., a two-deuteron state for N = 4. 
The states ItPa) are possible asymptotic channel states. The 
scattering eigenstates I "'~ + l) of Ha evolve from the maxi
mally connected eigenstates of some other partition Hamil
tonian Hb with a ::>b. 

Several different definitions of the notion of a channel 
are used in work on nuclear reactions. In this article we 
adapt the definition introduced in Ref. 4, namely, a channel 
(va) corresponding to a stable partition a refers to the quan
tum numbers of the internal (bound) states of the various 
clusters represented by a maximally connected eigenstate 
ItPa(va» of H a, where we suppress the dependence upon the 
momenta of the cluster centers of mass. These internal quan
tum numbers are designated collectively as Va' 

Thus, both the scattering and bound eigenstates Ha can 
"" be denoted as ItPa (Vb», whereb is a stable partition for which 

"" a ::>b. For a ::>b, we have ItPa (Vb» = I"'~ + l(Vb», while 
~ 

\tPa(va» = \tPa(va». In both instances, the dependencies 
upon the momenta of the c.m. of each ofthe nb clusters has 
again been suppressed. 

Now, let do be the set of all partitions of theN particles 
with two or more clusters and let Sj 0 ~ do be the subset 
consisting only of stable partitions. Then the set Ao of all 
physical channels, in the previous sense of the term,4 is 

(2.6) 

A reaction mechanism (RM) can then be thought of in an 
abstract way as a subset A of the setAo. Evidently the notion 
of a RM takes on content when A is identified as the domi
nant set of channels for a particular system in a specific ener
gy range and, moreover, that this can be used to simplify the 
scattering integral equations. The formalism of Ref. 4 pro
vides a vehicle for carrying out this simplification. It should 
be noted that there are alternative approaches to the ques
tion of systematic approximations to N-particle scattering 
where the preceding definition of A RM is inappropriate. 6 

An important aspect of the development in Ref. 6 is the 
association of a particular set of partitions d with a RM A. 
This concept is also highly relevant to the work of Ref. 4 
although it is not used there explicitly. Such an association is 
not unique. Implicitly in Ref. 4 and explicitly in our subse
quent work d is taken to be6 

(2.7) 
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For example, for N = 4 and b2 = (12)(34), b3 = (12)(3)(4) if 
A consists of a single two-cluster channel Vb, (e.g., a two
deuteron state in the four-nucleon case) and a single three
cluster channel Vh, (e.g., a deuteron plus two free nucleons), 
then 

.if = [(12)(34),(123)(4),(124)(3),(12)(3)(4) J. (2.8) 

We note that it is possible to have d = do even if A CA o. A 
few-body RM A is one for which na <4 for all aEd. 

The set d yields a criterion for the preservation of the 
dynamical integrity of the N-particle dynamics. The state
ment of this criterion as well as the exposition of much of our 
subsequent analysis concerning connectivity is greatly facili
tated by the use of a simple binary rule of combination 
among the partitions. 4,7-9 The union oftwo partitions a and b 
of N objects is the partition denoted as aub = bua which not 
only satisfies a,b~aub but also satisfies aub~c, where c is 
any partition of N objects for which a,b~c. For example, 
b2ub3 = b2 in the case of the partitions of the preceding para
graph. We see that aub is the partition with the largest num
ber of clusters which contains both a and b. Evidently we can 
define in an obvious manner the union of several partitions, 
e.g., aUbuc, etc. 

A partition a(A ) characteristic of the RM A can then be 
defined as the union of all the partitions in .if: 

"" a(A )= u a. (2.9) 
aE.CY 

The reaction mechanism A is said to be trivial if a(A ) =11. For 
the RM implicit in (2.8) we see that a(A ) = (1234) and so we 
have a nontrivial case. Because the union of two distinct two
cluster partitions is I, A is trivial if and only if d contains 
only a single two-cluster partition. We note that .s;1' always 
includes at least one two-cluster partition.6 We explore the 
dynamical consequences of a trivial RM in the next section. 

III. RM HAMILTONIANS AND INTERACTIONS 

For any partition a we have the following resolution of 
the identity in terms of the eigenstates of Ha on the N-parti
cle space !fr N : 

1= ~ v~".1a'bUil f (dPJ} I¢: (Vb» <¢:(vb)l, (3.1) 

where the integrations are over the c.m. momenta of the nb 
clusters of the stable partition b and where 

.1 a ,h = 1, if a~b, 

and 

.1 a ,b = 1, if a""jb, (3.2) 

Equation (3.1) amounts to the decomposition of!fr N into 
the direct sum of the subspaces !fra [Vb] spanned by the 

"" . states! ItPa(vb» I for a given Vb and a. A projector onto 
!fra [Vb] is then 

Pa(vb) = Uti J (dP;)}I¢:(Vb» <¢:(vb)l. (3.3) 

This allows us to rewrite (3.1) in the more concise form 

I = I I .1a,b Pa(Vb )' (3.4) 
b v"EAo 
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In the absence of N-body forces Polyzou and Redish4 

have shown that the full Hamiltonian H possesses the 
decomposition 

(3.5) 
a 

into the partition Hamiltonians. Here 
Ca = (-l)nu(na -I)! and the prime on the summation over 
partitions indicates the omission of a = 1. The combination 
of (3.4) and (3.5) yields a channel decomposition of H: 

H= I I H(vb), (3.6) 
b v"EAo 

where 

H(Vb)=I 'CaHaAa.b Pa(vb)· (3.7) 
a 

Equation (3.6) suggests the introduction of an RM Ha
miltonian H (A ) by suitably restricting the summation over 
channels to those in the set A : 

H(A )=I I H(vb)· (3.8) 
b v"EA 

In a similar manner a projection operator corresponding to 
A and a particular partition a is [cf. Eq. (3.4)] 

Pa(A) = I I Aa,b Pa(vb)· (3.9) 
b VhEA 

Then (3.8) becomes 

H(A) = I CaHaPa(A)· (3.10) 
a 

A comparison ofEqs. (3.5) and (3.10) suggests the definition 

Ha(A) = Pa(A )Ha = HaPa(A), (3.11) 

as the counterpart of the partition HamiltonianHa when the 
dynamics is truncated by the introduction of a reaction 
mechanism. We note that Pa (Ao) = I, H (Ao) = H, and 
Ha(Ao) =Ha' 

It is evident that H (A ) possesses a cluster 
decomposition 

H (A ) = I '[ H (A )] a , 
a 

(3.12) 

where [H (A )]a is thea-connected partofH (A ). However, it 
is not obvious whether the counterparts of Eqs. (2.4) and 
(2.5), namely, 

(3.13) 

are valid. In this regard we note that [H]o = Ho and that 
(2.5) can be rewritten as 

(3.14) 

In Ref. 4 it is shown that (3.13) is valid and that, moreover, 
[H (A )] c has the structure 

[H(A)L = I 'I Ac,bhc(b,vb), (3.15) 
b VhEA 

where hc(b,vb) is a c-connected operator which vanishes if 
c1Jb. 
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We can now see that (3.12) can be expressed in the form 

(3.16) 

where the operator 

(3.17) 

involves only the parts of H (A ) external to the partition a. 
This is because 

~.b 1 - Aa,b' (3.18) 

vanishes unless a 12 b. For A = Ao, (3.16) becomes the usual 
partition-degenerate decomposition of the full Hamiltonian 

H = Ha + va, (any a), 

where 

v
a

= I~,b[V]b' 
b 

(3.19) 

(3.20) 

Va(A ) represents the interaction among the clusters of a 
and thus it generates the full N-particle dynamics appropri
ate to A. If 

Va(A) = 0, for some a=/-l, (3.21) 

then the RM does not contain interactions linking all N par
ticles under all circumstances. The significance of the char
acteristic partition o(A ) is that we always have 

Va(A) = o. (3.22) 

But (3.22) takes on content [cf. (3.21)] only if o(A )=/-1 since 
V I(A )=0. Thus, if the RM is trivial the fullN-particle dyna
mics has been lost in any formalism for which Va(A ) repre
sents the interactions for the truncated problem. 

On the other hand, suppose that for some a =/-1, Eq. 
(3.21) is satisfied. Then, it follows from Eqs. (3.15) and 
(3.17) that for any c r;b a there are no partitions b ~ c for 
which VbEA. Thus, if dE.wr, then necessarily d~a and there
fore ci(A )~a. So, if(3.21) is satisfied, the RM is necessarily 
trivial. Henceforth, we assume that A is nontrivial. 

It is important to emphasize again that the preceding 
characterization of a RM as well as the designations trivial 
and nontrivial reaction mechanisms are non unique and for
malism-dependent. In alternative approaches either of the 
incomplete standard variety or of the full N-particle type6 

the notions of Ref. 4 concerning reaction mechanisms are 
not necessarily relevant. 

IV. PARTITION PERMUTING ARRAY EQUATIONS 

We next consider the truncated scattering problem 
which is stated in terms of the RM Green functions4 

G(A) [z - H(A )]-t, 

Ga(A )=[z - Ha(A )]-1, 

(4.1) 

(4.2) 

where z is a complex parametric energy. We consistently 
suppress the dependence upon z except in Appendix C. It is 
important to note that G (A) and Ga (A) are defined on the 
entire N-particle Hilbert space. This is made explicit by the 
spectral resolution4 

(4.3) 

where we denote the complement ofthe projection PAA ) as 
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(4.4) 

RM transition operators T~.t )(A ) can be defined in a 
manner consistent with theinterpretationofG (A )and Ga (A ) 
by 

G (A) = Ga(A) + Ga(A )T~.t )(A )Gb(A) 

= Gb(A) + Ga(A )T~.b )(A )Gb(A). 

(4.5a) 

(4.5b) 

When a and b are stable partitions we have on shell with 
va.vbEA 

<tPa(Va)IGa(A t'G (A )Gb(A t'ltPb(Vb» 

= <tPa(va )IG a-'G (A)G b-'ltPb(Vb», 
and also 

<tPa (va)IG a-I G (A )G b- 'ItPb (Vb» 

= <tPa (va)1 T~J )(A )ltPb(Vb», 

(4.6) 

(4.7) 

Equation (4.7) clearly relates T ~.t )(A ) to the residues of the 
same pole singularities which appear in the untruncated 
Green function G. 

We find with the aid of the resolvent identities 

G (A) - Ga(A) = Ga(A )va(A)G (A) 

= G (A )va(A )Ga(A). (4.8) 

that. e.g., 

P+'(A) = V(A)Y + V(A )YG(A )V(A). (4.9) 

where here we have introduced. for the sake of brevity. a 
matrix notation2

,10 in the partition indices with 
T(±)(A) = <n.t)(A ». V(A) = (VaDa.b) and Y a.b = 1 for 
all a.b. We note that G (A) has no matrix structure so that 
[G (A ).Y] = O. The expression (4.9) suggests the introduc
tion of partition coupling schemes Y(A ) which satisfy 

V(A)Y = rCA )Y, (4.10) 

or. in component form. 

Vb(A) = L rb.a(A). (4.10') 
a 

The array Y b.a(A ) is. in general, not diagonal. The signifi
cant aspect of (4.9) and (4.10) is that T (+ '(A) as given by (4.9) 
is invariant under the replacement (4.10). One sees that the 
resolvent identities (4.8) can also be written in a form which 
is invariant with respect to the substitution (4.10). e.g .• 

'" /"0._ 

G(A)Y = G(A)Y + G(A )V(A )YG(A). (4.11) 

where fi(A) = (Ga(A )Dab ). One can then deduce2
.
10 the 

coupled integral equations satisfied by the transition opera
tors Tb.! )(A ) 

/"0. /"0. 

T(+'(A) = Y(A )G(A )YG(A t' 
'" + Y(A)G (A )T'+'(A ). (4.12) 

We confine our attention, henceforth. to the case where 

r(A) = V(A )W(A). (4.13) 

Here W (A ) is a partition-coupling array5 which is a numeri
cal matrix in the partition indices with defining property 

9 W(A)Y = 9 Y, (4.14) 

where 9 is a projector on an arbitrary set of partitions. 
Equations (4.12) and (4.13) require that (4.14) be valid for 
9 = I. and hence for all projectors. When 9 # I. (4.14) can 
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be used. together with some additional constraints on W (A ), 
to simplify Eq. (4.12). 

Equation (4.14) is a relatively weak condition and it is 
known5

,6 that W (A ) must be severely restricted in order that 
(4.12) possess connected kernels after a finite number of iter
ations. We let .'?i9(A) denote the set of all two-cluster parti
tions contained in .9ff and 9 2(A ) be the projector on this set. 6 

We require that W(A ) satisfy 

W(A)9 iA) = W(A). (4.15) 

If (4. 12) is multiplied on the left by 9 iA ) and we use (4.14) 
in the special case 9 = 9 2(A ) we obtain a set of equations 
which couple together only those operators T~.;' )(A ) with 
a.!3E.'?i9(A ). viz., 

T~.-;' )(A) = V/3(A) L W/3." (A )G" (A )[Ga(A )-1 
,tE:2(A) 

+T5..-;')(A)]. (4.16) 

All of the indices in (4.16) are restricted to .'?i9 (A ) and in this 
sense they are minimally coupled. 2,10 In the special case that 
A is a trivial RM we have T~~)(A )=0. We remark that 
9 zCA ) W (A ) # W (A ) so that the operators Tb.! )(A ), e.g .• 
with bri . .'?i9 (A ) but aE.'?i9 (A ) can be determined in terms of the 
solution of( 4.16) since we can use (4.16) as a quadrature rule 
in such cases. 

When A is not trivial we want (4.16) to be a set of con
nected-kernel equations in the sense that after a finite num
ber of iterations of (4.16) the kernels of the resultant equa
tions are connected operators. Previous experience5

.
6 

suggests that we choose W/3.a (A ), with !3.aE.'?i9 (A ), to be a 
partition permuting array (PPA) in order to achieve this. 

It is useful to review briefly the concept of a PP A. 5 Let 
us imagine some pertinent set [say .'?i9(A ) or .'?i9(Ao)] of two
cluster partitions to be ordered in some definite but arbitrary 
fashion ai' i = 1 ..... N2. whereN2 is the number of partitions 
in this set. A PP A over this set is then defined as 

Wa ,./3 = Del . . ,./3' 

where 

(4.17) 

(4.18) 

and"l;J = 1 - DiJ • The structure (4.17) of the PPA ensures 
that in a product of k operators, each of which has the form 
U a Wa ./3' no index appears more than once in any intermedi
ate summations and successive Ua·s in this product have 
different indices which cycle through the set: 

[UW",UW]a;./3 = ua;Ua" ' .. ·Ua.+k ·'Da;+k./3, (4.19) 

if k <Nz + 1 - i. If k > Nz + 1 - i. we have a repetition of 
indices on the U's as one moves to the right of the product 
but only after all of the indices in the set have been enumer
ated. This property is crucial for connectivity 
considerations. 

Now from (4.8) it follows that Ga (A ) possesses theclus
ter decomposition 

(4.20) 
a 

This is because the right-hand sides of (4.8) contain only 
sums of terms of conn ectivi ties b<;l.a. Here we have used the 
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cluster decompositions of Sec. III as well as the theorem4
.
7 

that the product of an a-connected and a b-connected opera
tor is (aub )-connected. This theorem also allows us to deduce 
that when W(A) is a PPA, the kernel of Eqs. (4.16) can be 
placed into the form 

uP (A) vP (A) Wp.A (/3) (A )GA (/3) (A) 

(4.21) 

where 

(4.22) 

and A (fJ)eJ?l(A )is the partition for which Wp.A(/3) = l.From 
(4.22) we see that (u(fJ) 1 b is a sum of operators each with 
connectivities buc~b, and bE.Pt. 

Now let !3?1 (A,b ) be the subset of !3?1 (A ) which consists of 
those two-cluster partitions for which{:1~b. Then, if !3?1(A) 
contains N 2(A) elements, NiA) iterations of (4.16) yields 
equations with the typical kernel 

(UP(A ) .. ·UY(A)l UP(A) 

= L J"P.b ( UP(A ) ... UY(A ) 1 (u(fJ) lb' (4.23) 
b 

The indices of the operators within the curly brackets in 
(4.23) contain a nonrepeating enumeration of all the ele
ments of !3?1 (A ) and thus of !3?1 (A ,b) for any bE.Pt. It follows 
by Lemma 2 of Appendix A that each term in the sum on the 
right-hand side of (4.23) is a connected operator. Thus, we 
see that the integral equations (4.16) for the truncated scat
tering problem acquire connected kernels after a finite num
ber of iterations. 

We reach our principal conclusion that the general re
action theory of Ref. 4 can be realized in the form of the type 
of scattering equations developed in Refs. 5. Equations 
(4.16) constitute an alternative to the RM integral equations 
proposed in Ref. 4. Both sets of equations possess distinctive 
features; however, Eqs. (4.16) have two properties which are 
worthy of special note. First, they are minimally coupled 
among only the two-cluster partitions relevant to the RM 
and second they possess a more or less conventional inhomo
geneous term structure. 

The results of Ref. 4 concerning the RM equations 
which do not depend the choice of a particular channel cou
pling scheme [cf. (4.10)] carryover without substantial 
modification to the present analysis. We have especially in 
mind the proof in Ref. 4 of the discontinuity relations satis
fied by the RM transition operators T~.t )(A ) and the resul
tant restricted unitarity relations. This can also be estab
lished for the theory defined by Eqs. (4.12)-(4.16). In this 
proof, which is outlined in Appendix C, Eqs. (4.14) are need
ed to define T~.t )(A ) when the partitions a and b are not 
both contained in !3?1 (A ). In order to do this, we identify 9 in 
(4.14) with, e.g., the projector on the entire set.Pt, while still 
retaining properties (4.15) and (4.17) on !3?1 (A ). This sort of 
procedure is a characteristic of unitary proofs for PPA equa
tions, II and it is a consequence of the minimally coupled 
nature of (4. 16). This again emphasizes one of the principal 
attributes of minimally coupled equations, namely that the 
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remaining operators T~,t )(A ) can be calculated by what 
amount to quadrature rules in terms of the operators 
T~fl)(A ), with a,/3E!3?1(A ). 

We conclude that Eqs. (4.14)-(4.16) define a unitary 
theory with respect to the set of transition amplitudes which 
are appropriate to the RM A. The precise nature of these RM 
unitarity relations and the consequent RM optical theorem 
are elaborated upon more fully in Ref. 4 and in Appendix C, 
We remark that these unitarity relations further support the 
identification of the operators T~.t )(A ) with transition oper
ators of the truncated theory. 

Finally, we note that for practical calculations involv
ing reactions initiated from the two-cluster state l<Pa(va» 
the inhomogeneous term in (4.16) can be simplified by the 
following modification of the Lippmann identity: 

GA (A )Ga(A )-II<Pa(va» = DA,a l<Pa(va», (4.24) 

Equation (4.24) is interpreted as a half-on-shell equation 
which is valid for A,aE.Pt only. In this connection we note 
that Gp(A ) = Z-I if{:1r/..Pt. However, as pointed out in Ref. 12, 
Eq. (4.24) must be used with care in the inhomogeneous term 
of scattering integral equations of the generic form 

T=B+KT. (4.25) 

The solution of (4.25) can be written as 
N-I 

T= L (KY'B + (1 - Ktl(K)NB, (4.26) 
p~O 

where N~O is an integer. In the case of (4.16) we have, using 
a matrix notation restricted to the set !3?1 (A ), 

(KYy "" _ "" "" 
= V(A)[ W(A)G (A )V(A »)PW(A){ G (A )YG (A til. 

(4.27) 

The central question l2 regarding the applicability of (4.24) 
when (4.27) operates half-on-shell on l<Pa(va» is whether 
there are terms to the left of the curly brackets in (4.27) 
which in combination with Gp(A) can generate an a-con
nected pole singularity which cancels the vanishing of 
Gp(A )Ga(A tll<Pa(va» when{:1 =fa. For finitep such terms 
could only arise from the Green functions which appear only 
in the combinations G A (A ) V A (A ). The a-connected parts of 
operators of the form (fJ =fa) 

GA(A )VA(A ) ... G,,(A ) V "(A )Gp(A), 

consist of a sum of products of the b-connected parts of G (A ) 
with bCa but b =fa and a finite number of potential terms 
[V(A )]co c~a. Such products lack the infinite number of 
interaction terms contained in a but not in any of the b 's 
needed to generate the required singularity. 12 For N large 
enough so that (K) N is connected there is no further chance 
for cancellation when (4.26) operates on the states l<Pa(va)} 
and we conclude by the results of Ref. 12 that the use of the 
Lippmann identity in connection with (4.16), and the usual 
BKLT equations5 in particular, is legitimate. 

v. EMBEDDING EQUATIONS 

The statement of an approximation procedure is com
plete only if it is known how the approximate quantities 
(T~,t )(A» are related to their exact counterparts (T~.t ». 
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This relationship is useful, however, only if it suggests a 
means of systematically improving the approximation. Both 
of these attributes are realized in the form of a connected
kernel integral equation for T~.t) in terms of the RM transi
tion operators and the part H (A ') of the total Hamiltonian 
not included in H (A ): 

H (A ')=H - H (A ). (5.1) 

Such an integral equation is termed an imbedding equation. 
In Ref. 4 it is shown that 

(rPa (va)1 T~.t )lrPb (Vb» 

(rPa(va)IT~.t>(A )lrPb(Vb» 
/'0. 

+ (rPa(Va)IGa(A )-IG(A )TG(A )Gb(A t1IrPb(Vb», 
(5.2) 

where Tis an operator which satisfies the connected-kernel 
integral equation 
/'0. /'0. 

T = zH (A ')G (A ') + H (A ')G (A ')H (A )G (A )T, (5.3) 

and G (A ') [z - H (A ')]-1. Equation (5.2) is essentially a 
two-potential-type connection between T~.t) and T~.t )(A ). 
It represents an extreme form of an imbedding relationship 
in the sense that the integral equation (5.3) does not involve 
T~.t )(A ) except implicitly through G (A ). 

We consider next an alternative imbedding equation 
similar to that developed in Ref. 6. We observe that [cf. Eq. 
(4.12)] 

9 2(A )T<+)(A) = A (A )r(A)G (A )YG (A tl, (5.4) 

where 

A (A) = 9 2(Ao) + r(A )G(A)A (A), 

r(A) = 9 2(A )V(A )W(A). 

(5.5) 

(5.6) 

Here, W(A) = 9 2(A )W(A)9 iA) is a matrix with 
elements Wa •f3 (A) = Wa •f3 (A ) fora,f3Eqj (A ) and is zero oth
erwise with Wa .f3 (A ) defined by (4.17)-(4.18) over the N 2(A ) 
elements of qj(A ). It is more convenient to work with A (A ) 
rather than T'+)(A) because of the simpler inhomogeneous 
term. In the limiting case A = Ao we have 

(5.7) 

where we have set A = A (Ao). 
A (A) differs from 9 2(Ao) only on the set qj(A ). Thus 

Eq. (5.5) is minimally coupled on qj(A). It is important to 
note that given A (A) the transition operators T~~)(A ) for 
a,{3Eqj(A ) are determined via (5.4). The remaining transi
tion operators T~.t )(A ), with a,bEd, are then obtained us
ing (4.16) as quadrature rules. This allows us to restrict the 
imbedding problem to the expression of A in terms of A (A ). 
This relationship is easily found from Eqs. (5.5) and (5.7) to 
be the integral equation 

_ ,A. _ ,A. 

A = A (A) + A (A )[r(Ao)G - rCA )G (A )]A. (5.8) 

Equation (5.8) is our alternative imbedding equation 
and bears an even more striking resemblence to the two
potential formula. It is proved in Appendix B that (5.8) pos
sesses a connected-kernel after a finite number of iterations. 

VI. SUMMARY 

The recently proposed approximate reaction theory of 
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Polyzou and Redish4 has been applied to the problem of 
deriving approximate connected-kernel scattering integral 
equations of the partition-permuting-array5 type. We show 
that the condition for obtaining such equations is that all the 
two-cluster partitions which are contained in the set of all 
partitions relevant to a reaction mechanism A are coupled by 
the partition permuting array W (A ). This is proven with the 
aid of a lemma which we establish in Appendix A which 
refers to the connectivity of typical operator products occur
ring in PP A theories. 

The approximate PPA equations which we derive have 
two advantages over the approximate but differently coup
led equations found in Ref. 4. First, they couple together 
only two-cluster-partition-Iabeled channels and, second, the 
inhomogeneous terms of these equations have the usual 
(Born) structure. 

We also obtain two forms of imbedding equation. These 
are equations which imbed the approximation in the exact 
theory and which can also be used to generate more refined 
approximations as well. One of these forms is the connected
kernel imbedding equation of Ref. 4 while the other is similar 
to the equation derived in Ref. 6. In the latter case we dem
onstrate that the imbedding equation has a kernel which be
comes connected after a finite number of iterations. 

In conclusion we make two remarks concerning the ap
plicability of the present work. First, we note that although 
our derivation of the PPA equations relies heavily upon the 
reaction theory of Ref. 4, our discussion is easily modified to 
include and/or develop other approximate reaction theories 
such as that contained in Ref. 6. Second, it is not yet clear 
whether any of the approximate connected-kernel equations 
developed here and in Ref. 4 and 6 are optimal from the point 
of view of practical calculation of nuclear reactions. The de
termination of the practical calculational characteristics of 
such approximate reaction theories is one of the most press
ing problems in many-particle scattering theory at the pre
sent time. 
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APPENDIX A 
. • 5613 d' We generahze some prevIous arguments .. regar 109 

the connectedness of the products of the types of operators 
which appear in PPA theories. These results are used in the 
text. 

For a fixed partition b, let qj (b) represent the set of all 
two-cluster partitions a;;2 b. Then 

Lemma 1: If d q; a for all aEqj (b ), then dub = 1. 
Proof Assume that dub =1= 1. Then there is at least one 

two-cluster partition {3 such that dub c;;.{3. Thus d c;;.{3 and 
{3Eqj (b ) which is a contradiction and establishes the lemma. 

Now let a be a two-cluster partition and call 

O'a-I Aa.a [O'a]a(al' (AI) 
a 

where [O'a]a(a) is an a-connected operator with a;;2a. Evi
dently a product of operators of this type, 
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(ya ... (j'Y = ~ x ... .1 [(j'U]_( ) ••. [(j'Y]a;n)' (A2) L,. a,a y,g a a 6\.5 

a •...• g 

is a sum of (au ... ug)-connected operators. Clearly 
(au ... ug)t;;,a, ... ,y. Thus, it follows that: 

Lemma 2: If [B]b is a b-connected operator and the 
operators (j'u are defined as in (AI), then the product 
(j'a ... (j'Y[B]b of operators (in any order) is connected if 
a, ... ,y includes an enumeration of all the two-cluster parti-
tions in flJ(b). 

APPENDIXB 

We prove here that the imbedding equation (5.8) has a 
connected kernel after a finite number of iterations. In Eq. 
(5.8) all operators are defined on the set of all two-cluster 
partitions flJ(Ao)' For this reason, all matrix equations in 
this Appendix are to be regarded as defined on the set 
flJ(Ao)· 

First, we consider the appropriate form (5.5) which 
after N 2(A )=n iterations becomes by the arguments of Sec. 
IV, 

n-l _ _ """ 

A (A) = 9 z{Ao) + L [V(A )W(A)G (A )]k + Ac(A), 
k~ 1 

(Bl) 

where A (A) is a fully-connected operator and we recall that 
W (A ) i; the coupling array with elements Wa,(,(A ) 
= Wu,p(A ) for a,/3EflJ (A ). Then we see that the kernel, K, of 

Eq. (5.S) can be written in the form 

(B2) 

where the fully connected part Kc is proportional to Ac (A ). 
The remainder, K disc

, is not necessarily connected and has 
the structure 

Kdisc = A disc(A )~(A), (B3) 

where A diSC(A ) is the disconnected part of A (A) and 
[W= W(Ao)] 

~(A) U(Ao)W - iJ(A )W(A). (B4) 

We have used a matrix version of the notation introduced in 
(4.21). Specifically, we have [U(Ao)]p.u = UP(Ao)hp,u and 
[iJ(A )]P.u = iJP(A )hp.u with iJP(A) given by (4.21) but 
with WP,).({3)(A ) replaced by Wp.). ({3) (A ). We also use the no
tat ion UkP(A) = UP(Ao) - iJP(A). We observe that 
U(A )W(A) is nonzero only on flJ(A) while U(Ao)Wis 
nonzero on the set of all two-cluster partitions. 

Let us consider an enumeration of all the two-cluster 
partitions in flJ(Ao), namely, a1, ... ,an ,an + 1 , ... ,aN" such 
that the first n partitions are contained in flJ(A). We choose 
[cf. (4.17), (4.18)] 

W(A)u .. p =h&:,.,(A),P' i<,n, 

where 

(li+l(A)=ai + I 6;,n +a1hj,n' 

and 

W(A )Ui,/J = 0, i>n. 

Also, we take 
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(B5a) 

(B5b) 

(B5c) 

W(Ao)ui,/J = W(A )ui./J' i < n, 

= h&:i+l,/J' t;;'n, 

where 

Then 

(B6a) 

(B6b) 

Lemma 1: ! ~ (A )N2 I Ui,/J is either fully connected or 
zero. 

Proof If i < n the product develops a string of operators 
from UkUi to Uk u" ',But UkU"(A ) = Uka"(Ao) - UU"(A ). So 
the product is really the sum of two strings, one which con

tinues out to U a
,. and then back to Uk u

• 'and enumerates 
the N z partitions of flJ(Ao), and one which goes back to U a, 
and up through the cycle again but enumerates the n parti
tions of flJ (A) plus Nz - n more factors one of which can be 

taken to be iJu"(A ). The proofthen follows using Lemma 2 of 
Appendix A. For the first string of terms the relevant [B h 
operator in Lemma 2 has b = ° while for the second the 
argument used in connection with Eqs. (4.23) is appropriate. 
The product [~(A )N, ]a,./J is zero if f3 is not consistent with 
the evolution of either string. The proof for i>n involves only 
a cyclic permutation of the preceding argument. 

Now 
n-l _ _ 

A disc(A) = 1+ L [U(A )W(A )]k. 
k~l 

Thus 
_ A 

Kdisc = Uk (A ) + U(A), 

where 
'" n-l _ _ _ 

U(A) = L U U(A )W(A )]k I Uk(A). 
k~l 

We note that 

[ U (A ) ] Ui'P = 0, for i> n, 

and so 

{(KdiSC)N2Ia;.fJ = H ~(A )]N2 la,./J' for i> n. 

Ifi<,n then 

(B7) 

(BS) 

(B9) 

(BlO) 

(Bll) 

{(KdiSC)N'Jai,p = {[~(A)]N'lui'p + RU,./3' (BI2) 

where RUi ./3 is a sum of products of p U(A )'S and q~(A )'s, 
where N2>p> 1 and N2 - 1 >q>O. Each of these products 
contains an enumeration of all the partitions in flJ (A ) and 

A 

each contains at least one term U (A ) of connectivity b =/; 0. 
Thus by Lemma 2 of Appendix A and Lemma 1 we have: 

Lemma 2 [(K disc)N1
] Ui./3 is either fully connected or 

zero. From (B2) and the preceding lemma we see that the 
kernel of the imbedding equation (5.7) becomes connected 
after N z iterations. These results are similar to those of Ref. 
6. 

APPENDIXC 

We consider some ofthe pertinent aspects ofthe trun
cated unitarity relations satisfied by the model transition op
erators T~.t )(A,z). These operators are solutions of Eqs. 
(4.16) when a and b are restricted to the set of two-cluster 
partitions flJ (A ); the extension to arbitrary partitions in .Jiif 0 
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is defined by Eqs. (4.12)-(4.15). It will be necessary for us to 
indicate the parametric energy z explicitly at times; we use 
the notation T~,t )(A, ± ) to represent the limiting cases 
where z = E ± iO, 

In Ref. 4 it is shown in detail and with careful attention 
to the singularity structure of T~,t )(A, ± ) that the model 
transition operators which are defined by (4.9) satisfy a trun
cated unitarity relation which is appropriate to the reaction 
mechanism A. In particular, the unitarity sum is of the form 

- 21Ti L T~,d )(A, +) 8[E - HAA)] 
de.r:/ 

(Cl) 

and involves only those channels within the RM A. We re
mark that a,bEd 0 in general although only the cases when 
a,bEd are of actual interest. 

A special choice for rCA ) is employed in Ref. 4 within 
the integral equations (4. 12)for T<+)(A, ±). These particular 
integral equations are used for some aspects of the proof of 
the unitarity relations. This should not obscure the fact that 
the results of Ref. 4 apply to any set of operators which are 
given by (4.9). Thus, we can exploit all ofthe results of Ref. 4 
in regard to unitarity in connection with any set of operators 
defined by Eqs. (4.12), provided the solutions of these equa
tions are unique, which we suppose is ensured by the con
nected-kernel property, because Eqs. (4.12) follow from 
(4.9). The formal recovery of (4.9) from (4.12) is not obvious 
but follows with the help of a Green function matrix ~ (A ) 
which is defined by 

A A 

~(A) = G(A) + G(A )r(A )~(A) 
A A 

= G (A) + ~(A )r(A)G (a). 

Then 

(C2a) 
(C2b) 

(C3) 

The matrices involved in Eqs. (C2), (C3) are defined with 
respect to partition indices over the entire set do. Ifwe mul
tiply (C2b) on the left by G (A )-IYG (A) we obtain2 
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~(A)Y = G(A)Y = YG(A), (C4) 

where we recall that G (A ) has no matrix structure. Combin
ing (C3) and (C4) we obtain 

T<+)(A) = V(A )G(A )YG(A tl, (C5) 

from which (4.9) follows if we use (4.8). 
Equations (4.12)-(4.18) define a set ofPPA integral 

equations for the operators T~.t )(A ) for all a,bEd o' These 
integral equations have kernels which become connected 
after a finite number ofiterations and so we presume that this 
implies uniqueness. The solutions of these equations are giv
en by (4.9) and therefore they satisfy the unitarity relations 
derived in Ref. 4. 
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A multigroup criticality condition for a space-independent multiplying 
assembly via the Chapman-Kolmogorov equation 
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We consider the multigroup time-dependent probability distribution of neutrons in a space
independent, source-free multiplying assembly. The first-order partial differential equation for 
the probability generating function can be derived from the forward Chapman-Kolmogorov 
equations of the stochastic process, and solved-in the principle-by the method of 
characteristics. It is well known that the asymptotic extinction probability is related to the 
singular point of the system of ch.aracteristic equations. An analysis of the location of this point in 
the hyperspace of dummy variables associated with neutrons of various velocity groups leads to a 
multigroup criticality condition for the assembly. 

1. INTRODUCTION 

Space-independent stochastic models of nuclear reac
tors have been used in the past by many authors 1-8 to de
scribe the probability distribution of neutrons, and delayed
neutrons precursors, and/or of various moments thereof. 
These models mainly served the purpose of investigating the 
velocity-independent reactor kinetics in the presence of a 
weak source. The usual procedure was to set up the Chap
man-Kolmogorov equations of the corresponding stochas
tic process, to construct the partial differential equation for 
the probability generating function which can be solved-at 
least in principle-by the method of characteristic trajector
ies. Knowledge of the probability generating function en
ables one to obtain through successive differentiation the 
complete probability distribution and the moments. This, 
however, can be done explicitly only in a rather limited num
ber of simple cases9

-
11 (e.g., one-velocity, binary fission). 

Bell6 has shown how one can derive the asymptotic proper
ties of the distribution by investigating the singular points of 
the system of first-order differential equations of the charac
teristic trajectories; the complete solution is not needed for 
this purpose. 

In this note we derive the stochastic equations for the 
probability distribution as a function of time in a space-inde
pendent (point) multiplying assembly with time-indepen
dent, velocity-dependent cross sections. This set of equations 
to our knowledge, has not been previously presented in the 
literature. The main result of this work is a criticality condi
tion for such a multiplying system, based on an analysis of 
the singular points of the system of characteristic equations. 
The analysis was partly inspired by Bell's work. 

2. BASIC EQUATIONS 

Our basic equations are standard Chapman-Kolmo
gorov forward equations for the set of probabilities 
p(n;t) = p(nl , ... ,ng, ... ,nG ;t ) offindingattime tin the system 
n l neutrons in the velocity group 1, ... ,nG neutrons in group 
G, given that a set of initial conditions have been specified at 
t = O. As we shall assume a source-free assembly, at least one 
neutron of some kind must be present at t = O. The neutrons 

can undergo down-scattering (slowing down) from group g 
to group g' described by a triangular matrix of normalized 
scattering cross sections Agg, , g = 1,2, ... ,G, g' = g, ... ,G, 
such that A ~ = ~~ ~ g A gg' ; they can be captured or leak 
away from the medium, the normalized cross section for 
group g being A ~ ; finally, they may induce fission with a 
normalized cross section of A { . The cross sections satisfy: 
A ~ + A ~ + A { = 1, for every g. Let 7 g be the mean lifetime 
of a neutron in group g. Let cj be the probability thatj neu
trons of any velocity are produced in a fission event. We shall 
assume for simplicity that the distribution cj is independent 
of the velocity of the neutron which has induced the fission 
event. We have the normalization ~f ~ 0 cj = 1, where usual
ly J = 5. The fission spectrum is specified by the numbers rtg , 

giving the probability of a fission neutron being born in 
group g. They satisfy ~~ ~ I rt g = 1. It will be sometimes con
venient to use the vector notation 1] = (rtl , ... ,rtd. Let 
j = (jl ,j2,· .. ,jG) be a G-dimensional vector whose compo
nents are natural numbers or zero, and let 
o(j) = jl + ... + jG denote the sum of the components. De
note by wj(j) the probability that from amongj neutrons 
born in a fission event,jl are born into group 1, ... ,jG are born 
into group G. It is easy to see that, 

x (j - jl --. ... - jG - 2) rt~; , 
~ la-I 

and it satisfies the normalization condition 

I wj(j) = (rtl + ... + rtG)j = 1, 
o{j) ~j 

(1) 

(2) 

where the summation is taken over all possible partitions of 
the integerjinto G integer terms jg such that O<'jg <.j, rep
etitions being allowed. 

The differential equation for p(n ;t) is obtained by ex
pressingp(n ;t + dt )in termsofp(n ;t ) through enumeration 
of all the possible events that can occur during the interval 
dt. Neglecting terms of order (dt)2 and higher, dividing by 
dt, and passing to the limit dt-o, we find: 
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dp(n ;t) 

dt 

G n 
= - I ....!..p(n ;t) 

g ~ I 'Tg 

G n + 1 + I -g-- A ~ p(n + 6g ;t) 
g ~ I 'Tg 

+ f f ng + 1 - Dgg, 

g~lg'~g 'Tg 

XA gg, p(n + 6g - 6g' ;t) 

+ f ± I ng + 1 - jg 

g~lj~Oo(j)~j 'Tg 

xA { Cj w/j) p(n + 6g - j ;t ), (3) 

where Dgg, is the Kronecker's delta and 6g = (0,0, ... ,1, ... ,0) is 
a vector with all zero components, except for a one in the gth 
position. There is one Eq. (3) for every conceivable vector n. 

The first term on the RHS in Eq. (3) is related to the 
event: "Nothing happens during interval dt;" the second 
term accounts for capture and leakage; the third term ac
counts for transfer among velocity groups; finally, the fourth 
term accounts for fission events. 

We now introduce the probability generating function 
F( x;t) where x = (XI , •.. ,xd: 

F(x;t)= f ... f x7' ... x::p(n;t). (4) 
n l =0 11(;=0 

The normalization condition of the distribution p(n ;t) is 
equivalent to 

F(l;t) = 1. (5) 

It follows that the series (4) converge uniformly in the hyper
cube -1 < X I ,x2 , ... ,xG < 1. The probabilities p(n;t ) are given 
in the usual way: 

1 (an,+ ... +nGF) 
p(n;t) = 

n l ! ••• nG ! axn' ... ax
G
nG 

XI x=o 

In particular, the extinction probability is 

p(O;t) = F (O;t ). 

(6) 

(7) 

Multiplying Eq. (3) by x7'···x':;; and summing over nl , ... ,nG 
from 0 to 00, we find that F ( x;t ) satisfies the equation 

aF _ f Hg(x) aF (8) 
-at - g = I ----;;- aX

g 
, 

where 
G 

H/x) = - Xg + A ~ + L A gg, x g' + A {t/J(x) (9) 
g' =g 

and 
J 

¢(x) = I cj (1"J.x)j. 

j~ 0 

Evidently, t/J(1) = 1, and for any t, 

H g(l) = 0, g = 1,2, ... ,G. 

(10) 

(11) 

F( x;t) is a nondecreasing function of Xg(g = 1, ... ,G), and 
O<F < 1 in the hypercube O<x I '''''XG < 1. In order to solve 
Eq. (8) we shall assume that F is known at time t = 0: 

F( x;O) = f(x)<1. (12) 

If, for example, one neutron of group g is present at time 
t = 0, thenf(x) = Xg ; or, if one fission neutron is present at 

1898 J. Math. Phys., Vol. 21, No.7, July 1980 

t = 0, thenf(x) = 1"J'x, etc. The functionfmust obviously 
satisfy f(l) = 1. Equation (8) is a first-order partial differen
tial equation, and may be solved by the method of character
istic trajectories. If we define the functions of time Xg (t), 
g = 1, ... ,G, such that 

. _ dXg Hg(x) 
Xg =- = - --, g= 1,2, ... ,G, (13) 

dt 'Tg 

then the system (13) specifies a family oftrajectories in the 
(G + I )-dimensional space of (x;t). The trajectories never 
intersect each other, each one ofthem being specified, say, by 
the point x(O) = ~, whose components <51 ,,,,,SG) are given 
as initial conditions. Along any trajectory the function F 
satisfies the ordinary differential equation dF / dt = 0, and 
hence F (x,t) = const., where the constant is obtained by 
evaluatingf(x) at the point ~<51 , ... ,sd where the particular 
tr~jectory intersects the plane t = O. The quantities Hg are 
eVIdently functions of time, through the intermediate of x. 

3. ANALYSIS OF SINGULAR POINTS 

By Eq. (11). the point x = 1 in the G-dimensional space 
is a singular point of the system (13), and the trajectory 
emerging from this point is a "straight line" parallel to the t
axis. It can be shown that this is a saddle point (see, e.g., Ref. 
12, Chap. II). We show subsequently that there is only one 
other singular point x = Xa for which 

Hg(xo) = 0, g = 1, ... ,G, (14) 

whose components are real, positive numbers, either all less 
than one, or all bigger than one, when the physical system is 
supercritical or subcritical, respectively. Indeed, Let us as
sume that 0 < XOI ,x02 "",XOG < 1. The trajectory emerging 
from Xo is a "straight line" parallel to the t axis. Figure 1 
illustrates the situation for G = 2. The curves HI (x) = 0 and 
H2 (x) = 0 divide the unit square into four regions in which 
dx I / dt and dX2 / dt conserve their signs. The characteristic 
trajectories thus form a divergent bundle around the trajec
tory corresponding to x = XO' Such a point is called an un
stable two-tangent node. After a sufficiently long time, too, 
only those trajectories having emerged in the immediate 
neighborhood ofxo will still be found within the boundaries 
of the unit square. This means that, with the exception of the 
point x = 1, 

\ 

FIG. 1. The curves H, = 0, and Hz = O. The singular point X{l is located in 
the unit square when the system is supercritical. 
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F( x,t> too )"'-'F( xo'O) = f(xo) = const (15) 

throughout the unit square. This argument can be directly 
extended to any G: Just replace the words "unit square" by 
"unit hypercube." Equation (15) shows that only the free 
term p( O,t) of the series (4) survives after too' Thus, the as
ymptotic extinction probability is 

p(O,t> too) = f(Xo), (16) 

and is less than 1 if and only if Xo is within the unit hyper
cube. The asymptotic probability of having a persisting 
chain reaction 1 - p(O,t > too) will then be finite, and this is 
only possible in a supercritical assembly. Due to the mono
tonicity of/ex), the closer Xo is to 1, the larger is the extinc
tion probability. Ifboth singular points coincide Xo = 1, the 
system is just critical. If Xo is outside the unit hypercube, the 
system is subcritical. (A similar argument has been present
ed by Be1l6 for prompt neutrons and delayed neutrons' pre
cursors.) Let us mention that although negative or complex 
roots of the system (4) may exist, no physical meaning can be 
attached to them. 

4. CRITICALITY CONDITION 

In order to analyze the conditions under which Xo lies 
within the unit hypercube it is convenient first to transform 
to a new set of variables Z(ZI ,z2, ... ,zG) defined by: 

ZI =l1'X =1]1 XI +"'1]G x G , 

Zg = - XI + x g , g = 2,3, ... ,G. (17) 

It is also convenient to write the function t/J [Eq. (10)] in the 
form 

J 

t/J(x) = L bj (l1' X - l)j, (18) 
j~ 0 

where the bj are related to the moments of the distribution 
Ck : 

1 J 
bj = - L k(k-l) ... (k-}+ l)ck • 

j1 k~O 
(19) 

In particular bo = 1, and bl _ v is the'familiar average 
number of neutrons born in a fission event. 

Let us write 

t/J(X) = 1 + V(l1'X -1) + <P (x), (20) 

where <p (x) includes the terms of (18) from} = 2 onwards. 
Inverting the system (17), and substituting everything in the 
system HI/, (x) = 0, we find 

( 
I G rl/, - 1)(zl - 1) + A g <p (ZI) + L agg, Zg' = 0, 

g'~2 

g= 1,2, ... ,G, (21) 

where the numbers agg, form a rectangular G X (G - 1) ma
trix, defined by 

agg, = 1]g,(1- A;)+Agg, -8gg" 

g = 1,2, ... ,G g' = 2,3, ... ,G, (22) 

and the quantity 

rg = A; + vA { (23) 

may be called "average number of secondaries per collision 
in group g." Each equation of the system (21) represents a 
(G - I)-dimensional manifold (a hypersurface). A solution 
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of the system is a point common to all hypersurfaces. The 
main advantage of the transformation (17) is that only one 
variable, namely ZI' enters nonlinearly in the equations of 
system (21). 

Let us now fix the value of Z I = Z. This equation repre
sents a hyperplane orthogonal to the Z I axis. Substitute 
Z I = Z into (21). Each ofthe resulting equations represents a 
(G - 2)-dimensional manifold (a linear hypercurve) lying 
on the hyperplane Z I = Z: 

G 

(rg -1)(Z -1) + A { <p (Z) + L agg, Zg' = 0, 
g' ~ 2 

g= 1, ... ,G. (24) 

Let us introduce the following notation: 

hi a l2 a lG 

h2 a22 a2G 

DG[h] = (25) 

is the determinant of a square G X G matrix formed by bor
dering the rectangular matrix agg, with a vector column h. 
The necessary condition that the linear equations have a 
common solution is then 

or 

DG [(I' - 1)(Z - 1) + AI <p (Z)] = 0, 

P(Z)=(Z-I)DG [1'-1] + <p(Z)DG [AI] =0, 
(26) 

where P (Z) is a polynomial of degree J in Z. We have 

P(1)=O, (27) 

P(O) = DG [Ae + CO AI] , 

P'(I)=DG [1'-1], 

P'(O) = -DG [N+(I-c l )N], 

P "(Z) = <p "(Z) DG [AI] . 

Clearly, <p "(Z»O, for Z;;;.O. 

(28) 

(29) 

(30) 

(31) 

In order to examine the properties of the determinant 
DG , it will be convenient to extend the array agg, so as to 
include agl , g = 1,2, ... ,G. The extended array now forms a 
square matrix of order G. The following relations are easily 
verified: 

G 

L agg, = ° (all g), (32) 
g' ~ I 

agg, > ° (all g'=I=g), (33) 

agg <0 [follows from (32), (33)] . (34) 

These properties allow us to establish an important 
result: 

(- I)G- I DG [h] >0 (35) 

as long as h is a column vector of nonnegative numbers (a 
sufficient condition). The proof of (35) is given in the 
Appendix. 

Denoting P (Z) = ( - I)G - I P (Z), and using (35), it is 
seen that P (0) > 0, P '(0) < 0, and P" (Z) > ° for Z;;;.O. It fol-
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lows that the polynomial P(Z) has, in addition to Z = 1, a 
single positive root Z = Zo which is located as follows: 

o <zo.;;;l, iff P'(l)=(-I)G-1DG [y-11>O,(36) 

zo>l, iff P'(I)=(-I)G-1DG [y-11<O. (37) 

Let us now assume that 0 < Zo .;;; 1. The function !{l in Eq. (9) is 
then 

J 

!{l = I Cj Z6,;;;1. 
j=O 

Ifwe examine the equations of the system (14) Hg(x.q) 
= 0 in succession starting with g = G, we find: For g = G: 

xOG(l-AGa> =A ~ +A {;!{l, 

or since A GG = A ~ = 1 - A ~ - A {;, we have 

O<XOG = (A ~ +A {; !{l)/(A ~ +A (;).;;;1. (38) 

Now, suppose that 0 < XOG ,XOG _ 1 ,···,xOg + 2 ,xOg + 1 .;;; 1. 
Then 

G 

xog(1 - Agg) = I xg,Agg, + A; + A {!{l. 
,,'=g+1 

But 

whence 

~~ = g+ 1 xg' A gg, + A; + A { !{l o < XOg = .;;; 1. (39) 
l:~=g+1 A gg, +A~ +A{ 

It is thus proved by complete backward induction that all XOg 
satisfy 0 < XOg .;;; I, i.e., Xo lies inside the unit hypercube, a 
necessary condition for this being 0 < Zo .;;; 1. It can be shown 
in exactly the same way that all XOg > 1, provided that Zo > I, 
and no singular points exist such that some ofthexog are less 
than one, and the others are larger than one. The inequality 
(36) can thus be regarded as a criticality condition for the 
physical system under consideration. 
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APPENDIX 

Let A be the G X G matrix with elements agg, defined by 
(22), including g' = I: 

A= (AI) 

aGI aG2 aGG 
Let A rr be the principal minor of order G - 1 corresponding 
to the diagonal element arr' All principalIl minors of order 
G - 1 are strictly diagonally dominant: 

G 

iagg i > L iagg' I, g = 1, ... ,r - 1,r + 1, ... ,G, 
g' = 1 

g'=fog, g'=for 
(A2) 
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a result which follows directly from Eqs. (32) and (33). 
Lemma I: The sign of all principal cofactors of A is 

( _1)G-I. 

Proof From relation (A2) it follows that all principal 
minors of order G - 1 are nonsingular by Theorem 1.8 of 
Ref. 14. The corresponding determinants (principal cofac
tors) are clearly nonzero. Moreover, let us continuously alter 
all off-diagonal elements of a principal minor of order G - 1 
until they vanish. The minor remains strictly diagonally 
dominant, and its determinant will not change sign, for it 
never vanishes in the process. The sign of any principal co
factor therefore will be that of the product of its diagonal 
elements, i.e., ( - I)G - I. 

Lemma 2: All cofactors of A corresponding to the ele
ments of a row, are equal. 

Proof The determinant of A vanishes because of Eq. 
(32). Let us expand the determinant of A in terms of the 
elements of row g. Then 

(A3) 

HereAgr denotes the cofactor ofthe element agr . Add € to the 
element agr , and subtract € from the element ags ' Since rela
tion (32) still holds for all rows after this alteration, we have 

agl Agi + ... + (agr + €)Agr + ... 
+ (ags - €)Ags + ... + agG AgG = O. (A4) 

Subtracting Eq. (A4) from Eq. (A3), we find thatAgr = Ags' 
Hence all cofactors of a row g are equal. 

Theorem: LetA be the G X G matrix ofEq. (AI), whose 
elements agg, satisfy the relations (32) and (33). Then all 
cofactors (principal or not) have the same sign ( - I)G - I. 

Proof By Lemma 2, all cofactors of row g are equal to 
Agg . In particular, they all have the sign ( - I)G- I. Combin
ing this result with Lemma I concludes the proof of the 
theorem. 

In order to establish the result ofEq. (35) we replace in 
A the first column of elements agl , g = 1, ... ,G, by a column 
vector h(h l , ... ,hG) whose elements are all nonnegative, and 
expand the corresponding determinant in terms of the ele
ments of the first column. We then have 

sign(h l All + h2 A21 + ... + hG A G1 ) = (- I)G-I 
(AS) 

or 
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Shift-operator techniques for the classification of multi pole-phonon states. I. 
Properties of shift operators in the R(S) group 

G. Vanden Berghe and H. E. De Meyer a) 

Seminarie voor Wiskundige Natuurkunde, R. u.G., Krijgslaan 271-S9, B-9000 Gent, Belgium. 

(Received 10 October 1979; accepted for publication 28 December 1979) 

With a view to obtaining an orthogonal solution to the state labeling problem of the nuclear 
quadrupole-phonon states, independent operators which shift the eigenvalues of the R(3) Casimir 
operator L 2 are constructed. Expressions which connect quadratic products of these shift 
operators with R(5) invariants are given. 

1. INTRODUCTION 

In a set of papers 1.2 shift operators were constructed out 
of the enveloping algebra of the generators Ii (i = 0, ± ) of 
R(3) and the components T (j,/-l), /-l = - j, ... ,j of an arbi
trary (2j + 1) dimensional tensor representation of R(3). 
The commutators of the T (j,/-l) with the generators 10 , I ± of 
R(3) are supposed to be of the standard form: 

[I ± ,T(j,/-l)] = [(j +/-l)(j ±/-l +1) ] 1/2T(j,/-l ± 1), (1.1) 

[/o,T(j,/-l)] = /-IT(j,/-l), (1.2) 

where the positive real value of the square root has been 
taken into account. The constructed shift operators, denoted 
by 07, k = - j, ... ,j, change the I value, where I (I + 1) is the 
eigenvalue of the R(3) Casimir operator L 2, by k, without 
altering the eigenvalue of 10 , A general analysis of the opera
tors 07 for arbitrary j values has been given by Hughes and 
Yadegar. 2 They are generally defined as follows2

: 

07= Vo(l,m)Qo + I [r:: (/,m)Q + I' 
I'~I 

+ ( -1) j + kr:: (I, - m)Q _ I' ], 

where for /-l = O, ... ,j and k>O 

r:: (I,m) 

(1.3) 

= (_I)H31- m{(j + k)!(j - k)!(21 + j + k + I)! 

and 

X (I - m - /-l )!(I + m + k )!(I - m + k )!/ 
(2J)!(2/- j + k )!(I + m + /-l)!((l- m)!)2}-1/2 

X (~ -/-ll-m I:k) (1.4) 

Q ±I' = T(j, +/-l)/I'±, /-l>0. (1.5) 

On the other hand the expression for 0 1- k (k>O) follows 
also from Eq. (1.3) due to the relation 

2. EXPLICIT FORMS FOR THE SHIFT OPERATORS 

o I- k 
= 0"-(1+1)' (1.6) 

The symbol in the large parentheses in Eq. (1.4) represents a 
Wigner 3-j symbol. 

In the present paper we apply Hughes' general theory to 
the R(5) group, whose symmetric representations play an 
important role in the classification of the nuclear quadru
pole-phonon states. The group generators are defined in 
terms of the creation (b 2;) and annihilation [( -I) I'b2 _I' ] 

operators of these phonon states by Weber et al.3 Here we 
shall be concerned with a little different form for these gener
ators, such that they fulfill the commutation relations (1.1) 
and (1.2); i.e., 

10 = Y'W(b 2+ b2)b, I ± = + 2V5(b t b2)1± I' 

T(j = 3,/-l)=ql' = (b 2+ b2)!, with /-l = - 3, ... ,3. 
(1.7) 

The ql' form a seven-dimensional irreducible tensor repre
sentation with respect to the R(3) subgroup ofR(5), generat
ed by 10 and I ± which are defined by (1.7). 

The R(5) group possesses two Casimir operators, re
spectively of second- and fourth-order in the generators. The 
second-order one provides us with the seniority quantum 
number. For the symmetric irreducible representations of 
interest the fourth-order invariant is not linearly indepen
dent of the second-order one and by this of no use for the 
labeling of the degenerated I states.4 In a previous pape~ the 
authors have deduced the general form of the fourth-order 
R(3) scalar operator which can playa fundamental role in 
the orthogonal specification of the quadrupole-phonon 
states. Moreover they have proved that the O? operator (1.3) 
belongs to that class of operators. The apparatus for obtain
ing its eigenvalues in an analytic way consists of the I-shift 
operators which we now like to study. 

Since in deriving the general expression (1.3) no use was made of the commutation relations of the T(j,/-l) among 
themselves, it is in fact not assumed that the Ii and T (j,/-l) generate a group. Therefore the explicit forms of the shift operators 
will be valid not for the R(5) group only, but for each group having a set of generators forming a seven-dimensional tensor 
representation of R(3). 

a) Aangesteld Navorser bij het Nationaal Fonds voor Wetenschappelijk On
derzoek, Belgium. 
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The explicit forms of the shift operators 0 7 follow immediately from Eqs. (1.3)-(1.6) by introducingj = 3. The analytic 
expressions tabulated by Yutsis et al.6 have been used. The following results were obtained: 

O?= -(2Ns)[3/(/+l)-5/0-1 ]qo/o-(3/5)It2[l(/+l)- 5/0(/0+1)-2 ]q_l/+ 

+ '\16(/0 + 1)q_zlz+ +q_3/3+ + (3/5)I/z[I(/ + 1) -5/0(/0 -1) - 2] q+IL 

+ '\16(/0 -1)q+zlz_ - q+P_ , (2.1) 

0/ 1 = -(2NS)(lz+2/- 5/~)(/-/o+l)(/+/o+l)qo-(l/V15)(/Z-101/0-15/~ -31 

-25/0 -10)(/-/0 + 1)q_I/+ + (2/3)ItZ(/ +3/0 +4)(/ -/0 + lkz [2+ 

+ (/-/0 + l)q_3 /3+ - (IN15)(/Z + 101/0 - 15/~ -31 +25/0 -10)(1 + 10 + l)q+IL 

+ (2/3) 1/2(/ - 3/0 + 4)(1 + 10 + 1 )q+z 12_ + (/ + 10 + 1 )q+3/3_ , (2.2) 

0/ 2 = 2Vs 10(/ + 10 + 2)(1 + 10 + 1)(/-/0 +2)(1-/0 + l)qo 
+ (5/3)1/2(/ + 310 + 3)(/ + 10 + 2)(/-10 + 2)(/-/0 + 1)q_ll+ 

+ (2/V6)(21 + 310 + 6)(/-/0 + 2)(/-/0 + l)q-z 12+ + (/- 10 + 2)(/-/0 + l)q-3 [3+ 

- (5/3)1/2(/- 310 + 3)(/-10 + 2)(1 + 10 + 2)(1 + 10 + l)q+IL 

- (2N6)(21- 3/0 + 6)(1 + 10 + 2)(1 + 10 + l)q+z 12_ - (I + 10 + 2)(1 + 10 + l)q+3/3_ , 

0/ 3 = 2VS(/ + 10 + 3)(1 + 10 + 2)(1 + 10 + 1)(/-/0 + 3)(/ -/0 +2)(1-/0 + l)qo 

+ V15 (/ + 10 + 3)(1 + 10 + 2)(1 - 10 + 3)(1 - 10 + 2)(1 - 10 + l)q_l/+ 

+ V6(/ + 10 + 3)(/- 10 + 3)(/-/0 + 2)(/-/0 + l)q_2 12+ 

+ (I - 10 + 3)(1 - 10 + 2)(1 - 10 + 1 )q-3 13+ 

+ V15(/ + 10 + 3)(1 + 10 + 2)(1 + 10 + 1)(/-/0 + 3)(/-/0 + 2)q+IL 

+ V6(/ + 10 + 3)(1 + 10 + 2)(1 + 10 + 1)(/-/0 + 3)q+1 I~ 

(2.3) 

+ (I + 10 + 3)(1 + 10 + 2)(1 + 10 + l)q+3 13_ , (2.4) 

0 1- k = 0 :+: ZI + I) (k = 1,2,3). (2.5) 

The 0 / k operators are "one-side" operators; they act as shift operators upon states to the right and not upon states to the left. 
They are assumed to act upon eigenvectors of L 2 and 10, which will be denoted by the kets I/,a I,m) where m is the eigenvalue of 
10 and al represents the other labels for their unique specification. Note that O? is invariant under the replacement of I by 
- (l + 1). Therefore O? is an R(3) scalar operator. The internal structure of Ii and q" in terms of the quadrupole-phonon 

creation and annihilation operators [see Eq. (1. 7)] does not playa role in the construction of these shift operators. This means 
that the expressions (2.1)-(2.5) for the shift operators remain valid for every group having amongst its generators a subset of 
generators of the type (1.7). In a later paper, where we plan to study the labeling problem of the octupole-phonon states, this 
specific property will be fully considered. 

3. THE PRODUCT OPERATORS AND THEIR MUTUAL 
RELATIONS 

With the aid of the introduced 0 7 various scalar R(3) 
operators which of course commute with L 2 and 10 can be 
constructed. The ones with which we shall be concerned will 
be of the type 0 I~/k 0 / k. In his study of the SU(3) group 
Hughes l also introduces product operators of the form 
o I~ \ 0 I~ 12 0 I± 2, etc., consisting of three shift operators. In 
the present study it is very complicated and in practice not 
possible to derive expressions for such triple product opera
tors. However, in the following paper it will be clear that 
such forms are not needed for the derivation of the eigenva
lues of O? Because of their scalar character the quadratic 
product operators must be expressible in terms of the other 
available scalar operators, i.e., L 2, 10 , O? and the R(5) sec
ond-order Casimir operator defined by3 

3 

V*= _-(0£2- L (_I)Jtq"q_", (3.1) 
,,~ -3 
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having an eigenvalue of - ~v(v +3). 
The explicit expressions of these product operators in 

terms of the q", I ± ' and 10 generators involve the I and m 
values of the states upon which they act. In order, however to 
considerably simplify their calculation we have restricted 
our considerations to the case when they act on states of zero 
m value. Let us further remark that when the rightest opera
tor in the product works on a I/,al>m = 0) state, it creates a 
state proportional to II + k,b k + I,m = 0), since the 0 / k 

does not affect the m quantum number. This has a conse
quence that the leftest operator also acts upon a m = 0 state. 
Since the study of these product forms is closely related to 
the derivation of the O? eigenvalues, which are independent 
of m, 2 this seemingly drastic condition will not seriously de
tract from the generality of subsequent calculations. The ex
pressions for the product operators are even with the above 
simplification rather tedious to derive. We shall only briefly 
sketch how to construct them, without giving the results, but 
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more attention will be paid to the specific relations which 
mutually yield between them. 

The quadratic product operators 0 I~ kk 0 / k 

(k = -3, -2, ... , +2, +3) consist of terms composed of 
two ql" and six or less Ij operators. In order to reach a one to 
one relation between the before-mentioned scalar operators 
it is clear that all operators should be brought, into a so
called standard form. Therefore in the expressions of the 
product operators the two ql" generators have been shifted in 
each term to the extreme left-hand side by using the commu
tation relations (1.1). Secondly the ql" 's are placed in such a 
way that the absolute value of the Ii index of the one on the 
far left is not smaller than those of the one on the far right. To 
perform that operation explicit use has been made of the 
commutation relations between the several components of 
the q operator. The relations are summarized in the Appen
dix. After these manipulations three distinct kinds of terms 
occur in the expressions of the 0 l~kkO / k scalar operators: 

(i) terms quadratic in the q operators, i.e., 

ql"q)~ 1/3_, with Ilil>lvl and Ii + v =/3 - a; 

(ii) terms linear in the q operators, i.e., 

qlt I ~ 1/3_ , with Ii = /3 - a; 

(iii) terms independent of the q operators, i.e., 

I u+ 1/3_ with a = /3. 
Taking into account that under the adopted condition 
(m = 0), L 2 = 1+'- = U+, the I; factors in these terms can be 
simplifed as follows: 

(a) If a = /3: 
IU+lu_ =la_Ia+ =/(1+1)[1(1+1)-2] ... 

X[/(I + 1) - (a - 1)(a -2)] 

X [1(1 + 1) - a(a - 1)]; 

(b) Ifa#/3: (1)a>/3 
IU+ 1/3_ = la+-/3(1/3+ 1/3_ ), 

I u_ 1/3+ = I a_ - /3(1/3_ 1/3+ ), 

while the terms between rounded brackets are of the type (a). 

(2) a </3 
la+ 1/3_ = (I + /3)(/ + /3 -1)-.-(/ +/3 - a + 1) 

X(/ - /3 + 1)(/- /3 + 2)-··(/ - /3 + a) 1/3_- a, 

I ~ 1/3+ = (I + /3 )(1 + /3 - 1 ) ... (1 + /3 - a + 1) 

X(/- /3 + 1)(/ - /3 +2)···(/ - /3 + a) 1/3+-a. 

Finally one finds the following types of terms in the expres
sions of the product operators 

(i) ql"qyl ~'t +" with Ii + v>O and ql" q) 1"+- y with 
Ii + v<O; 

(ii) ql" 11'- and q _ I" 11"+ with Ii> 0; 
(iii) terms without operators. 

Once the 0 I~ kk 0 / k brought into the standard forms 
discussed it is quite easy to look for relations between them 
and the other scalar operators constructed with a lower 
number of generators. It is rather straightforward to observe 
that in order to achieve a proper identification between the 
several occurring terms, one always needs four of the seven 
product operators. By this it also follows that among the 
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various relations which can be constructed only four inde
pendent ones exist. Since our final aim consists of finding the 
eigenvalues of 0 7 it is obvious to retain in each relation the 
(07)2 term. It is now a matter of practical reasons to choose 
besides the (07)2 term the three other occurring product 
operators. For the construction of the first relation we have 
chosen k = 1,2, and 3, while for the second one the k values 
+1, -1, and -2 have been considered. The following 

relations could finally be constructed: 

5(/ + 3)2(21 + 5f (07)2 

+ V2(/ + 1)(1 + 2)(1 + 3)2(21 + 3)(21 + 5fo 7 

15(1 +3)2(/ +4)(21 +3) 0 -I 0 +1 
- (I + 1)2 I + I 1 

-3 (/+4)(21+5)(2/+9) 0 -20 +2 
(/+1)(1+2)2 1+2 I 

(2/+3)(/ 2+7/+15) 0- 3 0+ 3 

- (/+I)(/+2)ZC/+W 1+3 1 

- 4(1 + 1)2(/ + 2f(1 + 3)2(21 + 3f(21 + 5)2V* 

- (215)1 (/ + 1)2(/ + 2)2(/ + W 
(3.2) 

and 

(/ -1)(21 + 1)(812 -411 +41)(07)2 

- (V2/15)/(1 + 1)(/-1)(21-1)(21 + 1) 

X(4f3 -22/2 +311-33)07 

~(/_----,1 ):...-2~(/_2_-_5_1_+,-:--,9)'-'.(2_1_----,1 )'- 0 I~ \ 0 1+ I 

(I + If 
(/ + 1 )(/ 3 

- 212 - 251 + 41 )(21 - 1) 0 + I 0 - 1 

f2 I-I I 

(I + 1 )(21 + 1 )(2f2 + 21 - 9) 0 + 2 0 - 2 
+ 12(/ _ 1)2 I - 2 I 

+ 4f2(1 + If(l - 1?(2/- 1)2(21 + I)V* 

+ (1/75)12(/ + 1)2(/-1)2(2/-1)2 

X(21 + 1)(8/ 3 -1412 -58/-216). (3.3) 

Using the fact that 0 / k and 0 1- k go over into each other on 
replacing I by - (/ + 1), two other equations can be easily 
derived from (3.2) and (3.3): 

5(1 - 2)2(21 - W( 07f 
- V21 (/ - 1)(/- 2)2(2/-1)(2/- 3)2 07 

- 15(/- 2)2(/- 3)(21 - 1)11 2 0 t\ 0 1- I 

3(/ - 3)(21 - 3)(21 - 7) 0 + 2 0 - 2 

1(/-1)2 1-2 1 

(21 - 1 )(/2 - 51 + 9) 0 + 3 0 - 3 

1(/-l)2(/-2f 1-3 I 

_ 4/2(/- 1 )2(1 - 2)2(21 - 1 )2(21 - 3)2 V * 

- (215)(1 + 1)/2(1-1l(l-2)2 

X (21 - 1 )2(21 - 3)2(/ - 6), (3.4) 

and 

(1+2)(2/+1)(8/ 2+57/+90) (07)2 
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- (V2115)/(1 +1)(1 +2)(21 +3) 

X (21 +1)(4/ 3 +341 2 +871 +90) 07 

(I +2)2(21 +3)(/2 +71 +15) 0 I~\ 0 I-I 
12 

1(21 +3)(/ 3 +51 2 -181-63) + O/~\ 0/1 

(l +1)2 

1 (21 +1)(2/2 +2/-9) 
+ (I +1)2(1 +2)2 0 1;:1 0 1+

2 

_4/2(1 +1)2(1 +2f(21 +3)2(21 +1)V* 

+ (1/75)/2(1 +1)2(1 +2)2(21 +3)2 

X(21 +1)(8/ 3 +38/ 2 -61 +180). (3.5) 

Once more we like to insist on the fact that these four rela
tions are only valid when they are acting to the left upon 
m = 0 states. It is now also possible to derive from (3.2)
(3.5) all other existing relations between the considered sca
lar operators. However, the four mentioned formulas will 
prove to be extremely useful in a following paper where the 
eigenvalues of 0 7 will be determined. 

4. REVIEW OF SOME PROPERTIES OF THE SHIFT AND 
PRODUCT OPERATORS 

Several formulas, concerning the matrix elements of the 
shift operators will prove essential in the following papers. 
Most of them have been derived by Hughes l and will be 
merely stated here. The Ol± k are related by Hermiticity 

(/,Q[Jml(O / k)tll + k,bl + k ,m) 

= 13kl (l,al,mIO I~kk II + k,bl + k,m), 

with2 

13kl = (21 + 1)/(21 + 2k + 1). 

(4.1) 

(4.2) 

The matrix elements of ° I~ kk 0/ k and 0/ kO ,~kk are in
ter-related: 

2: (/,al,mIO/~kkO/kl/,al,m) 
Q, 

= 2: (I + k,bl+komIO / kO I~kk II + k,bl+k,m). 
bl I- It. 

(4.3) 

Two important relationships exist between the matrix ele
ments of 0 I± k and those of 0 l~'/k 0 I± \ i.e., 

(l,al,mIO I~ ~O / klf,al,m) 

= _1_ 2: 1(I+k,bl+k,mI0/kl/,aum)12 
flkl b , I Ie 
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= 13kl 2: I (/,a"mIO I~ ~ II + k,b/+ k,m) 1
2, (4.4) 

hi + k 

and 

(/,al,mIO ,+...kk O 1- kl/,ai'm) 

=13u-k 2: 1(/-k,b,_k,mIO/-kl/,ol,mW 
b, • 

'J.W.B. Hughes, J. Phys. A 6, 48 (1973). 
2J.W.B. Hughes and I. Yadegar, I. Math. Phys. 19,2068 (1978); and refs. 
quoted therein. 

'H.I. Weber, M.G. Huber, and W. Greiner, Z. Phys. 190, 25 (1966). 
4G. Vanden Berghe and H. De Meyer, I. Phys. A (to be published). 
5H. De Meyer and G. Vanden Berghe, J. Math. Phys. 21,486 (1980). 
"A.P. Yutsis. I.B. Levinson, and V.V. Vanagas, Mathematical Apparatus oJ 
the Theory oj Angular Momentum (Israel Program for Scientific Transla
tions, Jerusalem, 1962). 

G. Vanden 8erghe and H.E. De Meyer 1905 



                                                                                                                                    

Shift-operator techniques for the classification of multipole-phonon states. 
II. Eigenvalues of the quadrupole shift operator at 

H. E. De Meyer a) and G. Vanden 8erghe 
Seminarie voor Wiskundige Natuurkunde, R. u.G., Krijgslaan 271-S9, B-9(}()() Gent, Belgium 

(Received 10 October 1979; accepted for publication 28 December 1979) 

By the aid of previously derived relations involving shift operators and their products, a set of 
rules is set up for the determination of eigenvalues of the scalar Hermitian shift operator 0 ~ in the 
space ofR(5) nuclear quadrupole-phonon states. The eigenvalues are listed for all seniority states 
with v< 8. 

I. INTRODUCTION 

In the present paper we shall make use of the shift oper
ators 07 with k = 0, ± 1, ± 2, ± 3 introduced by Hughes 
and Yadegarl and in the preceding paper,2 (to be referred to 
as I), and more precisely of the quadratic relations (I.3.2-
1.3.5) existing between these shift operators and the Casimir 
operator of the R(5) group V·, in order to solve the quadru
pole state labeling problem completely. 

Our major concern is to present a procedure for deriv
ing in a pure analytical way (i.e., without having to take 
recourse in numerical routines) the eigenvalue spectrum of 
the Hermitian scalar operator O~. 

It has been known for a long time3 that the quadrupole
phonon states (spin-2 boson states) correspond to the totally 
symmetric irreducible representations of the U(5) group or 
equally well of the SU(5) group if one discards irrelevant 
phase factors. The SU(5) Casimir operator N which counts 
the number ofphonons in a state delivers a first label for 
classifying the state. Other nontrivial labels can be obtained 
by considering the chain of groups SU(5)::::> R(5)::::> R(3). In
deed, the R(5) Lie algebra contains the quadratic Casimir 
operator V· which is the seniority operator explicitly given 
in I, and which produces the eigenvalue - v(v + 3)/2 
whereby the seniority v denotes the number of phonons 
which do not occur coupled in zero angular momentum 
pairs. The biquadratic R(5) invariant, however, is not inde
pendent of V· for the class of symmetric wavefunctions and 
is therefore useless for classifying purposes. Furthermore, by 
reducing SU(5) states into R(5) representation space no v 
degeneracies occur. Therefore we are left with the reduction 
ofR(5) representations in the representation space ofR(3), 
which is labeled itself by the total angular momentum I and 
its projection m. By the aid of the theory of group characters 
and by the use of symmetric Young tables3 it can be demon
strated that in the latter reduction I degeneracies do occur. 
The actual I multiplicities in the reduction ofR(5) into R(3) 
are listed for 1 .;;;v.;;;9 in Table I. It is precisely these I degener
acies which we intend to raise by means of the scalar opera
tor O?, which in addition to the operators N, V·, L 2, and 10 
then serves as the so-called fifth label generating operator. 

")Aangesteld navorser bij het Nationaal Fonds voor Wetenschappelijk On
derzoek, Belgium. 

Since the operator 0 ~ has been constructed such that its 
eigenvalues are independent of the angular momentum pro
jection m, and also since in the reduction ofR(S) into R(3) m 
degeneracies are absent, it is harmless to set m = ° through
out. As a consequence, it is convenient to restrict our atten
tion at the N = v and zero-m-projection quadrupole-phonon 
states 

jv,I,av,/)=jN = v,v,I,m = a,av,/) , (1.1) 

wherebyav,l denotes the eigenvalue of the O~ operator, or 

07jv,l,av,l) = av,dv,l,av,/) . (1.2) 

If a v state has I multiplicity equal to n for some I value, the 
corresponding eigenvalue equation (1.2) must have n dis
tinct roots. In particular, if the state considered is not I de
generated there is a unique eigenvalue av,I' which we call 
therefore a singular one. Furthermore, we shall consistently 
omit to label the state explicitly by a singular eigenvalue, 
thus writing 

(1.3) 

if j v,1 ) is not I degenerated. 
It has already been noticed that the particular construc

tion of 0 ~ in terms of R(5) generators ensures us that O? 
necessarily commutes with the operators L 2, 10 , N, and V·. 
Although the complete solution of the quadrupole-phonon 
state classification problem is therefore guaranteed in ad
vance, a fact which will be confirmed subsequently, it cannot 
be claimed that it provides us with a unique solution of the 
problem. Indeed, it was already suggested by Weber et aU 
that there should be at least one operator of the form 

Q (k I k2k3k4kS) 

= (2ks + 1)1/2{ [(b'b)k'(b'bt']k'[(b+b)k'(b'b)k.]k'j'O) 

(kl,k2,k3,k4 = 1 or 3), (1.4) 

whereby b + and b are the elementary spin-2 phonon creation 
and annihilation operators respectively, which could serve 
as a fifth label generating operator. That this is indeed the 
case for no less than ten operators of the kind (1.4) (apart 
from trivial symmetries) has been proven very recently by 
the present authors. 4 The proof followed as a by-product in 
the analysis of another label-generating operator, denoted by 
S, of which the particular form in terms of so-called canoni
cal operators5 allowed the numerical calculation of eigenval
ues and the explicit determination of quadrupole-phonon 
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TABLE I. I-multiplicity table for maximum seniority states with v<9. For each v are listed the I n, I denoting the angular momentum and n the multiplicity. 
Blanks refer to non occurring states. 

v = 1 2 
v=2 2 4 
v=3 0 3 4 6 
v=4 2 4 5 6 8 
v=5 2 4 5 6 7 8 
v=6 0 3 4 62 7 8 
v=7 2 4 5 6 7 82 

v=8 2 4 5 6 7 82 

v=9 0 3 4 62 7 8 

eigenstates.6 Although very handsome in practical calcula
tions, the mentioned operators display the common disad
vantage that eigenvalues can only be obtained within a cer
tain degree of accuracy and with reference to a large set of 
interrelated phonon states.4

.
6 It is clear that by taking into 

consideration the operator 0 ~ such troubles must be 
avoided. 

Another solution to the quadrupole classification prob
lem as presented by Chacon et al,7 is based on the property 
that maximum angular momentum projection states can be 
uniquely factorized in a particular set of elementary permis
sible diagrams (epd). Since within this scheme the fifth label 
is associated to the number of zero angular momentum 
coupled triplets of phonons occurring in the state, the ana
lytical determination of its value for a particular state is obvi
ous. Nevertheless, the lack of an operator generating the la
bel, may be regarded as a weak point of the theory. 

The outline of the present paper is the following. In Sec. 
2 we obtain unambiguously the eigenvalues of 0 7 on all 
maximum angular momentum states which from Table I are 
known to be of the form Iv,2v,av•2v )' In Sec. 3 a chain proce
dure is presented for calculating the eigenvalues on the states 
which are not I degenerated, while in Sec. 4 the results of the 
procedure are resumed in a set of generally valid formulas. 
In Sec. 5 we tackle the problem of I degeneracies and at the 
end we list the eigenvalues belonging to the states of the form 
(1. I) for which v<o7. 

Finally, let us mention that the following analysis may 
be considered also as a preliminary exercise for handling on 
the same lines of investigation the octupole-phonon classifi
cation problem too, for which at present no really satisfac
tory solution is known, since to our knowledge the only at
tempt undertaken so far in this direction,8 relies on a utmost 
artificial ordering prescription. 

2. THE MAXIMUM ANGULAR MOMENTUM STATES 

We calculate now in a general way for an arbitrary 
maximum angular momentum state Iv,2v) the singular ei
genvalue au 2v of the scalar shift operator 0 ~v. The singular
ity of all av.~v is easily verified in Table I. 

To this purpose we replace in Eq. (1.3.2) I formally by 
2v. Since 2v is the maximum value which I can attain for a 
given seniority (v = N), the operator products 0 2-;;~ 102;;1, 
o 2-;;~ 2 O 2;;2, and 0 2-;;~ 302;;3, clearly yield zero contribu
tions when acting on a Iv,2v) state. In this way we thus im-
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10 
9 10 12 
9 10 II 12 14 
9 102 11 12 13 14 16 
92 102 II 122 13 14 15 16 18 

mediately obtain from (1.3.2) a first relation containing 
(0 ~v)Z and 0 ~v acting on an arbitrary but fixed I v,2v) state. 
We find after some cancellations that: 

5(0~v)Zlv,2v) + 2Y2(v + 1)(2v + 1)(4v + 3) O~v Iv,v) 

= -.ifv(v + 1)2(2v + 1)2(4v + 3)\2v + 7)lv,2v) 

+8v(v + If(2v + 1)2(4v + 3)2(V + 3)lv,2v). (2.1) 

Solving this quadratic equation two different expressions are 
obtained for (0~v)lv,2v), of which for a given seniority only 
one can be valid for producing the eigenvalue. In order to 
resolve this apparent ambiguity we can exploit the property 
that no states of the form I v,2v - 1) ever exist, as may be 
seen from Table I. Consequently 02;;~ 1 OZ-;;I Iv,2v) is identi
cally zero and therefore equation (1.3.5) with 1 replaced by 
2v immediately produces a second relation involving (0~v)2 
Iv,2v), O~v iv,2v), and Iv,2v) terms with v-dependent coeffi
cients. We find that: 

(16v2 +57 v +45)( 0~Ylv,2v) - (2V2/15)v(2v +1)(4 v +3) 
X (16v3 + 68v2 + 87v + 45) O~v Iv,2v) 

= - 8v3(v + 1)(v +3)(2v + 1)2(4v +3?lv,2v) 
- (16/75)v2(v + 1)(2v + 1)2(4v + 3)2 
X (16v3 + 38vz - 3v + 45)lv,2v) . (2.2) 

Eliminating (0 ~v f I v,2v) from (2.1) and (2.2) it is straight
forward to deduce that: 

O~vlv,2v) = (2V2/5)v(v + 1)(2v + 1)(4v +3)lv,2v), (2.3) 

which on account of the definition (1.2) and the non degener
acy ofthe maximum angular momentum states is equivalent 
to: 

a v2v = (2V2/5)v(v + 1)(2v + 1)(4v + 3). (2.4) 

It is seen from this expression that all eigenvalues a v.2v are 
nonnegative and raise in value with increasing v value. In 
particular ao,o = ° which is in agreement with the observa
tion that since N = v, the state 10,0) necessarily denotes the 
vacuum. 

3_ A CHAIN PROCEDURE FOR CALCULATING 
SINGULAR EIGENVALUES 

We continue in the present section our analysis for the 
states I v,1 ) which are not I degenerated. By careful inspec
tion of the multiplicity Table I, it is readily noticed that none 
of the Eqs. (1.3.2-1.3.5) with I> 2 can give rise to a relation 
containing (07)2Iv,l) and 07Iv,l), and whereby each of the 
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three occurring shift-operator products of the form 
o l~kkO 1- k (k = ± 1, ± 2, ± 3), acting on the Iv,!) state 
gives zero contribution. 

As a demonstration of this statement let us study in 
general the I v,2v - 2) states with v> 2, which are all non de
generated. Since states of the form Iv,2v -1) do not exist 
(see Table I) we can use Eq. (1.3.2) with 1 replaced by 2v - 2, 
to obtain a relation involving (0 ~v -2 )21 v,2v - 2), 0 ~v _ 2 I v, 
2v - 2), O 2-;/ 0 2~==-2 I v,2v -2), and v-dependent constant 
terms. As is the case with any of the other equations (I. 3. 3-
1.3.5) there remains a product of different shift operators 
acting on the Iv,2v -2) state. However, as at this stage we 
know already by (2.3) the result of 0 ~v acting on a maximum 
angular momentum state I v,2v) with the same seniority v, we 
can use Eq. (1.3.3) with 1 replaced by 2v in order to obtain an 
expression for the operator product 0 2~==-2 O 2-;,2 acting on 
the Iv,2v) state, which does not contain other unknowns. 
Moreover, we have to remind that the property (1.4.3) re
duces to 

(v,lIO i~/kO 1+ klv,l) 

= (v,! + k 10/ kO I~kk Iv,! + k) (k = ± 1, ± 2, ± 3), 
(3.1) 

if both I v,l ) and I v,l + k ) are nondegenerated states. There

fore it suffices to multiply the equation for O~v -2 I v,2v - 2) 
at the left with (v,2v - 21 and to multiply the expression for 
02~==-2 0 2-;;2Iv,2v) at the left with (v,2vl to obtain with the 
help of (3.1) a quadratic equation in the expectation value 
(v,2v -210~v_2Iv,2v -2) = a v.2v - 2' Carrying out these 
operations we finally arrive at: 

52a~.2v_2 +2Y25v(2v -1)(4v -1)av,2v_2 
= -265v2(v + 1)(v - 1)(2v - 1)2(4v + 5) 

+2V(2v -1)2(4v - V(v2 +9v + 10). (3.2) 

This equation does not enable us to obtain the eigenvalue 
uniquely; instead we find the following two expressions: 

a
u
.
2u 

-2 = { or (2Y2/~V(2V - 1)(4v
2 

- 5v - 14), (3.3a) 

- (2Y 2/5)v(2v -1)(4v2 
- v -15), (3.3b) 

of which for a determinate v value only one produces the 
correct eigenvalue. Furthermore we cannot claim at the pre
sent stage that by varying seniority it is always the same 
expression that gives the eigenvalue. 

In contrast to the case of maximum angular momentum 
states we do not have the possibility here to construct a sec
ond equation of the form (3.2) which should allow us to 
calculate a unique eigenvalue expression. Indeed, it is easily 
verified that starting with another equation of the type 
(1.3.2-1.3.5) acting on a Iv,2v -2) state than (1.3.3), one 
necessarily arrives at an equation which besides the eigenval
ue a u,2u -2 also contains at least one of the eigenvalues 
a v,2v -2 _ k with k = 1,2, or 3, which are unknown so far. 

For further use it is convenient to introduce a binary 
tree (each vertex having two underlying branches) of which 
the top vertex or root corresponds to the expression (2.4) for 
the a u,2v eigenvalue and whereby the two vertices at one low
er level correspond to one of the expression (3.3) for the 
a v,2v -2 eigenvalue each. 
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Now, the foregoing procedure can be repeated without 
fundamental alterations for obtaining expressions for the 
a v,2v -3 eigenvalues (v> 2) since all the corresponding 
Iv,2v -3) states (v> 2) exist and are nondegenerate. How
ever, the calculations must be repeated independently for 
both possible expressions (3.3). Consequently, we shall end 
up with four expressions for a v,2v -3 eigenvalues. These ex
pressions are then associated to the four vertices of the bina
ry tree at the second lower lying level with respect to the root 
level. Of course, our binary tree ends at the first lower lying 
level if the state Iv,2v - 3) does not exist which only happens 
for v = 2. 

To obtain explicit expressions for a v,2v -3 similar to 
(3.3), one proceeds as follows. Replace in (1.3.2) I formally 
by 2v -3, replace in Eq. (1.3.5) I formally by 2v -2 and 
replace finally in Eq. (1.3.3) I by 2v. In virtue of the property 
(3.1) the terms 0 2-;'~2 0 2~~3 Iv,2v -3) and O 2-;;3 0 2~~3 
I v,2v - 3) can be eliminated from the first equation by use of 
the other equations. The eigenvalue a v,2v which enters the 
resulting equation being uniquely determined by (2.4), one 
obtains for each of the expressions (3.3) for a v,2v -2 entering 
that same equation, a quadratic equation in a v 2v -3 alone. 
This confirms our prior statement concerning the number of 
distinct expressions existing for a v.2v -3 . 

The same reasoning now also applies for determining 
expressions associated to Iv,2v -4) states which exist and 
which are nondegenerated. From Table I it follows that this 
is the case if v> 3. For v = 3 the binary tree ends at the level 
of the four distinct a v,2v -3 values. Ifv > 3 the binary tree can 
be extended with a level of eight vertices corresponding to 
eight expressions for a v,2v -4 . The final step consists in deriv
ing 16 possible expressions for the a v•2v -s eigenvalues of the 
I v,2v -5) states which for v> 4 all exist and are nondegen
erated. For v = 4 the tree ends at the foregoing level. Fur
thermore, since for v> 5, the I v,2v -6) states are all degen
erated we have to stop here our tree generating procedure 
momentarily. The important feature ofthe foregoing mecha
nism is that once a particular eigenvalue, sayav,1 with 
2v -5.:J,;;,2v - 2 is rigorously determined for a fixed senior
ity v, we immediately can read off all the eigenvalues av,I" for 
which I' > I by following in the binary tree the unique chain 
which starts at the vertex corresponding to the exact a v•1 

value and ends at the root which corresponds to the rigorous 
a",2v value. The eigenvalues are generated by replacing in the 
expressions associated to the intermediate vertices of the 
chain, v by its actual value. The only problem remaining is to 
find a method by which the eigenvalue associated to the 
deepest lying level of the binary tree can be rigorously fixed, 

To this aim, let us remark that a variety of expressions 
for calculating a 1>,1 values has been obtained so far by starting 
at the maximum angular momentum states. There is, howev
er, no particular reason, why one should not introduce a 
tree-generating procedure beginning at the lowest angular 
momentum state too. By inspection of Table I it appears that 
in contrast to the maximum angular momentum states, the 
minimum value of the angular momentum is no longer lin
early dependent on the seniority v. Instead, we have to distin
guish states by the divisibility of v with respect to the numer
a13. 
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In particular if v is a triple or v = 3k (k = 1,2, ... ), the 
state with lowest angular momentum is the nondegenerated 
13k,0) state, whereas the 13k,l) and 13k,2) states do not 
exist. The eigenvalue a 3k•0 of the zero momentum state is 
easily determined by taking into consideration the explicit 
form (1.2.1) of the operator O? Since therein 10 may be set 
equal to zero,2 all the remaining terms have at the right-hand 
side at least one operator 1 ± ' which shifts the angular mo
mentum projection m by one unit. Thus, as for 13k,0) states 
this projection is necessarily confined to zero, we immediate
ly deduce that 

a 3k.0 = 0 . (3.4) 

Ifwe now let Eq. (1.3.2) act on 13k,0), and Eq. (1.3.4) on 
13k, 3 ), the first relation so obtained can be used to eliminate 
on account of the property (3.1), the term 0 0+

3 0 3-
3 13k,3) 

from the second equation. Furthermore, a3k.0 being rigor
ously known, the latter equation is immediately transformed 
into a quadratic equation in a 3k.3 • The solutions are found to 
be independent of k (or v); i.e., 

{ 
24'1'2, 

a 3k.3 = or .. /-
-18 V 2 . 

(3.Sa) 

(3.Sb) 

It is very convenient to introduce again a binary tree for 
representing eigenvalue expressions. The root is according 
to (3.4) assigned the zero value of a 3k.0' while the two under
lying vertices contain respectively the expressions (3.Sa) and 
(3.Sb). Moreover, since all 13k,4) states are nondegenerated 
a similar procedure as before can be used, such that the tree is 
extended to include four expressions for a 3k.4' 

Finally, if v = 3k ± 1 (k = 1,2,···) the state with lowest 
angUlar momentum is the 13k ± 1,2) state, and no simple 
argument as the one leading to (3.4) can be invoked. Instead, 
it is possible to obtain with the help ofEq. (1.3.3) whereby I is 
replaced by the numeral 2, and on account of the fact that no 
13k ± 1,3) states exist, a quadratic equation in the unknown 
a 3k ± 1.2' A second quadratic equation cannot be obtained 
from Eq. (1.3.4) since with 1= 2, infinities would arise. We 
thus find the following two solutions for a 3k ± 1.2: 

( 
~V2(5V + 9) 

a,k ± 1.2 = or _ ~V2(Sv + 6) 
(v = 3k ± 1). 

(3.6a) 

(3.6b) 

These expressions can be associated respectively to the two 
vertices of a binary tree, which are the immediate successors 
of, for our purpose, a meaningless root. The derivation of 
four expressions for a 3k ± 1.4' eight expressions for a 3k ± 1.5, 

sixteen expressions for a 3k ± 1.6' and, finally, thirty-two ex
pressions for a 3k ± 1.7' all of which are associated to nonde
generated states (see Table I), then follows the same pattern 
as before. Obviously, for low k values the eigenvalue trees 
must end such that no levels associated to nonexisting states 
are included. 

At this point we have for any fixed v value two eigenval
ue trees at our disposition: one generated from the highest 
angular momentum state and one generated from the lowest 
angular momentum state. There remains now the problem of 
linking the two trees in such a way that in both we can isolate 
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a unique chain up to the root of which the vertices are associ
ated to the rigorous eigenvalues. 

Actually, the linking is most easily performed ifboth 
trees end at a level associated to the same angular momen
tum value, say I. Since the same rigorous eigenvalue a u./ nec
essarily appears at the end level of both trees, the eigenvalue 
chains can be isolated immediately. As an example, let us 
mention the case whereby v = 2. The upper tree ends at the 
expressions (3.3) with v replaced by 2, giving -96v2lS or 
I2v2/S. The lower tree, however, ends at the expressions 
(3.6) with v = 2, giving lI4v2/S or -96V2/S. The link
ing is uniquely performed with a 2•2 = -96v2lS, being 
therefore the true eigenvalue. It is readily verified that with 
this simple procedure the part of Table I, for which [,,;;,S is 
completely covered. 

However, the possibility oflinking the upper and lower 
tree may also be guaranteed ifboth trees end at levels for 
which the respective associated angular momentum values 
do not differ by more than 3 units one from the other. More 
precisely, let us assume that the upper tree ends at I = lup 
and the lower at 1 = low, such that the condition 

p = lup -low.;;;3, 

is fulfilled. Choosing at random an eigenvalue a u.low out of 
the lower tree we can by suitable combination ofEqs. 
(1.3.2)--(1.3.S) obtain an expression for the unknown expec

tation value (v,lowIO I~O 1~:lv,low) in terms of au.low-de
pendent quantities. Similarly, picking up out of the upper 
tree one of the possible a u.lup eigenvalues, we obtain by suit
able combinations of Eqs. (1.3.2)--(1.3.5) an expression for 
(v,lupIO I~:O I;;-:Iv,lup) involving a u.lup dependent quanti
ties only. On account of the property (3.1) both expressions 
thus obtained should have the same numerical value. If this 
is indeed the case we have picked up the correct eigenvalues 
a u.low and a u•lup ' if not the calculation must be repeated for 
other combinations of likely a u•low and a u.lup expressions in 
the trees, until (3.1) is rigorously satisfied. Then the chains of 
correct singular eigenvalues are immediately isolated in both 
trees. Obviously, the present method for linking trees is very 
convenient for jumping one or two nonsingular eigenvalues. 
By inspection of Table I it is thus readily verified that all 
singular eigenvalues au,! with 1.;;;7 may be calculated. There 
remains of course the problem of treating degenerated states. 

4. CLOSED FORMULAS FOR CALCULATING SINGULAR 
EIGENVALUES 

By carrying out the tree-generating and chain-produc
ing algorithms as discussed in Sec. 3, in full detail, we have 
found explicitly all singular eigenvalues a u,/' for v < 8. These 
eigenvalues can be resumed in a set of handsome formulas. 

Starting from the highest I value one obtains: 

a u.2v = ~V2v(v + I)(2v + I)(4v + 3) (v> 1) , (4.1) 

a u,2u-2 =rVZv(2v-I)(4v2-Sv-14) (v>2), (4.2) 

a u•2v _ 3 =~V2(4v-3)(2v3-v2-17v+I) (v>3),(4.3) 

a u•2u -4 = ~V2(v -1)(8v3 
- 38v2 

- V - 60) (v>4) , (4.4) 
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a u,2u-5 = ~V2(8v4 -42v3 
- 77v2 +258v -150) (v>5), 

(4.5) 

We observe that independent of the v value under consider
ation, the eigenvalues are always associated with the vertices 
of a unique chain in the upper tree. This remarkable property 
verified so far for v<7, gives strong evidence for predicting 
that (4.1)-(4.5) remain valid formulas for v> 7 too. In fact 
this has been shown already for the particular formula (4.1) 
in Sec. 2. 

Starting now from the lowest I value we obtain: 
flv = 3k (k = 1,2, .. ·): 

au,o = 0, 

a u,3 = -18 V2, 
a u4 = 42V2. 

flv = 3k + 1 (k = 0,1,2, .. ·): 

a u,2 = ~V2(5v + 9) (v> 1) , 

a u,4 = -12V2(3v +4) (v>4), 

a u,5 = 18V2(3v + 1) (v>4), 

a u,6 = 6V2(5v + 36) (v>4) , 

au,? = - ~V2(l50v +401) (v>7). 

flv = 3k -1 (k = 1,2, .. ·): 

a u,2 = - ~V2(5v + 6) (v>2), 

a u,4 = 12V2(3v + 5) (v>2) , 

a u,5 = -18V2(3v + 8) (v>5), 

a u,6 = -6V2(5v -21) (v>5), 

au,? = ~V2(l50v +49) (v>5). 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4,12) 

(4.13) 

(4,14) 

(4.15) 

(4,16) 

(4.17) 

(4.18) 

I 

We observe that in the lower tree the eigenvalue chain to be 
selected is dependent on the divisibility ofv with respect to 3. 
Thus, keeping the angular momentum fixed and increasing 
the seniority with 3 units (which is equivalent since N = v, to 
enlarging the state by a triplet of zero-coupled phonons, the 
same formula can be used for calculating the eigenvalue. 
Moreover, by increasing v consecutively by 3,6, .. · units, the 
eigenvalue is anytime increased by a fixed I-dependent posi
tive or negative amount. From these observations and from 
the fact that the 13k,0) states, which can also be written as 
[® 13,0)]k, are the ones which are completely annihilated 
by the scalar shift operator, it is apparent that we must at
tribute within the present formalism, a particular status to 
the state 13,0). Although 07 does not count the number of 
zero-coupled triplets occurring in a state, the striking resem
blance to Chacons' state labeling solution partially based on 
(3,0) epd factorization, cannot be denied. 

A remarkable feature of the various eigenvalue expres
sions listed, is that the set (4.14)-(4.18) can be obtained from 
the set (4.9)-(4.13) in the same order, by simply changing in 
the right-hand sides of the latter set v by - v - 3. Moreover, 
the right-hand sides of (4.6)-(4. 8) being constants, are invar
iant to this transformation. This feature clearly finds its ori
gin in the fact that Eqs. (1.3.2)-(1.3.5) are only dependent on 
the seniority v by the product - v(v + 3)/2-the V· eigen
value- and that this product is invariant for the mentioned 
transformation. 

It is also worthwhile to ~otice that all singular eigenval
ues calculated so far can be written as (6v2/5) times an 
integer value. As it is, moreover, very tempting to claim that 
Eqs. (4.6)-(4.18) remain valid for v> 7, this property is ex
pected to be demonstrated by all singular eigenvalues. 

Above we have listed eigenvalue expressions only. Nev
ertheless, for the sake of completeness and for a clearer in
sight in the consistency of the shift-operator technique, it is 
useful to give the various used expressions for the expecta
tion values (v,lIO 1~\O / klv,l) too. We have found while 
generating the upper tree 

(v,2vI02~=-202-;;2Iv,2v) = (2?/3)V4(V -1)(2v + If(2v -1)3(4v + 1), 

(v,2vIO z~ ~ 302-: 3Iv,2v) = 29v4(V - 1)3(v -2 )(2v - 1)2(4v - 1)(4v + 1)(4v - 3) , 

(v,2v - 21 0 2~ ~ 30 2-;; ~2Iv,2v - 2) = (25/3)(v - 1)2(v - 2)(2v - 1)(4v - 3)(4v - 1)(2v + 1)2 , 

(4.19) 

(v,2v - 310 zt ~ 40 2-;; ~ 31v,2v - 3) = 26(v - l)(v - 3)(2v - 1)(2v + 1)(2v - 3)2(4v - 3) , 

(v,2v - 310 2~ ~ 50 2-;; ~ 31v,2v - 3) = (2?/3)(v - l)(v - 2)2(V - 3)(v - 4)(2v -1)(2v + 1)2(2v - W(4v - 5) , 
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Similarly, starting at the lowest angular momentum values 
we obtained for v = 3k: 

(V,OIO 3-3 0 o+3Iv,0) = 25345v(v + 3) , (4.20) 

(v,31 0 4- 10 3+ l lv,3) =27 35 7(2v+l)(2v+5). 

For v = 3k + 1: 

(v,210 4-
2 0 t 2Iv,2) = 210335(v -1)(2v + 5), 

(v,210 5-
3 0 2+3Iv,2) = 2736537(v -1)(v + 5) , 

(v,410 5-104+1 Iv,4) = 263 527(v +5 )(2v + 5) , 

(v,410 6-
2 0 /2Iv,4) = 2933537(v +5 )(2v -1 ), (4.21) 

(v,410 7- 30 7+ 3Iv,4) = 25365373 11(v - 4)(v + 5) , 

(v,510 6-105+1 Iv,5) = 26 36 5(2v - 1)(2v + 5), 

(v,510 7-
2 0 5+2Iv,5) = 28335 721l(v - 4)(2v + 5), 

(V,610 7-106+1 Iv,6) = 273 7211(v - 4)(2v -1) . 

and, finally, for v = 3k -1: 

(V,210 4-
2 0 t 2Iv,2) = 210335(v +4)(2v + 1) , 

(v,210 5- 30 t 3Iv,2) = 2736537(v - 2)(v + 4) , 

(v,410 5- 10/
1 Iv,4) = 263 527(v -2 )(2v + 1) , 

(v,410 6-
2 0 4+2Iv,4) = 2933537(v -2 )(2v + 7) , (4.22) 

(v,4107-304+3Iv,4) = 25365373 11(v -2)(v +7), 

(v,510 6-105+1 Iv,5) = 26365(2v +1 )(2v + 7), 

(v,5107-20/2Iv,5) =28335 7211(v+7)(2v+ 1), 

(v,610 7-10 t l Iv,6) = 273 7211(v +7 )(2v + 7) . 

Remark that the set of expectation values for v = 3k -1, 
can again be obtained from the corresponding set for 
v = 3k + 1, by formally changing in the latter one at the 
right-hand side v by - v -3, and keeping v at the left-hand 
side unchanged. On the other hand the right-hand sides of 
(4.20) are invariant to this transformation. We also note that 
all expressions (4.19)-(4.22) are nonnegative for any positive 
integer value of v. This is in complete agreement with the 
properties (1.4.4)-(1.4.5), showing that expectation values of 
the form (v,/IO ,~kkO / klv,/) can always be written as sums 
of positive semidefinite quantities. It can thus happen that an 
expectation value becomes zero for particular v and I values, 
indicating an account of the same properties that the state 
I v,/ + k ) does not occur. Let us check this from the formulas 
listed above by a few examples. From (4.20) it follows that 
(v,2v - 210 2~~4 0 ;';~2Iv,2v -2) is zero for v = 2 or v = 3, 
since v is necessarily an integer and greater than 1. This indi
cates that the states 12,0) and 13,2) do not occur, whereas the 
other states of the form Iv,2v -4) with v;;;.4 always exist, a 
fact which is readily verified from Table I. Similarly it fol
lows from (4.20) that (v,410 7-

3 0 4+3Iv,4) is only zero for 
v = 4, showing that all the 13k + 1,7) states occur with the 
exception of the 14,7) state. This statement is again con
firmed by Table I. 

So far singular eigenvalues have been obtained by a tree
generating and chain-isolating mechanism which is essen-
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tially based on the property (3.1). In Sec. 5 it will be demon
strated that by using this property in the extended form valid 
for degenerated states too, nonsingular eigenvalue calcula
tions can be handled by the same mechanism. 

5. EIGENVALUES FOR DEGENERATED STATES 

In this section we derive a procedure for calculating the 
07 eigenvalues for a set of I v,1 ) states having the same quan
tum numbers N = v,v,1 and m = O. According to the general 
theory these eigenvalues au,! should lift the degeneracy. For 
simplicity and in agreement with the multiplicity values in 
Table I, we only consider doubly degenerated states which 
we assume orthonormalized and which we denote by 
I v,/,( 1» and I v,/,(2». Herein (I) and (2) are merely numbers 
to distinguish the independent states, and they differ from 
the 07 eigenvalues which we denote by a u.,(I) and a v.,(2), 
respectively. 

Let us further suppose that for the other occurring 
states with the same seniority v, the 07 eigenvalues are sin
gular and have been rigorously found yet. With this assump
tion we can tackle the calculation of the doubly degenerated 
16,6) and 17,8) states since by our former tree-generating 
mechanism all other eigenvalues au,! with v = 6 or v = 7 
have been obtained in (4.1)-(4.5), (4.6)-(4.8), and (4.9)
(4.13). Ifwe choose one of the Eqs. (1.3.2)-(1.3.5), say for 
instance (1.3.2), acting on both the orthogonal states Iv,I,(I» 
and Iv,/,(2», the two resulting relations when multiplied at 
the left-hand sides by (v,I,(I)1 and (v,I,(2)1, respectively, can 
be added to yield a single relation involving apart from con
stant terms the combinations 

a~,!(l) + a~i2), a v,!(1) + a vA2), 
and 

2 

I (v'/,(])IO,~\O/klv'/,(]), 
j~ 1 

with k = 1,2,3. Since, furthermore, the properties (1.4.4) and 
(1.4.5) can be written for the present case in the form: 

2 I (v,/,(])10 ,~\O ,+ klv,l,(]) 
j~1 

(5.1) 

It is only a matter ofletting the appropriate equations of the 
form (1.3.2)-(1.3.5) act on the nondegenerated states 
Iv'/ + k ) with k = 1,2,3 of which the eigenvalues are known 
already, in order to obtain after elimination of the expecta
tion values of the shift operator products, a relation involv
ing the combinations a~Al) + a~A2) and a u,,(I) + a v,,(2) 
alone. If we then repeat this complete procedure starting 
with any other of the Eqs. (1.3.2)-(1.3.5) we obtain a system 
of two quadratic equations from which it is straightforward 
to calculate the solutions a v,' (1 ) and a u,/(2). Obviously, since 
we have originally four equations at our disposition we could 
have deduced a system offour quadratic equations in a v,,(I) 
and au,' (2) too, of which only two are needed for finding the 
solution. This apparent overcompleteness should allow one 
to incorporate the eigenvalue calculation of doubly degener
ated states into our previous tree-generating mechanism, 
such that in the resulting equations other eigenvalues appear 
whose value must be chosen in a set oflikely values. Since we 
do not need such procedure for calculating the 16,6) and 
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TABLE II. The values of 5a",,/6y12 for v<7, a", denoting the 07 eigenvalues. 

~ 2 3 4 5 6 7 

0 0 0 
2 14 -16 29 -31 44 
3 -15 -15 
4 110 35 -160 200 35 -250 
5 195 -345 330 
6 420 280 -20 1f[ -5 ± (9881)112 ) 355 

7 799 -26 
8 1140 915 490 

9 2065 
10 2530 2200 
11 
12 4914 
13 
14 

17,8) eigenvalues, there is no reason for going into much 
more detail here. 

The results of the foregoing analysis when applied on 
the 16,6) and 17,8) states, can be found in Table II, which 
contains all numerical eigenvalues up to seniority v = 7. We 
note that in contrast to the singular eigenvalues, the ones 
associated to doubly degenerated states cannot be written as 
(6y2)/5 times an integer value, anymore. However, their 
sum still remains except for this factor an integer value. 

6. DISCUSSION 

In the present paper we have succeeded in calculating 
rigorously a large set of quadrupole-phonon state eigenval
ues with the use of only four independent quadratic relations 
between shift operators which were derived in I. It is impor
tant to notice that there was thus no need for having at our 
disposal equations involving products of more than two shift 
operators. 

The obtained eigenvalues can be used for labeling the 
states if these cannot be distinguished by the other quantum 
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-1451 
H269 ± (139x 1531)112) 

895 
1630 
4325 
4459 

8680 

numbers. In fact it is known from the general theory that the 
O? spectrum provides us with a complete solution of the 
state-labeling problem. The classification of the quadrupole
phonon states therefore being completely accomplished, 
there only remains the problem of constructing these states 
explicitly, and to analyze their relationship to the states as 
previously constructed by the present authors.6 For details 
concerning these problems the reader is referred to a subse
quent paper. 
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Shift operator techniques for the classification of multipole-phonon states. 
III. The quadrupole-phonon eigenstates of or 
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It is shown that the non-I-degenerated normalized eigenstates of O? can be identified with 
previously constructed quadrupole-phonon states which have been labeled by the intermediate 
angular momentum values. The I-degenerated O? eigenstates are proven to be identical to the 
corresponding eigenstates of the fifth label generating operator S. From the analysis of the 
relationship between O? and S, a rigorous expression for S in terms of canonical operators is 
withdrawn, while it also becomes possible to obtain the S eigenvalues in exact irrational form. 

1. INTRODUCTION 

In two preceding papers 1.2 (to be referred to as I and II) 
we have outlined the construction of the R(3) scalar shift 
operator O? and the calculation of its eigenvalues in the 
space of quadrupole-phonon states I N = v,v,l,m = 0). 
Hereby v denotes the seniority, whereas the number of phon
ons N is chosen equal to v and the angular momentum pro
jection m is set equal to zero momentarily. Moreover, it was 
shown that the O? eigenvalues a v.! are m-independent. Fur
thermore, the various results in II have been derived with 
reference only to the existence of mutually orthogonal and 
normalized quadrupole-phonon states I v,l ), and not to their 
explicit forms. For this we could rely on strict group-theo
retical results3 which were summarized in Table I of Paper 
II. As an obvious continuation of the preceding investigation 
we intend in the present paper to construct these O? eigen
states explicitly. 

It goes without saying that the construction of such 
eigenstates of which the labeling is completed by means of 
exact calculable irrational O? eigenvalues is very important 
from the theoretical point of view. However, for practical 
purposes it may be preferable to express quadrupole-phonon 
states in terms of coupled elementary phonon-creation oper
ators b i;-' acting on a vacuum, thereby labeling them by an 
overcomplete set of intermediate coupling angular momen
tum values. This has been realized recently by the present 
authors4 by use of numerical computer routines. A basis of 
independent orthonormalized phonon states has been select
ed in accordance with a simple counting mechanism, not 
associated to any operator. In this paper we therefore also 
want to investigate the relationship between the latter set of 
states and our actual O? eigenstates. Finally, in order to raise 
I degeneracies we introduced also a label-generating opera
tor S,5 which could be numerically expressed in terms of so

called canonical operators 0 y.t:~: as follows: 

S = 0.86580 m + 0 ~:~ + 0.58040 :~~ , (1.1) 

with 

alBevoegdverklaard navorser bij het Nationaal Fonds voor Wetenschappe
lijk Onderzoek (Belgium). 

x (JIM 12m31 J2M 2) (J2M22m41 J3M3) 

X (2m;2m; I JIM;) 

X (JIM;2m;IJ2M;) (J2M22m~IJ3M3) 

Xb;!; b;!;b;!;b;!;b ,b ,b ,b ,. 
I .! l .. m. m 1 m:,>. m4 

(1.2) 

Herein ( -1)pb _I-' are the phonon-annihilation operators 
and the bracket factors denote Clebsh-Gordon coefficients. 
As an example we have shown how the S eigenvalues can be 
used to distinguish the doubly degenerated 16,6) states6 and 
how these states can be constructed as linear combinations of 
basis states. 

As a consequence it appears interesting to analyze the 
relationship between O? and S too. We shall demonstrate 
how this leads us to a simple procedure for calculating S 
eigenvalues rigorously and for obtaining also in an exact way 
the coefficients in the right-hand side (rhs) of (1.1). 

2. THE CONSTRUCTION OF 0 f EIGENSTATES 

For reasons of simplicity, let us start with the construction of 
the maximum angular momentum states, denoted in II as 
I v,2v). It is obvious that apart from a normalization factor 
.Alv to be determined later, such states must be uniquely 
expressible in terms of phonon-creation operators acting on 
the vacuum state, i.e., 

Iv,2v) =.Alv I [(b+b+tb+]6 ... b+J!:'~o 10,0) 

=.Alv 10246 .. ·2v)m~o' (2.1) 

whereby at the last line we introduce the notation of Ref. 4. 
Since in fact.Alv is independent ofthe particular choice 

of m, it is convenient to set momentarily at the rhs of (2.1) m 
equal to its maximum value m = 2v. Then the intermediate 
projections ml, ... ,mv become all restricted to +2, and.Alv 

is readily found to be given by 1/(V!)1t2. The 0 ~v eigenstates 
Iv,2v) are thus identical to the normalized states 
.Alv 1024 ... 2v) listed elsewhere.4 

As a next step we consider the O~V_2 eigenstates 
I v,2v - 2) which are all nondegenerated, and are assumed to 
be normalized to unity already. Bearing in mind that the 
shift operator 0 2~ 2 when acting on a I v,2v) state leaves the 
seniority v and the angular momentum projection m = 0 un-
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changed while decreasing the angular momentum by two 
units, it follows that 

02-;;2Iv,2v) =alv,2v-2). (2.2) 

The states Iv,2v) and Iv,2v - 2) being normalized to unity, 
we have to determine the value of the proportion parameter 
a. To this aim we multiply (2.2) on both sides at the left with 
(v,2v - 21 and use the properties (1.4.1) and (1.4.2) in order 
to obtain consecutively 

a = (v,2v - 21 02-;;2Iv,2v) 

= 132.2~'-2 (v,2v -21(02t=-2)tl v,2v) 

4v + 1 ( I +2 I = --- v,2v 0 211 _2 v,2v-2)*, 
4v -3 

(2.3) 

Therefore 

(v,2vl 02t=-2Iv,2v-2) = 4v-3 a*, (2.4) 
4v + I 

and consequently 

(v,2v -21 02-;;2Iv,2v) (v,2vl 02t=-2Iv,2v -2) 

= 4v -3 lal 2 , 

4v + 1 

or on account of the unicity and normalization properties of 
the I v,2v) states 

4v+ 1 
lal 2 = -4-- (v,2v -210 2-;;2 02t=-2Iv,2v -2) 

v-3 

4v + I ( 2 I 0 +2 0 -21 ) = --- v, V 2v-2 2" v,2v . 
4v -3 

(2.5) 

Since the expectation values at the rhs of (2.5) have been 
obtained in (11.4.19) already, we immediately find, except 
for a trivial phase factor, a to be given by 

a = 2V(2v + 1)(2v _ 1)(4v + 1) (~(v -1)(2v -1) )112 . 
3 4v-3 

(2.6) 

On the other hand we found by means of the construction 
formalism of Ref. 4, that there could be selected for each v 
value a unique quadrupole-phonon Iv,2v - 2) state (see Ta
bles 1-4 of Ref. 4) which is written as 

Iv,2v -2) = ff2v_2102I2I3···Iu)' (2.7) 

with Iv = 2v - 2. Herein ff2v -2 is the normalization factor 
for which the numerical values with 2<v<6 are found in Ref. 
4. It is evident that the state I v,2v - 2) as given by (2.7), 
being unique and normalized to unity is identical to the state 
I v,2v - 2) as obtained by (2.2) and (2.6), namely 

(2.8) 

with a as given in (2.6). 
As long as we restrict ourselves to nondegenerated 

states Iv,!), the foregoing reasoning can be easily repeated, 
yielding that in the shift operator formalism Iv,!) mayal
ways be constructed as 

(2.9) 

where k is chosen from among the values ± 1, ± 2, ± 3 
such that Iv'! + k ) is nondegenerated, and whereby the pro
portion factor ak" is generally given by 
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Moreover Iv,l) as determined by (2,9) and (2,10), is com
pletely identical to the corresponding normalized Iv'! ) state 
expanded in terms of states belonging to the basis of quadru
pole-phonon states selected in Ref. 4. We note that in some 
cases the state I v,l ) is expanded as 

Iv'/) = ff~.,1 0202.14"'Ju ) + ffv:, 102I2I 3· .. IJ , (2.11) 

with Jv = Iv = I, whereby ff~ 1 and ~ 1 are coefficients 
whose numerical value is listed in Table~ 1-4 of Ref. 4. We 
also remark from (2.9) that even in the present scheme differ
ent ways of generating the I v,! ) state are at hand, each corre
sponding to a different k value, i.e., 

Iv,/) = ak .. 1 0 I~kk, Iv,l + k,) 

= a",,/ 0 1-/:', Iv,! + k2), (k l =l-k2). (2.12) 

For I-degenerated states Iv,/) the explicit determination 
of the eigenstates by use of shift operators is somewhat more 
complicated. In order to keep the demonstration of the gen
eral procedure as simple as possible we confine it to the con
struction ofthe doubly degenerated orthonormal 16,6) states 
which we denote as 16,6,(1» and 16,6,(2», respectively, 
whereas the corresponding eigenvalues of 0 ~ are written as 
a 6,6 (1) and a 6,6 (2). Since the 16,7) and 16,8) states are non
degenerated we are allowed to define 

0 7-
7 16,7) =1l16,6,(1» + vI6,6,(2», 

08-216,8) =1l'16,6,(1» + v' 16,6,(2». 

(2.13) 

(2.14) 

The problem is now to determine the four parameters Il"u', v, 
and v' in terms of known quantities. From (2.13) it follows 
with the help of the properties (I.4.1) and (1.4.2) that 

(6,6,(1)107-116,7) = Il = _1_ (6,6,(1)1 (0 6+ l)tI6,7) 
131.6 

= (15/13)(6,7106+116,6,(1»*, (2,15) 

or 

(13/15) Il* = (6,71 0 6+ 1 /6,6,(1» . 

Similarly, we find that 

{

03/15)V* = (6,71 0 6+
1 16,6,(2», 

(13/17)Il'* = (6,81 0 6+
216,6,(1», 

(13/17) v'* = (6,81 0 6+
216,6,(2» . 

By considering the product 

(2.16) 

(6,6,(1)107-116,7) (6,71 0 6+
116,6,(2» wededuceonac

count of the uniqueness of the normalized 16,7) state, and by 
use of (2.15) and (2.16) that 

(13/15)11l1 2 = (6,6,(1)1 0 7-
10 6+

1 16,6,(1», (2.17) 

It is straightforward to obtain in addition that 

(l3/15)lvI 2= (6,6,(2)1 0 7-
10 6+

1 16,6,(2», 

(13/17)11l'12 = (6,6,(1)1 0 8-
20 6+

216,6,(1» , 

(13/17)lv'12 = (6,6,(2)1 0 8-
20 6+

216,6,(2», 

and also that 

H.E. De Meyer and G. Vanden Berghe 

(2.18) 

(2,19) 
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(13/15),uv* = (6,6,(1)1 0 7-
10 6+

116,6,(2», (2.21) 

(13/15),u*v= (6,6,(2)1 07-10tI16,6,(1», (2.22) 

(13/17),u'v'* = (6,6,(1)1 0 8-
20 6+

216,6,(2», (2.23) 

(13/17),u'*v' = (6,6,(2)1 0 8-
20 6+

216,6,(1), (2.24) 

In contrast to the case of no I degeneracies, none of the ex
pressions at the rhs of (2.17)-(2.24) is directly obtained by 
the tree-generating mechanism of II. Indeed, by letting act 
on the states 16,7), 16,8) the suitable equations of the form 
(1.3.2)-(1.3.5) it is quite easy to derive the values of the ex
pectation values (6,71 0 6+ 10 7-

116,7) and 
(6,81 0 6+ 20 8- 216,8) , which on account of the property 
(1.4.3) are related to the expectation values in (2.15)-(2.18) 
in the following way: 

( 6, 71 0 6+ I 0 7- I 16,7) 

= (6,6,(1)1 07-IOtI16,6,(1» 

+ (6,6,(2) I 0 7- 10 6+ I 16,6,(2» , (2.25) 

(6,8106+208-216,8) 

= (6,6,(1)1 0 8-
2 0 6+

2 16,6,(1» 

+ (6,6,(2)1 08-206+216,6,(2» , (2.26) 

By this it is proven that we have already at our disposition 
the values of I ,u12 + Ivl2 and / ,u'12 + Iv'12. On the other 
hand, if we let Eq. (1.3.5), which for the present case (v = 6, 
1= 6) reads 

27325 13(0~)2 - \1'2 26 34 527 13(0~) 
= 2 3

4
5

3 
0 -10 +1 + 3

2
5

2
13 0 -20 +2 

72 7 6 2S72 8 6 

+21037527213 +2"375 7213, (2.27) 

act at the right on 16,6,(l)}, and multiply thereafter both 
sides at the left with (6,6,(1)1 we have, since a 6,6 (1) is 
known, a numerical expression for the sum 
26325(6,6,(1)107106+ 116,6,(1» 
+ 13(6,6,(1)1 0 8-

20 6+
2 16,6,(1» , or on account of (2.15) 

and (2.17) also a numerical expression for the sum 
26 3 171 ,u12 +131 ,u'12. Replacing 16,6,(1» by 16,6,(2» anu
merical expression is also obtained for 263 171vl2 +13/v'1 2 

by use of a 6,6 (2). Having found in this way four independent 
equations in the unknowns I ,u12, I ,u'12, Ivlz, and Iv'12, asolu
tion for ,u"u', v, and v' is readily deduced when leaving aside 
phase factors. With this solution the state 16,6,(1» and 
16,6,(2» can be constructed from (2.13) and (2.14) in terms 
of the expressions 0 7-

116,7) and 0 8-
216,8) . However, the 

mentioned phase factors are in the present case not com
pletely irrelevant, since they must be chosen such that 
16,6,(1» and 16,6,(2» are mutually orthogonal. In fact, this 
supplementary condition can be mathematically implied by, 
forinstance, letting (2.27) act on 16,6,(1», while multiplying 
thereafter both sides at the left with (6,6,(2)1. By this we 
obtain an expression which on account of the orthogonality 
of 16,6,(1» and 16,6,(2» reads: 

263 17,u*v + 13,u'*v' = ° . (2.28) 

Interchanging the roles of 16,6,(1» and 16,6,(2», the com
plex conjugate of (2.28) is found. Now (2.28) indicates for 
instance that by restricting,u,,u', v, and v' to real values, the 
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sign of three of these four quantities can be chosen in an 
arbitrary way whereafter the sign of the remaining fourth 
quantity is unambiguously fixed. 

Let us draw once more attention to the fact that for 
constructing states in terms of shift operators acting on one 
or more other selected states, we have usually more than one 
possibility for choosing the latter. In the present case, for 
example, instead of starting from (2.13) and lor (2.14), we 
could have started from similar equations for 0 9- 316,9) , 
0/ 1 16,4) , 0 t 316,3) , as well. Of course, although various 
expressions for \6,6,(1» and \6,6,(2)} exist, these orthogonal 
states are, once normalized, unique. 

Previously we have constructed in a numerical way two 
independent orthonormalized N = 6, v = 6, 1= 6 states4 as 
linear combinations of the basis states 10202246), 
10220246), and 10223456). This construction was, however, 
not unique as long as there was missing a label-generating 
operator for distinguishing the states. To overcome this 
problem we have introduced5 the operator S given in (1. 1), 
for which it was shown6 that it generates two independent 
orthonormalized N = 6, v = 6, I = 6 states which are in a 
unique way expressible as linear combinations of the forego
ing basis states. 

Having thus at our disposition the 16,6) eigenstates of 
O? and those of S, we can ask whether these states coincide 
or not. For answering this question let us be reminded that it 
was showns that any two operators which contain at most 
four elementary phonon-creation and four annihilation op
erators, and which commutewithL 2, 1o, V*, andN, arenec
essarily dependent on each other, in the sense that the first, 
say T I , may be expressed in terms of the second, say Tz, as 
follows: 

TI = Y(T2,N, N 2 ,L 2,V*, N 3 ,L 2N,V*N,N 4
, 

L 2N 2
, V*NZ,L 4, v*2,L 2V*), (2.29) 

whereby Y is a linear functional. Moreover, although the 
eigenvalue spectrum of TI generally differs from the T2 spec
trum, both operators have the same eigenstates. In our pre
sent case we can replace TI by O? and T2 by S, showing that 
O? must be expressible in terms of Sby a relation of the kind 
(2.29), and that the 07 eigenstates as constructed for in
stance by means of (2.13) and (2.14) are identical to the nu
merically constructed eigenstates of S.6 In Sec. 3 we shall 
derive the relationship between 0 ~ and S in full detail. 

3. THE RELATION BETWEEN or AND S 

At this point there is still a fundamental difference in 
working with either O? or S. Indeed, the operator S acts in 
the space of the symmetric states of the group SU(5), while 
so far O? only acts in the subspace of the symmetric R(5) 
states, with the consequence that for the latter operator only 
seniority states with N = v had to be considered. However, 
since R(5)CSU(5) we can quite easily determine the action 
of 0 ~ on SU(5) states too. Therefore we notice that for the 
latter states one necessarily has that N = v + 2n, whereby n 
is zero or a positive integer, and that one can write 

IN = v +2n,v,l) = [® 12,0)] n ® I N = v,v,l). (3.1) 

H.E. De Meyer and G. Vanden 8erghe 1915 
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TABLE I. Eigenvalues of the operators 50716 V2,N,N 2
, ..• ,L 2V*,S on selected states I N,v,!) . 

I N,v,!) 50716 '112 

11,1,2) 14 

12,0,0) 
= 12,0) ® 10,0,0) 0 

12,2,2) -16 

12,2,4) 110 

I~~O) 0 

13,1,2) 
= 12,0) ® 11,1,2) 14 

13,3,3) -15 

13,3,4) 35 

13,3,6) 420 

14,0,0) 
= [® 12,O)f 

® 10,0,0) 0 

14,4,2) 29 

14,2,2) 
= 12,0) ® 12,2,2) -16 

14,4,4) -160 

14,2,4) 
= 12,0) ® 12,2,4) 110 

14,4,6) 280 

N 

2 

2 

2 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

4 

N 2 

4 

4 

4 

9 

9 

9 

9 

9 

16 

16 

16 

16 

16 

16 

L2 

6 

o 
6 

20 

o 

6 

12 

20 

42 

o 
6 

6 

20 

20 

42 

V* 

-2 

o 
-5 

-5 

-9 

-2 

-9 

-9 

-9 

o 
-14 

-5 

-14 

-5 

-14 

N 3 

8 

8 

8 

27 

27 

27 

27 

27 

64 

64 

64 

64 

64 

64 

L 2N 

6 

o 
12 

40 

18 

36 

60 

126 

o 
24 

24 

80 

80 

168 

V*N 

-2 

o 
-10 

-10 

-27 

-6 

-27 

-27 

-27 

o 
-56 

-20 

-56 

-20 

-56 

N 4 

16 

16 

16 

81 

81 

81 

81 

81 

256 

256 

256 

256 

256 

256 

L 2N 2 

6 

o 
24 

80 

o 

54 

108 

180 

378 

o 
96 

96 

320 

320 

672 

V*N2 L 4 

-2 36 

o 0 

-20 36 

-20 

-81 

-18 

-81 

-81 

-81 

o 
-224 

-80 

-224 

-80 

-224 

400 

o 

36 

144 

400 

1764 

o 
36 

36 

400 

400 

1764 

V*2 

4 

o 
25 

25 

81 

4 

81 

81 

81 

o 
196 

25 

196 

25 

196 

L 2 v* S 

-12 0 

o 0 

-30 0 

-100 0 

o 0 

-12 0 

-108 0 

-180 0 

-378 0 

o 0 

-84 0 

-30 0 

-280 0 

-100 0 

-588 60/7 



                                                                                                                                    

Furthermore, since the action of 0 ~ is confined to the space 
of I N = v, v,! ) states we immediately find that 

O~IN =v+2n,v,!) = [®12,0)r® {O~IN=v,v'!)J 

= av,11 N = v +2n,v,!) (n = 0,1,2, ... ), (3.2) 

if I N = v,vl ) is an eigenstate of 0 ~ with eigenvalue a v,!' 

showing that all states I N = v + 2n,v,! ) are also eigenstates 
of 0 ~ with the same eigenvalue as I N = v, v,! ). 

We now have all elements to express 0 ~ in terms of S 
and other operators such as in (2.29) by comparing the ac
tion of both operators on a particular set of common eigen
states. More specifically we draw attention to the fact that 

S IN,v,!) = 0 if N < 4. (3.3) 

On the other hand it follows from Racah algebra that 

O~j~ 14,4,5) = 914,4,5), (3.4) 

o ~:~ 14,4,6) = (60/7)14,4,6) , (3,5) 

O:~~ 14,4,8) = 2414,4,8) , (3.6) 

and with the second of these results substituted in (1.1) we 
rigorously obtain that 

S 14,4,6) = (60/7)14,4,6) , (3.7) 

In Table I we list the eigenvalues of5/6 '\12 O~, N, N 2
, L 2, 

V*,N 3,L 2N, V*N,N 4,L 2N 2, V*N 2,L 4, V*2,L 2V*,andS 
for all their common eigenstates for which, in particular, the 
S eigenvalue is rigorously known. These eigenvalues are used 
to express 5/6 '\12 0 ~ as a linear combination of the fourteen 
operatorsN,N 2, ... ,L 2V*, ands' As expected, the system of 
fifteen linear equations in fourteen unknown coefficients is 
consistent, and leads to the unique solution 

~O~= 2160 N- 1980 N 2 _ ~L2 
6\12 7 7 4 

+ 675 V* + 540 N 3 + 30L 2N 
14 7 

_ 180 V*N _ ~N4 
7 7 

-5L 2N 2 + lQ.. V*N2 + ~L 4 

7 8 

+~V*2+~L2V*+ 154S. 
14 2 3 

(3.8) 

By this formula it thus also becomes possible to calculate an 
S eigenvalue if the corresponding 0 ~ eigenvalue is known. In 
particular, if we consider the state 14,4,5), we know from 
Table II of Paper II that (5/6 '\12) O~ 14,4,5) = 19514,4,5). 
Making use of(3.8) it is readily calculated that 

S 14,4,5) = (600177)14,4,5) . (3.9) 

On the other hand the expression (1.1) for S in terms of 
canonical operators showed that the only contribution to the 
S eigenvalue originates from the action of the 0 m term 
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only, which was found in (3.4). We therefore deduce that the 
Om coefficient in the S expansion (1.1) is exactly 
(600/77)/9 = 200/231. In the same way we calculate from 
(3.8) that 

S 14,4,8) = (2145/154)14,4,8) , (3.10) 

while on the other hand this eigenvalue is produced uniquely 

by the O:~~ term in (1.1). It follows from (3.6) that the ac
companying coefficient is exactly 65/112. Therefore, we can 
replace now the numerically determined expansion (1.1) for 
S by the following expression: 

S = (23)(5
2
) 0235 + 0 246 + (5)(13) 0 468 • (3.11) 

(3)(7)(11) 235 246 (24)(7) 468 

We note that the previously obtained numerical values of 
(1.1) approximate the exact corresponding values of (3.11) 
with an error smaller than 5 X 10-5

• 

Finally, we can exploit Eq. (3.8) to calculate rigorously 
the S eigenvalues associated with the states 16,4,6), 
16,6,6,(1», and 1(6,6,6,(2» with N = 6 and I = 6, which we 
determined numerically as 50.6502, 79.2477, and 50.2009 in 
a previous paper.6 From Table II of Paper II we find that 

(5/6 \12) O~ 16,4,6) = 28016,4,6) , 

(5/6 \12) O~ 16,6,6,(1» 
= (15/2)[ - 5 + (9881)1/2]16,6,6,(1» , 

and 

(5/6 \12) O~ 16,6,6,(2» 
= (15/2)[ - 5 - (9881)1i2] 16,6,6,(2» . 

Substituting the latter results consecutively in (3.8) we de
duce that 

S 16 4 6) = (22)(3)(5
2
)(13) 1646) (3.12) 

, , (7)(11)'" 

S 1666 (1» = (32)(5) [443 + (9881)1/2] 1666 (1» 
, , , (22)(7)( 11) , " , 

(3.13) 

S 16,6,6,(2» = (2~~;~~~i 1) [443 - (9881)1/2]16,6,6,(2» , 

(3.14) 

showing that the mentioned values numerically obtained by 
Racah algebra6 are very close to the exact values of (3.12)
(3.14), namely within 10-5 of the relative difference. 
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A paper by one of the present authors (JTD) and others obtained solutions of the classical polaron 
model in which the electron rotates about the stationary polaron center. The radius of gyration of 
the electron was, however, shown to diverge with the radius of the Brillouin zone. In this paper the 
analysis is carried out more extensively and concisely and it is found that there are solutions for 
which the radius of gyration remains finite. 

1. INTRODUCTION 

Exact solutions to classical field theories are interesting 
not only in their own right but also for semiclassical approxi
mations to the quantum mechanical problem. This paper 
extends results on the behavior of some classical solutions of 
the polaron model found in Ref. 1. 

Reference 1 gives the first term for the series and as
ymptotic expansions of the solutions for a restricted range of 
the electron rotation frequency. The present paper gives the 
complete series and asymptotic expansions for the whole 
range of the electron frequency. In the frequency range that 
was neglected in Ref. 1 some interesting structure appears. 

In Ref. 1 a Gaussian cutoff was used to facilitate the 
analytic evaluation of integrals. In the present paper the 
more natural Heaviside cutoff is employed. Where results in 
the two papers are duplicated the different cutoffs lead to 
unimportant differences in numerical factors. (A choice of 
cutoff represents a choice of the short range behavior of the 
interaction. It is the long range behavior which is essentially 
being examined in this model.) 

2. SERIES EXPANSION 

The Frolich Hamiltonian for the classical polaron mod
el is 

p2/2m + Iwatak + I(Vkak exp{ik.r) 
k k 

+ V!a: exp( - ik.r», 

where Vk = -2i1rl/za I/Z(2mwyI/4wk -11/V-1/2. The equa
tions of motion are 

p = - i I k(Vkak exp(ik.r) - VZat exp( - ik.r», 
k 

(2.1) 

ak(t) = - i1/-1 Vr exp{ - iw+t) 

X J~ 00 dt' exp( - ik·r{t ') + iw+t '), (2.2) 

ak ( - 00) assumed zero. 
The paper by Evrard et al. 1 suggests a trial solution 

x{t) + iy(t) = u expOflt), z(t) = O. 

Expanding exp(ik·r) in terms of Bessel functions, with this 
trial solution, the integral in Eq. (2.2) can be done. Substitut
ing the result in Eq. (2.1) and appealing to cylindrical sym
metry gives, after some rearrangement, the consistency con
dition 

muflz=(JIJu)IlVkIZ f J~(kusinO)/(fln-w'). 
k n=-oo 

The trial solution has energy 

E = !mufl z + II Vk IZ(2 + w{JIJw» 
k 

X f J~(ku sinO)/(fln - w'). 
n= - oc> 

It is clear that viable solutions depend on the successful 
interpretation of 

sff3v-1 I k-Z f J~(ku sinO)/(fln - w'). (2.3) 
k n=-oo 

Using a Sommerfeld-Watson transformation the sum over n 
can be performed: 

f J~(ku sinO)/(fln - w') 
n = - 00 

= - rrfl- I csc(rrwlfl)J _ mm(ku sinO)JMm(ku sinO). 

If the product of two Bessel functions is replaced by the 
integral representation 

2rr- 1 ITI2 dt Jo(2ku sinOcost) cos(2£Ut Ifl), 

the summation over k (which, as is customary, is replaced by 
an integral over a spherical Brillouin zone of radius K) can be 
done (the angular integrations first) so that line (2.3) 
becomes 

-4rr(ufltl csc{rr(ulfl) 

X 1'TI2 dt Si(2Ku cost) cos(2wt I fl) sect. 

The consistency condition and the energy are then given by, 
respectively, 

fl 3/w 3 = -4yK csc(rrwlfl )u- I(JIJu)f«Ku)2,wlfl), 
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E = - 4ymu/K (wlfJ) csc(17'wlfJ )Hu(alau) 

+ 2 - 17'(wlfJ) cot(17'wlfJ) + w(alaw» 

x J«KU)2,wlfJ), 

where 

J( t,p) = 17'- It -1/2 1'TI2 dt Si(2t 1/2cost) cos(2fJt )sect 

and 
y = a(fz12mw)3/2. 

Substituting the power series expansion for the sine in
tegral in the definition ofJand performing the integration 
term by term leads to the following power series expansion 
forf 

J( t,p) = ! (_I)Nt NI(2n + 1)2F(n + 1 + p) 
n=O 

xF(n+l-p). 

The small K u approximation to the consistency condition 
and the energy is given by taking the first two terms in the 
series: 

fJ21w2~1 +8(917'ylyK3, 

E~ - 417'- Iymw2K [I - 2(917'tl(Ku)2(l - w21fJ 2y2]. 

The first term in the energy is the lattice polarization energy 

3. ASYMPTOTIC EXPANSION 

As in general the derivative of an asymptotic series is 

not the asymptotic series of the derivative, any differenti
ations have to be performed first. The method of obtaining 
an asymptotic series from a power series2 will be demonstrat
ed on! The procedure for its derivatives follows the same 
pattern. The power series forJis 

J(t,p) = ! (-I)Np(n,p)sN, 
n=O 

where 

p(z,p) = «2z + I?F(z + 1 + p)F(z + 1 _ p»-I. 

Consider the integral 

(21)-1 L dz p(z,p)tz CSC(17'Z), 

around the square - N + 1/2 + iM 12, 
- N + 1/2 - iM 12, M - N + 1/2 - iM 12, 

M - N + 1/2 + iM 12 with M and N integers, M> N> 2. It 
can be argued that the contribution from the line integrals 
along the bottom, right-hand side and top of the square tend 
to zero as M tends to infinity for I argt I < 17'. Thus the integral 
along the line - N + 1/2 + i 00 to - N + 1/2 - i 00 is 
equal to 17' times the sum of all the residues to the right of it. 
Theresidueatthepolez = nofcsc(17'z)is17'- I( -I) Np(n,p)tN 
so that the sum includesJ(5,p). As 151 tends to infinity with 
largtl < 17' the line integral along - N + 1/2 + i 00 to 
- N + 1/2 - i 00 can be shown to be of order 15 I - N so that 
the conditions for an asymptotic series are satisfied. The only 
pole of p(z,p) at z = - 1/2 gives the leading contribution to 
the asymptotic series: 

J( t,p)_!t-1/2 cos(17'p)[lnt - ¢(~ + p) - ¢(~ - p)] - ! (_I)Nt - NI(2n -1?F(l + p - n)F(1 - p - n). 
n=l 

The asymptotic series for the derivatives ofJare found similarily: 

(a las)J(5,p)- - g--112 cos(17'p)[lnS -2 - ¢(~ + p) - ¢(~ - p)] 

- ! (_I)Nt -N(n -1)/(2n -WF(2 +p - n)F(2 -p - n); 
n=2 

(alap)J(5,p)- - !t -1/2 COS(17'p)[17' tan(17'p) Int + tP'(! + p) - tP'G - p) - 17' tan(17'p)(¢(! + p) + tPG - p»] 

- ! (-IYs -N(¢(I_p - n) - tP(1 +p - n»/(2n _1)2F(1 +p - n)r(l-p - n). 
n=l 

The two leading terms in the asymptotic series give the asymptotic form of the consistency condition and the energy for large 
Ku: 

u3fJ 31w3 -2y cot(17'lwlfJ 1)[ln(Ku) - 1 - ¢(~ + IwlfJ = + IwlfJ I) - cot(17'lwlfJ I) -317'/2]. 

E-17'ymw2u- I lwlfJ I [(1n(Ku) - ¢(! + IwlfJ 1»(217'IwlfJ I CSC2(17'WlfJ) -3COt(17'IwlfJ I» 

+ 21wlfJ ICOt(17'1wlfJ l)tP'(! + IwlfJ I) - cot(17'lwlfJ I) -317'12]. 

4. CONCLUSIONS 

The asymptotic form of the solution obtained in Ref. 1 
is applicable only for IwlfJ I < 1 whereas above no such re
striction holds. When IwlfJ I < 1 the solution takes the form 

u3-2Y17'- I lwlfJ 12In(Ku). (4.1) 

For K sufficiently greater than 1 and IwlfJ I fixed (4.1) will 
have two solutions for u. One solution is of the order of 1/K 
and is not admissable as it does not lie in the asymptotic 

1919 J. Math. Phys., Vol. 21, No.7, July 1980 

regime. As IwlfJ I increases the term on the right-hand side 
of 4.1 is modified by a resonance factor 17'lwlfJ I 
xcot(17'lwlfJ I). As IwlfJ I approaches an integer the radius 
of gyration of the electron diverges. (The behavior is not 
apparent in Ref. 1.) 

For IwlfJ 1<1 the energy is negative 

E- - ymw2u-1 In(Ku), 

but as IwlfJ I increases it is modified by a factor 

G.A. Ringwood and J.T. Devreese 1919 



                                                                                                                                    

1flwlil I csc2(1fjwlll DG sin(21flwlil D -21flwlll I). 

This changes sign when \wlll \ is approximately 1/4. The 
energy diverges positively at the resonance positions. 

In general the radius of gyration diverges with the cut
off K but the modification provided by the resonance factor 
1Tjwlll Icot(1TI{t)/ll I) has the effect that when the gyration 
frequency is completely out of phase, \wlfl \ half-odd-inte
ger, the angular momentum takes a constant value 

u3n 3 = Y1TW3 

1920 J. Math. Phys., Vol. 21, No.7, July 1980 

independent of the cutoff. Thus there is a countable set of 
bound states which persist in the limit in which K tends to 
infinity. However, the energy of these solutions still diverges. 

'R. Evrard, J.T.Devreese, E. Kartheuser, and c.c. Grosjean, Nuovo O
menta B 12, 118 (1972). 

2M.A. Evgrafov, Asymptotic Estimates of Entire Functions (Gordon and 
Breach, New York, 1961). 
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Let H be the isotropic spin-s quantum ferromagnetic Heisenberg Hamiltonian associated with a 
finite volume in 1, d. In an appropriate representation, the restriction of - H to the N-spin wave 
sector - Hy can be regarded as the generator of a Markov semigroup exp( - tHy). For s = ~ the 
corresponding process Xv (t ) is identified as a simple N-particle exclusion process; for higher spin 
it is a more complicated exclusion process involving different species of particles. A Feynman
Kac, Cameron-Martin perturbation formula for exp( - tHy) is developed in the s = ~ case, and 
the formula is used to obtain some thermodynamic correlation inequalities. 

I. INTRODUCTION 

LetH= -~'m.m'E' [J(m}J(m')-s2] be the isotropic 
spins-s Heisenberg Hamiltonian associated with a finite rec
tangular volume A C 1, d. Here, ~' denotes summation over 
nearest neighbors, with periodic boundary conditions. Then . /'., . 
H commutes wIth N = ~mEA [(Jim) + s] and acts m~r-
iantly on the set of states dYy whose eigenvalue under Nis N 
(N = 0,1,2,. .. ,2sIA I). Denote by HN the restriction of H to 
J7"',y. 

The subspace Yr'N can be realized as a (finite dimen
sional) 12 space in such a manner that the off-diagonal part of 
- Hy is positive, so that in this representation - H N gener

ates a positivity preserving semigroup. If the underlying 
measure for the 12 space is chosen appropriately so that the 
ground state of - H N is realized as a constant function, the 
semigroup is Markovian. [For Schrodinger operators, the 
representation is that associated with the Jacobi method of 
multiplicative variation (Ref. 1, p. 458).] 

Of course, the Hamiltonian need not be isotropic to per
mit this representation. But if it is isotropic, the process 
X", (t ) associated with the Markov semigroup can be de
scribed explicitly and is conceptually simple. For example, 
in the spin-! case X N (t ) is a simple N-particle exclusion pro
cess, one which has been studied as a model for time evolu
tion of classical lattice systems. 2 In the spin-l case, one can 
represent X N (t ) as a more complicated exclusion-like proces 
involving two sorts of particles with creation and 
annihilation. 

We note that the idea of associating a stochastic process 
with the isotropic spin-! case is not new. Powers,3 and earlier 
Hurst and Sherman,4 based on an idea of Dirac related it to a 
random walk on the permutation group of A to obtain corre
lation inequalities. For related ideas, see Powers5 on resis
tance inequalities. 

In Sec. III, we give a path space integral expression for 

the spin-! semigroup ! e - /11'1 and perturbations of it of the 
sort Hy---+Hy + 8 V + 8 W with 8 V a multiplication opera
tor, 8 W a "drift" term (Feynman-Kac, Cameron-Martin 
formula). In Sec. IV, we illustrate the use of the formula by 
obtaining some thermodynamic correlation inequalities [see 
Lemmas 4.1,4.2, and Remarks]. The first inequality, origin-

")Partially supported by NSF·MCS 74-073 J 3-A03. 

ally obtained by Hurst, Sherman, and Powers3.4 in the spin-! 
case, is a special case of the first Griffiths inequality. The 
second inequality, Lemma (4.2), is closely related to a dia
magnetic inequalities for Schrodinger operators, and can be 
interpreted as a bound on short range order. 

II. MARKOV SEMIGROUP PROPERTY AND EXAMPLE 

We recall a fact concerning finite dimensional Markov 
semigroups and we give an abstract finite dimensional ver
sion of the method of multiplicative variation. 

Proposition 2.1 (cf. Ref. 6, p. 114): In ajinite dimension
al state space [e 'C 1 is a Markov semigroup iffG is a matrix 
with entries satisfying gjj ;;'Ofor i -=/=-J and ~jgij = O,foreach i, 
i.e., G has positive off-diagonal elements and annihilates 
constants. 

Lemma 2.2: Let dY be ajinite dimensional Hilbert space 
with orthonormal basis! e"e2, ... ,e" I, and let a "a2, ... ,a" be a 
set of complex numbers, a j -=/=-0, i = 1, ... n. Define U: 
J7'" ---+/2( p,2, ... ,n J, fl) withfl(! k D = la k 12 and Uej = J; with 
J;(k) = (lla)8jk · Then U is unitary. Supposefurther 
<Po = ~aAEJ7"'. Then U<Po is identically one on ! 1 ,2, ... ,n I. 

Proof The operator Uis clearly unitary. We have 
U<Po(k) = ~pj J;(k) = ~pj(lla)8jk = 1. 

Proposition 2.3: (Method of Multiplicative Variation): 
Let,W', U, and <Po be as in Lemma 2.2, with a j > 0, i = 1,. .. ,n. 
Suppose G acts in Yr'so that G ej = ~jgjjej with gij;;'O for 
i-=/=- J and G<po = O. Then G - UGU-' is the generatorofa 
Markov semigroup. 

Proof The operator G annihilates constants since 
Gl = GU<po = UG<po = O. On the other hand, the matrix for 
Gis easily computed to begjj = a j - I gjpj which has positive 
off-diagonal elements. • 

We now apply Proposition 2.3 toHN . The state space is 
identified with the orthonormal basis for J7"'N, 

! const X J'~ (ml) .. ·J''t- (mr)fl, mjEA, ~~_, Ij = N I. (The 
vector fl = ® 1 - s> is the normalized ground state in which 
the J] spin at each site is - s.) The off-diagonal part of 
- HN is just !~' [J.(m) J_(m') + J-(m)J.(m')]; with the ca

nonical choice of positive Clebsch-Gordan coefficients for 
the raising and lowering operators (Ref. 7, p. 25), one sees 
that the off-diagonal part of - H N has positive entries. Note 
further that - H annihilates fl, and commutes with 
~mEAJj(m), i = 1,2,3 and in particular with ~mEAJ.(m). 
Thus, Hy annihilates <po-(1IN!)[~mEAJ.(m)]N fl which 
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has all its Fourier coefficients strictly positive. By Proposi
tion 2.3, we have the following result: 

Theorem 2.4: Let HN be the restriction of the spin-s Hei
senberg Hamiltonian H to the N-spin wave sector. Then 
- H N is unitarily equivalent to the generator of a Markov 

semigroup. 
Example 1: (spin-! - simple exclusion process): The 

normalized N-spin wave states are given by 
ON = IJ.(m l)J.(m2)···J.(mN)n Iml .. ··,mNEA and distinctJ 
and the constant function is identified with 
(lIN!) [~J.(m;)]N n = ~ J.(ml)···J.(m N) n, where the 
latter sum extends over all (m I, ... ,m N) with mi distinct. The 
state J.(m 1)···J.(m N)n corresponds to a configuration of N 
particles with positions m I"" ,m N in A. Consider first the off
diagonal part of - H N , i.e., 
~'~ [J.(m)J_(m') + J_(m)J.(m')]. This operator has the ef
fect of causing a particle to jump with weight! to a nearest 
neighbor site if that site is unoccuppied, i.e., ifthejump is not 
forbidden. If none of the particles are neighboring, there are 
2dN such jumps possible (d is the lattice dimension). 

We turn next to the diagonal part of - H. This part 
~'[J3(m)J3(m') -!], applied to a vector in ON' is equal to 
(has eigenvalue) -! X number of occupied-unoccupied 
"bonds." If the particles are the not neighboring, there are 
2dN occupied-occupied bonds. If some are neighboring, 
there are 2dN - j such bonds, wherej is twice the number of 
occupied-occupied bonds, or in other words wherej is the 
number offorbiddenjumps. In summary, this part of - H N 

can be written 

(2.1) 

This gives us that IP"l withP=l + (l/2dN)( - 2HN ) 

is (unitarily equivalent to) a discrete time Markov semi
group. At each step a particle is selected at random and 
moved in a random direction one step unless the jump is 
forbidden in which case the particle configuration remains 
the same. The total probability of the configuration remain
ing the same is proportional to the number of forbidden 
jumps. Thus, P is the transition probability for a discrete 
time N particle simple exclusion process (cf. Ref. 2). 

We now make the time continuous by randomizing the 
jumps according to a Poisson distribution. 

K - - dN, ~ (dNt t P" _ - ,N, ,-e L , -e , 
n. 

(2.2) 

giving us a continuous time N-particle exclusion process. 
Example 2: (convex linear combinations of generators): 

Suppose Hand H' are spin-s isotropic Heisenberg Hamilto
nians with nearest and next nearest neighbor ferromagnetic 
interactions, respectively. Then - [aH + (1 - a)H'], 
O<a< 1, has positive off-diagonal matrix entries and annihi
lates [~m J.(m)]N n, and so is equivalent to a Markov semi
group generator. 

III. PATH SPACE REPRESENTATION OF SPIN-l 
SEMIGROUP AND PERTURBATIONS 

Let XN(t) = [xl(t), x 2(t ), ... ,xN(t)] be the configura
tions of the N particles in A at time t (see example 1 of the 
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previous section). As a function of time, we assumeXN(t) is 
right continuous and piecewise constant. Let 6 V (X N )be a 
real function of the particle configuration, and 8p(X N' X :v) a 
complex function of (configurations) X (configurations), 
which is zero unless X N can be obtained from X:V by moving 
a single coordinate of X:V to a nearest neighbor site. Define 
the set of paths 

dsN( YO,YI, .. ·,YN; to,t ..... ,t",t) = IXN(·)IXN jumps 
within t I ± (dt .l2), ... ,t" ± (dt" 12) and between jumps as
sumes the values Yo,""Y" J. (3.1) 
We define a path space measure J.l N such that the measure of 
dSN is 

J.lN(dsN) = exp { - ;t: [1 +6V( lj_I)](tj -tj _ I )} 

" X IT p( lj, lj -I )dt" ... ,dt" , (3.2) 
j~ I 

where tIl + I =t and 

with 

p( Y', Y) = poe Y', Y) + 8p( Y', y), 

poe Y', y) = _1_, if Y' is obtained from Y by 
2dN 

(3.3) 

moving a single coordinate of Y to an 

unoccupied nearest neighbor site, 

= L, if Y' = Yandj is number of 
2dN 
forbidden jumps in configuration Y. (3.4) 

Next define P, to be the integral operator with kernel 

P,(Y,Yo) = J.lN(IXB(·)IXN(O) = YO,xN(t) = Y j). 
(3.5) 

Proposition 3.1: The measure J.l N is bounded on the space 
of paths IXN(s)IXN(O) = YoO<s<t J. The operators IP, J 
form a semigroup with generator G N given by 

GN f( Y) = LP( Y', Y)f( Y') - [1 + 6V( Y)] f( Y). 
Y' 

Proof Let a,b be constants such that 
inf[l +6V( Y)]> -a,suplp( Y, Y')I<b. Then 
I J.lN [dsN( Yo,· .. ,Y" ;O,tl,· .. ,t" ,t)] I <ea'b "dtl· .. dt" , 

(3.6) 

while an estimate on the number of paths with n jumps is 
(2dN) ". Integrating over the jumping times and summing 
over n we obtain an estimate on the path measure of 
exp (at + 2dNbt). 

That I P, J is a semi group follows readily from that fact 
that 

.(""" ... """, J.lN [dsN(YO' Y I''', Y" ;to,tl,· .. ,t" ,t)] 

= ito i,,,,, ""'''',,,s J.lN [dsN(YO' YI''''Yi;to,tl,· .. ,ti'S)] 

X l"""c. ... .;.,,,.;.,J.lN [(dsN(Y""Yn;S,t'+I, .. ,t,,,t)]. 

Lawrence E. Thomas 1922 



                                                                                                                                    

Its generator can be determined by differentiating Pt and 
setting t = O. Since paths with n jumps have measure 0 (t n), 
Eq. (3.6) follows easily from Eqs. (3.2) and (3.5). 

Let Il~ and G ~ be the measure and semigroup gener
ator of proposition (3.1) and corresponding to t5V = t5p = O. 
Comparing Eqs. (3.4) and (3.6) with example 1 of the pre
vious section, one see that 

G~ = - _1_HN' (3.7) 
dN 

Finally, we develop a perturbation formula for IlN in 
termsofll~, assumingt5p(Y',Y) = o unless Y'# Yand Y' is 
obtained from Yby moving a single coordinate of Yto a 
neighboring site. We write 

exp[ - jto t5V(Y,)(tj + 1 - t)] = exp{ - L t5V [XN(s)] dS}, 

and since t5p( Y, Y) = 0, 

ITp(Y"Y,-I) 
j~l 

= ITpo(Y" Y,-l) IT [1 +2dNt5P(Y"Y,-I)] 
j~ 1 j~ I 

= lI/o(Y"Y,-I) exp [ 2dNjtl t5P(Y"Y,-I) 

- (2d;)2 jtl t5p2(Y"Y,_I) + o (t5p3)]. 

Combining these two expression, we obtain the following: 
Proposition 3.2: Assume t5p(Y',Y) = 0 unless Y' is ob

tained from Y by moving a single coordinate of Y to a neigh
boring site. Then IlN is given by the perturbation formula 

IlN [dsN(YO' Y1'''''Yn ;to,tl, .. ·,tn ,t)] 

= exp{ - F dst5V [XN(s)] +2dN jtl t5P(Y"Y,-I) 

- ~(2dN? jtl t5p2(Y"Y,_I) + o (t5P)3} , 

XIl~ [dSN(YO'Yl'··'Yn;to,tw··,tn,t)]. (3.8) 

The generators GN and Go,. are related by 

GNf(Y) = G~f(y) + Lt5p(Y',Y)f(Y') 
Y' 

- t5V(Y)f(Y). (3.9) 
Remark: The perturbations t5 Vand t5p can be represent

ed in terms of spin operators. We do not do so for t5 V here, 
but we note that the operator J+(m)J_(m') corresponds to 

t5p( Y, Y') = 1, if y is obtained from Y' 

by moving a particle at m' to m, 
= 0, otherwise. (3.10) 

IV. THERMODYNAMIC CORRELATION INEQUALITIES 
FOR SPIN-} HEISENBERG MODEL 

3 

Let H be the isotropic spin-! Heisenberg Hamiltonian. 
Lemma 4.13,4: 

L trJi(m)e- (P- t)H Ji(m')e- tH> 0, m ,m'EA, 0 < t< [3. 

Proof Consider first 

tr J_(m)e - (P - t)H J+(m')e - tH 

1923 J. Math. Phys., Vol. 21, No.7, July 1980 

= L L (m l,m2 ,· .. ,mNI J_(m)e-(P-t)H 
N m, •... ,m"'EA 

(4.1) 

with Im l,m2 , ... ,mN) = J+(m l)···J+(MN)!1. Each term in the 
sum has a path space interpretation; start the particles at 
ml, ... m N and propagate them for a time dNt [recall G~ 
= - (1/dN) H N )]. Inject another particle at m', ifpossi

ble, symmetrize, and propagate the N + 1 particles for a 
time d (N + 1)( [3 - t) and then "kill" them all at 
ml, ... ,mn ,m. Each of the terms is nonnegative and some are 
strictly positive. Thus, Eq. (4.1) is strictly positive. 

Now let U = II mEA eirrJ,(m). Then U is unitary, com
mutes with H, and satisfies UJ ± (m)U- 1 = J =F (m). By the 
in variance of the trace under unitary automorphisms, we 
obtain tr J+(m)e - (P - t)H J_(m')e - tH > 0, which added to Eq. 
(4.1) gives 

2 
L trJi(m)e - (P- t)HJi(m')e - tH> O. 
;= 1 

[Terms involving J+(m) J+(m') or J_(m) J_(m') are zero since 
particle number is not conserved.] Again using rotation in
variance, we obtain the lemma. • 

Remarks: Lemma 4.1 is a slight generalization of Refs. 
3 and 4 since they consider the Ji's at equal times only. It 
should be clear that a similar argument will work for an 
isotropic Heisenberg model of arbitrary spin. The argument 
can also be used to show that products of higher degree in the 
J ± 's have positive thermal expectation. 

Let (A, B)p denote the thermal duHamel expectation 

(A,B)p = fJ~ i P 
tr(A+e-(P-t)HBe-tH)dt, 

Z = tre- PH. (4.2) 

Lemma4.2:Let A = .!'b(m,m}J(m) X J(m'), whereb 
is real, .!' is a sum over nearest neighbors, and X denotes the 
vector product. Then 

"( ) 3d IA I 2, L.. A;.Aip<--- sup h (m,m). 
i f3 m.mEA 

(4.3) 

Remarks: This inequality is closely related to the dia
magnetic and paramagnetic inequalities of Schrodinger op
erators with magnetic field. The global rotation symmetry of 
H can be localized, giving rise to a "gauge" transformation 
H-+H' = U(g)HU-1(g), with 
U (g) = expi.!mEA .!i ~ I gk (m)Jk(m). In particular, if 
U = expi€ .!mEA g(m )Jlm), then 
H' =H + (d2)'!'[g(m) - g(m')] [J(m)X J(m')]3 
+ 0 (€2) with gauge field h (m,m') = €[g(m) - g(m')]. For 
this field, inequality (4.3) is essentially that obtained from 
the Bogoliubov inequality (cf. Ref. 8, Eq. (13)] 
(C,H], [C,HDp «1/ [3)([C,H], C])p, with C 
=.!' h (m)Jim). [Theright-handsideisO(IA II [3) sup h 2)]. 

Inequality (4.3) is a generalization of this inequality to gauge 
fields which cannot be gauged away, i.e., which are not curl
free. 

The quantity A is a measure of spin alignment and clas
sically would be zero if all the spins pointed in the same 
direction. There is a lower bound associated with the individ-

Lawrence E. Thomas 1923 



                                                                                                                                    

ual terms of A, which for spin! is 

[J(m)XJ(m')f = J 2(m)J2(m') 

- [J(m).J(m')] 2 
- J(m)·J(m');:;d/4. 

Pro%/Lemma (4.2): LetB = (lIdN)A3 
= (1I2dNz) L' h (m,m')[J.(m)J_(m') - J_(m)J.(m')]. ByEq. 

(3.10), B corresponds to 

8'P(Y,Y') = + _l_h (m,m'), if Yobtained from Y' 
- 2dNi 
by moving a particle at m' to m (or m to m'), 

= 0, otherwise, 

and by Eq. (3.8), 

j f.lN [dsN(YO,···,Yn;O,tp···,tn,t)] I 

<;exp [- ~(2dN)2 i 8p2(Yj,Yj_I) + o (8P?] 
2 j ~ I f1-~(ds,) 

<;exp!1I2 nh 2 + O(h 3)J f1~ [dsN(YO""'Yn ; O,tl, ... ,tn,t)] , 
(4.4) 

with h = supjh (m,m')j. Note that n is the number of jumps 
in the path and is a random variable. 

We have that if H 'tv = HN + A3, trNe - 13H:, = S f1N(dsN) 
w here in tegration is over all N paths X N (s), ° <;s <;dN {J start
ing at any configuration (ml, ... ,mN) and returning to that 
(permuted) configuration. Inequality (4.4) and Eqs. (3.2) 
and (3.7) give 

1924 

= e - dN 13(1 - e'l", ') I e - dN t3e'''h' 

I Y,I 

(dN {Je l !2h 'y n 
X IIPo(Yj,Yj-I) 

n! j 

_dN/3(1_e1/ 1h ') -{3e"'H, = e trNe 

<;e112dN t3h' tr N e - t3H" 

J. Math. Phys., Vol. 21, No.7, July 1980 

(4.5) 

by Eq. (3.2), and where we have retained 0 (h 2) terms only. If 
we multiply h (.,.) by a scale factor € and expand to order~, 
inequality (4.5) gives 

trNe - 13 (H" + EA,) 

= (trNe - t3H,)[ 1 + 112 {J2€2(A 3.A 3)]N + ... 
<;(trNe - (t3H'»(l + 1I2dN {J~h 2 + ... ) (4.6) 

since trN(e - t3H 'A) = 0. Here, 

(A,B)N 13 tr N(e - t3H'yl ~ {t3 trN e - (t3 - t)H'A te - tH'B. 
{J Jo 

Inequality (4.6) gives 

(4.7) 

Inequality (4.7) holds N sector by N sector. It implies 
that (A), A3)t3<;(d jA j/{J)h 2. Rotation invariance gives the 
lemma. • 
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Using the full partial wave series for the exchange coupling constant J (k,k') = ~r ~ o(2L + 1) 
X P L Ck.k ')J L (k,k '), in standard notation, for an sod type exhange interaction between a local spin 
(electronic or nuclear) and free conduction electrons in metals, the corresponding full partial 
wave series for the long range, indirect, exchange interaction (Ruderman-Kittel-Kasuya
Yosida, RKKY) between two such local spins is derived. 

In particular, the asymptotic long range form of the exchange coupling constant is 
Y(R)~ - (91rn2/EF)J~KKyCOs(2kFR )/(2kFR l, whereJRKKy = ~r~o(2L + 1)( _1)L 
XJL (kF,kF)' For constant JL (k,k ') = JL the exchange coupling Y(R ) is exactly calculated for 
all distances R in terms of standard functions. To obtain this result nonstandard indefinite 
integrals of spherical Bessel functions have been calculated and the results are given in terms of 
recursion relations. Also, a closed form is obtained for the Cauchy principal value of the singular 
integral SO'dy y2j/(y)/(y2 - x2). Results are given for the electron spin polarization due to a local 
spin. 

I. INTRODUCTION 

The long-range Ruderman-Kittel-Kasuya-Yosida 
(RKKY) indirect exchange interaction 1 between two local
ized spins S in a metal is mediated by the conduction elec
trons, and arises from the sod or s:finteraction of each spin 
with the electrons according to the Hamiltonian2,3 

(1) 

ad 

The operators ck: and Ck'a' create and destruct free electrons 
with wave vectors k,k' in spin states ~,~'. The sum ~kk' 

aa' 
runs over all the states of the electrons. Direct exchange inte-
grals give positive contributions to J, while mixing exchange, 
via the Schrieffer-Wolff transformation4 of the Anderson 
Hamiltonian,5 gives negative contributions to J. It is clear 
that some assumptions implicit in this model need not be 
good approximations in particular systems, like the assump
tion of free electrons or the existence of a local spin. Such 
complications are discussed by other authors6 ,7 and will not 
be further considered here. 

In the two cases of direct and mixing exchange referred 
to above, Watson, Freeman, and Koide8 give a partial wave 
expansion3 of J 

J(k,k')= ! (2L + I)PL(k.k')JL(k,k') , (2) 
L~O 

where P L is a Legendre polynomial. The implications of this, 
when one of the partial waves is assumed to dominate, were 
discussed by for example Coqblin and Schrieffer,7 who gave 
the asymptotic form of the RKKY interaction for L = 3, 
and by Caroli.9 Attempts to evaluate a set oftheseJL values 
(taken as constants independent of k and k '), for example Jo, 
J 1, and J2 in AgMn, were done on the basis of different ex
periments that depend on different combinations of the JL 

by Davidov et al. 10 and by Walstedt and Walker. 11 One finds 
that the conduction electron spin polarization in the asymp-

totic limit of long distances from a local spin S, associated 
with a Mn impurity, for example, will be proportional to the 
combination 

JRKKy = ! (2L + 1)( - I)L JL , (3) 
L~O 

while for example the conduction electron g-shift, by virtue 
of P L ( 1) = 1, in first order of perturbation theory in the J L is 
proportional to just 

(4) 

Davidov et al. 10 also gave an involved expression for the 
resistivity in the second Born approximation (i.e., third-or
der perturbation theory in JL ) that thoroughly mixes the 
three J L that are included. That calculation can be shown to 
behave better in an extension 12 of the nonperturbative theory 
of Larsen 13 to deal with all the partial waves present in Eq. 
(2). This produces expressions that, among other things, es
sentially confirm the original result due to Blandin 14 that the 
Kondo temperature is given by3 

T = T exp(- 1 ) 
K F n(EF)IJK I ' 

(5) 

where J K corresponds to the resonantly scattering partial 
wave L = K with J K < 0, that gives rise to the Kondo effect. 

Recently Lindgard, Harmon, and Freeman 15 empha
sized that in pure Gd the spin wave spectrum can only be 
properly calculated if one uses all the dependence on 
q = k - k'. Only direct exchange was considered in this 
work. For the mixing exchange, originating in the 
Schrieffer-Wolfftransformation of the Anderson Hamilton
ian, the dependence of Jon k and k' comes from the Vk 

mixing matrix elements,5 i.e., J (k,k') ex Vk Vk , , 

This part is negative and larger than the corresponding 
direct exchange integral whenever there is a Kondo effect. 
The complications of the Kondo effect, however, make this 
question of the k and k' dependence enormously difficult to 

1925 J. Math. Phys. 21 (7), July 1980 0022·2488/80/071925-13$1,00 © 1980 American Institute of Physics 1925 
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deal with because all measurable effects depend in compli
cated nonperturbative ways on J. In these cases the J L are 
therefore always assumed constant, and since the present 
results are primarily intended for use in the context of 
RKKY modified Kondo systems, 13.16 i.e., spin glasses, 17 the 
approximation of constant JL will also be done at a certain 
stage in the present work. 

However, it has not been worked out how the partial 
waves combine in the RKKY interaction3 

(6) 
ij 

For only one partial wave it is known9 that Yo:: (2L + 1)2 
J~. 

The interest in this question from an experimental point 
of view has recently been accentuated by investigations of 
spin glass and Kondo dilute alloys under high pressures by 
Schilling and others. 16. 18 In a recent comprehensive review 19 

of the existing body of experimen tal work, Schilling demon
strates a universal increase with increasing pressure of the 
resonant IJ K I in a variety of dilute Kondo alloys, like CuFe, 
based on the observation of a universal increase in the 
Kondo temperature, given by Eq. (5)_ In more concentrated 
alloys one may obtain information about the pressure depen
dence of the RKKY interaction by studying the resistance 
maximum I3

.
1
6-19 and the spin glass freezing tempera

ture.20.21 In order to analyze these results one must know 
how Y (R ij) depends on the components J L' not only on the 
resonant J K' Schilling has conjectured that 19 

Y(Rij) o::JRKKy 2, (7) 

and on the basis of this one finds good agreement between 
the pressure dependences determined in dilute alloys (J K ) 

and in more concentrated spin glass alloys (all JL ). This re
sult supports the possibility that due to the ( -1) L the posi
tive Jo and J 1 of non vanishing magnitude may partially can
cel out when forming the relevantJRKKy , which may then be 
dominated by the resonant J 2 < 0 (for 3-d impurities) en
hanced by the (2L + 1). The values determined by Davidov 
et al. for AgMn, Jo = 0_13 eV, J 1 = 0_09 eV, and 
J2 = -0.13 e V are consistent with this idea. 

In the present paper I verify Eq. (7) as a result valid in 
the asymptotic limit of k FRij- 00. This is sufficient to deal 
with reasonable confidence with the dilute Kondo and spin 
glass alloys (c < 1 %) of the 3-d type, whereas in 4-jtype 
alloys (like LaCe of concentrations up to 40% Ce) and com-

1926 J. Math. Phys., Vol. 21, No.7, July 1980 

pounds (like CeAl2 and CeAI3) and certainly in elements 
(like Ce) there may be a need to consider the more complicat
ed behavior at shorter range. In the following the exact form 
of Y(R ) including all partial waves is given. Next, allJL are 
taken as constants (an approximation that must be justified 
in each case where applied), and further exact expressions in 
terms of standard functions are given for the remaining 
integral 

1 SakI. 
JI(kFR) = - - dkk 2MkR) 

1Tk~ 0 

f
oc k 12 

X dk I ,2 2 il(k'R), 
o k-k 

(8) 

as well as related integrals, as for example the inner integral 
over k', that are not standard integrals. This effort, which is 
mostly relegated to the Appendices, is motivated by math
ematical completeness, but also by the fact that the integrals 
may occur as well in other contexts. J I is in fact just the 1'th 
partial wave of the range-dependent, static, zero-tempera
ture susceptibility, i.e., the Fourier transform of the Lind
hard function,22 that describes the response of the degener
ate free Fermion gas when coupling by all partial waves to a 
localized (non-point-like) disturbance. An example of this 
response is the conduction electron spin polarization, due to 
a spin localized in atomic impurity orbitals as in the systems 
discussed above, which displays the familiar Friedel oscilla
tions. The full range dependence of this is given in Section 3 
as a corollary to the present calculation of the indirect 
exchange. 

The inclusion of more than one partial wave in Y(R ) 
has implications for properties derived from it, like for exam
ple the spin glass freezing temperature To and the noise tem
peratureLl c ' In a recent calculation20 of these quantities only 
the resonant partial wave was included and the asymptotic 
form of Y(R) for R-oo was used. It is shown here that in 
general the RKKY interaction has the asymptoticform 3 

Y(R)- _ 91Tn
2 

J2 cos2kFR 
EF RKKY (2k

F
R? . 

(9) 

If this is used the modifications of the theory in Ref. 20 con
sist in replacing ( -1) K(2K + I)JK by JRKKy and one 
obtains 

(10) 

wheref(c,A. ) is a function ofthe concentration c and the elec
tron mean free path A., which was derived and discussed in 
Ref. 20. 

2. GENERAL RKKY INTERACTION 

The diagrammatic finite temperature Green function 
method used in the derivation in this section is the standard 
method described in the books. It differs in form but not in 
content from the conventional procedure. The interaction 
Jf' RKK Y is the Fourier transform of the static part of the 
diagram shown in Fig. 1. 

The spin part of this becomes, using that Tr(a"cfI) 
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L (Si'O'aa' )(O'a'a,Sj) 
aa' 

L SfTr(a"aP)Sf = 2S i ·Sj . 

a,{3 = x,y,z 

Then using 

kAq ¢ L eiq
.
R " V = L /(k - k·)·R i 

" 

qk' k' kk' 

and the sum over the Matsubara energies imn 
(T = temperature) 

n + p imn = itrkB T(2n - 1);n = 0, ± 1, ± 2,.··, 

9 iSp = itrkB T2p, p = 0, ± 1, ± 2,.··, 

it follows tnat 2 RKKY can be written in the form (6) with 

Y(Rij) 

22 ! (2L + 1 )(2L ' + 1) L P L (k.k ')P L' (k '.k) 
N a L.L' ~ 0 kk' 

XJL (k,k ')JL'(k ',k )exp [i(k - k').Rij] 

XkBTL G(k,imn + iSp)G(k',imn )· (11) 
n 

The expression must be analytically continued from the 
points iSp to just above the real axis iSp -0 + iO+. The elec
tron Green functions are 

(12) 

where Ek = Ek = fz2k 212m is the energy of a free electron. 
Also, as usual, 

foo d 3 k V 100 

2 i ~>.=V --3"'=--3 dkk df1k· .. , 
k - 00 (2tr) (2tr) 0 411' 

where Vis the volume, f1k' is the direction ofk, and df1k the 
element of solid angle in that direction. Then by a well 
known theorem22 

TL 1 1 f(Ek,)-f(Ed 

n imn +iSp -Ek imn -Ek, Ek , -Ek +iSp , 

wheref(E) = (1 + eElk"Ttl is the Fermi function at tem
perature T. Then letting isp-o + iO+ one gets the standard 
decomposition 

where the imaginary part vanishes by virtue of the c5-func
tion. This term now only depends on the magnitudes ofk and 
k'. One gets 

Y(R) = - --;- .t (2L + 1)(2L ' + 1) r df1k 
N a L.L ~O J411' 

X r dl1k,PL (k.k')PL(k'.k) 2m (~)2 
J411' fz2 (2tr)3 

1927 J. Math. Phys .• Vol. 21, No.7, July 1980 

(13) 

00 m=+l 
eik

.
R = 4tr L L iliI(kR )Yt'(l1k)Yt(f1R), 

I~Om~ -I 

<:0 m'= +/' 

e- ik'.R=4tr I I (-I),JI,(k'R)Yt(f1k,)Y't'(f1R), 
I' ~O m'~ -I' 

whereby (13) becomes 

Y(R) 

= 9trn
2 

~ ! (2L + 1)(2L ' + 1) 
E F trk F L.L' ~ 0 

X /,l~ 0 m.m'+~~ ;'_1' Re 1kfdkk 2ill(kR) 

£00 k' 2 

X dk' ,2 2 (-i),JI'(k'R)JL(k,k')JL'(k',k) 
o k-k 

X r df1k r df1k,PL(k.k')PL'(k'.k)Y'(f1k) 
J41T J41T 

X Yt(I1R)Y';'(f1k' )y,;'·Cf1R)· 

Then by the addition theorem 

AA 4tr M~+L 

PL(k.k') = -- I Y~'(f1k)Y~(f1k')' 
2L+IM~-L 

(14) 

and similarly for P L' , to calculate Y (R ) there are therefore 
two angular integrals to do 

r df1k Y~'(f1k)Yt'(f1k)Y~:(l1k) 
J411' 

= [ (2L + 1)(21 + 1) ] 1/2 (LlooiL '0) (LlMmIL 'M') 
4tr(2L' + 1) 

and 

r dl1k, Y~: '(l1k' )y;'?'(flk' )Y~(l1k') 
J411' 

= [(2L + 1)(21' + 1) )1/2 
4tr(2L' + 1) 

X (Ll'ooiL '0) (Ll'Mm'IL 'M') . 

Both integrals vanish unless L,L ' and lor I' satisfy the trian
gular rules 

L' 

<1 I or I' 
L 

M+m=M' 
M+m'=M" 

(15) 
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It is possible to further simplify the result by choosing for fl R 

the direction of the coordinate z axis. Then 

Y;"(flR =fli)=~Omo, 

Y;'( '(flR = fli ) = ~ 2/~: 1 0m'O' 

which also leads to the condition 

M=M'. (16) 

One gets for the angular integrals in Eq. (14) 

( ( = (21 + 1 )(2/' + 1) 0 0, 
J4,,-J4,,- (2L ' +I)2 ",0 rna 

x I (LIOOILIO>(LIMmILIMI)(LlIOOIL'O) 
MM' 

X (LlIMm'IL 'M') . 

Then use the expression of the vector-addition coefficients in 
terms of the 3j symbols 

<iJ2m lm llj3m 3) 

= ( - 1)1' j,+ m.y 2j3 + 1 (jl j2 j3) 
\m l m2 - m3 

to write 

11 (L I LI)(L I' LI) = (21 + 1)(21' + 1) OmOOm'O 
4,,- 4" 0 0 0 0 0 0 

~ I LI)~ /' L'). 
X I M' I M' MM' m - m -

(17) 

The value of the M,M I double sum can be obtained from 

I fl j2 j)fl j2 f) = Ojj,Omm' 
m,m. m1m1 -m m 1 m 2 -m' 2j+l 

by putting 

jl=L, ml=M, 
j2=L ', m 2 = _M', 
j = 1, - m--4m , 

f = I', - m'--4m' . 

Then one gets 

(
L L' ll(L 

,l; M - M' m)\.M 
L' I') = oll,fimm, 

-M' m ' 2/+1' 

and by using the symmetry relation for column permutation, 
this becomes 

I (L 1 LI)(L /' LI)= fill,omm' . 

MM' \.M m -M' \.M m ' -M' 2/+1 
(18) 

One now combines the results (14), (17), (18) and obtains the 
final version 

,Y(R) = - 91Tn
2 f (2L + 1)(2/ + 1)(2L' + 1) 

EF L,/,L' = 0 

(
L 1 L ')2{ __ 1 !ok, dkk 2' (kR) 

X 0 0 0 k4 1/ 1T F a 

lOX dk I k 12 jl(k 'R )JL (k,k VL' (k ',k)} . 
Yo k '2 _k 2 

(19) 
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Here the explicit form of the 3j symbol is 

(~ 0 L~r 
(L + I - L ')!(L - I + L ')!( - L + I + L ')! 

(2p + I)! 

X (20) [ 
p! ]2 

(p - L )!(p -l)!(p - L ')! 

for 2p = L + I + L ' = even, and = 0 for 2p = odd. A spe
cial case is I = 0 which implies L = L ' whereby 

(
L 0 L)2 I 
000 =2L+l' 

(21) 

The restrictions on L,l, and L I are then 

L+I+L'=even, IL-L'I<I<L+L'. (22) 

It is clear that one gets no further than this without 
knowing or assuming something about JL (k,k '). However, 
in the asymptotic limit O/kFR ---+00 there is a possibility of 
simplifications. The spherical Bessel functionjl(kR ) oscil
lates with "period" k~21T/R. Looking first at the inner inte
gral in Eq. (19), therefore there will be a tendency to average 
out the integrand whenever R becomes large enough that an 
oscillation covers a range of k where the rest of the integrand 
only varies slowly. The only reason that the inner integral 
does not vanish entirely in that limit is the singularity at 
k '= k. This will pick out [JL (k,k) f A similar argument 
shows the emphasis on the values near k~kF in the k inte
graL It is therefore a reasonable approximation to take 
[JL(kF,kF) P in the leading terms o/the asymptotic expan
sion/or kFR --400. Not because it is a good approximation to 
[J L (k,k 'W, which is not assured, but because the integrations 
single out this part. Therefore, in the remainder of this sec
tion put JL (k,k ') = JL = const, whereby 

Y(R) = - 91Tn
2 f (2L + 1)(21 + 1)(2L' + 1) 

EF L./.I.' =0 

(
L I L ')2 

X 0 0 0 JLJI.']/(kFR) , (23) 

where], was defined in Eq. (8). One may obtain directly 
from the definition the asymptotic form of], which is a well
known result. Here it will be obtained as the appropriate 
limit of the exact solution of the integral. ], may be expressed 
in terms of the function 

(24) 

as follows: 

1 l,,·R 

JJ,(kFR) = - dx X~it(X)!/(X) . 
1T(kFR)4 0 

(25) 

In Appendix A is proved a recursion relation for .111, which is 
then used in Appendix B to prove that for I = even 

1T { m = 1 (l + m - 1)!! 1 } 
!I{X) = - '2 XYI(X) + m ~~4'... (1- m)!! ~ ,(26) 

and for I = odd 
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(l~/2 b(l) 
ITI(x) = - xlt(x)Ci(x) - xYI(x)Si(x) - 2.. I_IV -2v ' 

V~O X 

(27) 

where Ci and Si are the cosine and sine integrals. In both 
cases ITI (0) is finite 

ITI(O) = ~1T r( I ;1 )/r( I ~2 ) 

= (/- I)!! X {1T/2 for I = even, (28) 
I !! 1 for I = odd , 

but Ci(x) introduces a term ex: Xl + I Inx for x-o, so the 
function is not analytic there despite the exact cancellation 
of all pole-terms by the substracted sums in Eqs. (26) and 
(27). The numbers b~) are defined for 2v.;;;J - 3 by Appen
dix B, Eq. (BI5) 

b(l) = v (-I)k(2/-2v +2k -I)!! 

V k~O (2k + I)(2k + I)!(2v - 2k )!! . 
(29) 

As a curious corollary to the proof of these results it becomes 
possible to prove the validity of the following rather exotic 
sum of products of binomial coefficients (cf. Appendix D): 

Pf ( - I)P( 1)(21 + 1 - 2p ) 
P~O P 2p+I-2p 

= 22/1 (21 + 1 - 2p) ( I ) , (30) 
(/-2p) 2p + 1 

valid for integers I and p that satisfy 0<2p <I -1. It is pecu
liar by the appearance of "doubled" integers in the second 
binomial coefficient of the products. It was only possible to 
prove this independently because the result was suggested 
(cf. Appendix B) by the necessity to cancel all the poles be
tween the second and third terms in Eq. (27), to satisfy Eq. 
(28). 

The leading term for x--+ 00 comes in both cases from 
the term containingYI as Ci(x)-o and Si(x)--+1T/2, so 

ITI(x)-(1T/2)cos[x - (11T/2)] . (31) 

This result is also obtained directly from Eq. (24) by using 
the asymptotic formil(y)-sin[y - (11T/2)]!ywhereby it be
comes a standard integral. Next we obtain the asymptotic 
form of JI by considering the asymptotic series for the de
rivative (z = kFR ) 

(d Idz)( - 1TZ4JI(Z»-z2lt(Z)(1T/2)cos[z - (l1T/2)] 

-(1T14)z sin(2z -11T) 

= (1T14)( -1) IZ sin2z. 
The leading term in the expansion of JI is obtained by 
integration 

JI(kFR )-( _1)1 [cos2kFR 1(2kFR )3] . (32) 

Now L + 1+ L' = even implies (-1) 1=( -1) L( _1)L', 
The relation 

specialized to m I = m; = m2 = m~ = 0, which implies that 
m = 0 in the sum, then yields 

I ~ L + L' (L I L ')2 
2: (21 + 1) = 1 . 

l~ IL-L'I 0 0 0 
(33) 
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From Eq. (23) one then obtains 

91Tn2 
[ 00 ] 2 cos2k R 

.7(R)---- 2:(-I)L(2L+I)h F
3

, 

EF L~O (2kFR) 
(34) 

which is the result quoted in Eqs, (3) and (9)/or the leading 
term in the limit kFR--+oo. 

Now consider the full JI(kFR), Introduce two new 
functions, 

lF~(p)= f dxx2
-

m.it(x) , (35) 

which is calculated in Appendix E, and 

AI(p) = f dx X3lt(X)YI(X) , (36) 

which is calculated in Appendix F. One may then write for 
I=~en 

JI(kFR) = 1 4 (AI(kFR) 
2(kFR) 

+ mfl (I+:-~)!! lF~n(kFR»). (37) 
m ~ 2.4, .. · (I m) .. 

To obtain the result for odd I introduce another three 
functions, 

BI(p) = f dx x 3lt(x)lt(x) , (38) 

also calculated in Appendix F, and next 

CI(p) = f dx x 3lt(x) [JI(x)Ci(x) + YI(x)Si(x)] , (39) 

DI(p) = f dx X~I(X)[JI(X)COS(x) + YI(x)sin(x)] , (40) 

both of which are calculated in Appendix G. None of the 
functions AI, B/> CI, and DI, are standard, B/> and DI, are 
introduced to obtain CI, One then obtains for I = odd 

JI(kFR) = 1 4 (CI(kFR) 
1T(kFR) 

(41) 

Even though the approximation of constant JL is not 
certain to be valid outside the asymptotic limit of large dis
tance it is still of interest to consider the short-range limit of 
kFR-o. This will provide information about the way that 
the different partial wave terms are mixed. The limit is easy 
to obtain. Consider the definition equation (25). The leading 
term in the integrand for x-o is obtained from Eq. (28) and 
i,(x}::::",-xl /(21 + I)!! and gives 

J,(kFR) 

(kFR )' - I X {1T/2 for 1 = even, 

(I + 3)(21 + I)!! 1 for I = odd. 

~ _ ~ (I-I)!! 
1T l!! 

(42) 

This means that at short range the I = 0 term will dominate, 
The R -I singularity is integrable, and causes no difficulty. In 
fact, the integral over space of ]0 is proportional to the finite 
Pauli spin susceptibility of the free electron gas, as is well 
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known. Then in Eq. (23) I = 0 terms have L = L ' and, using 
Eqs. (21) and (42), one obtains for kFR~ 

Y(R)~ 91m
2 f (2L + 1) JI _1_. (43) 

EF L=O 6kFR 

The combination of J L is quite different from the J~KKY 
obtained in the long distance limit. One thing to notice is that 
the emphasis on large L is less at short range than at long 
range. 

In the partial wave expansion of Yrs•d one usually con
siders only terms up to the value of L = K that has a negative 
J L = J K' due to the mixing exchange, if such a term exists at 
all. This will be L = 2 for 3-d impurities like Fe in Au or Mn 
in Cu, while it will be L = 3 for 4:fimpurities, like Ce in La. 
By the triangular condition (22) one needs only values of I up 
to twice the maximum L included. When one does not con
sider either of the two limits of short or long distance, the 
result is still rather complicated to write down. While the 
recursion relations of the Appendices are therefore the most 
convenient for practical purposes, it may be interesting to 
write out explicitly the first few functions J/. Using Eqs. (37) 
and (41) together with the results of the Appendices one 
obtains 
Jo(kpR) = [l/(2kFR )4] [2kFRcos2kFR - sin2kFR ] ,(44) 

which is the standard RKKY result. Next 

J](kFR) 

[l/1T(kpR )4] { ACi(kFR )[5cos2kFR 

+ 2kFRsin2kFR - 5 + 2 (kFR )2] 
- ASi(kFR )[2kFRcos2kFR - 5sin2kFR ] 

+ dx sinxf(x) - !!... Si(2kFR) - !kFRsinkFR , ik'R } 

o x 4 

where 
(45) 

f(x) = {'''' dt sint = Ci(x)sinx - Si(x)cosx + !!... cosx 
Jo t + x 2 

(46) 
is a standard function. The remaining integral does not seem 
to be reducible to standard functions, and will turn up in all 
the odd I functions by virtue of the recursion relation for C/. 
A few other forms of this function are given in Appendix G. 
Finally 

Jz (kpR ) = [l/2(kFR )4]{Az (kFR) + 3lF; (kFR )} 

[l/2(kFR tll - §[4Si(2kFR) 

+2k/:"R cos2kFR -5sin2kFR ] 

1930 

- !(kFR )4 [j](kFR )y](kFR) 

+ i2(kFR )yikFR )] 

+ ~ [Si(kFR) - sinkFR ] + ~ k FRj2(kFR)} 

1 4 { 12 [Si(kFR ) - Si(2kFR)] 
(2kFR) 

[ 
COSkFR SinkFR] 

+36 -
kFR (kFR)2 

+ [2kFR - ~ )COS2kFR 
2kp R 

+ [ 72 2 -13 ]sin2kFR} . (47) 
(2kFR) 
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3. ELECTRON SPIN POLARIZATION 

From the derivation in the previous section it is clear 
that one does not have to use the same Yrs•d at the two ends 
of the diagram in Fig. 1, and that rather the indirect ex
change interaction applies to any two spins that couple to the 
electron gas by an interaction of the form in Eq. (1). The 
result therefore also include cases of nuclear spins interact
ing with the electrons. It is of interest to consider the electron 
spin polarization, which may be defined in the following 
way. The RKKY interaction is written in the form 

YrRKKY = - (210INa)s(R ),S2' (48) 

similar to an Yrs•d type interaction with the spin S2 that only 
includes the L ' = 0 partial wave, and where s(R ) is the spin 
operator due to the electrons polarized by the spin SI at the 
distance R, i.e., the electron spin polarization. In order that 
this quantity be a property solely of the spin S] and the elec
trons, the probe spin S2 must be pointlike, whereby the ex
change integral becomes just I (k,k ') = 10 as assumed in Eq. 
(48). This can be seen in the following way. Suppose the 
exchange integral is of the direct exchange type 

l(k,k') = Na f f d 3rd 3r' tP~,(r')ifJ *(r)V(r - r')tPk(r)ifJ(r'), 

(49) 

The probe is then an electronic spin in a state with wavefunc
tion ifJ (r). If it has to be pointIike one must assume (i) zero 
size of this orbital: lifJ (rW = 8 (r), and (ii) zero range of the 
interaction: VCr - r') = (lo1Na)V8(r - r'). For free elec
trons in states with wavefunctions tPk (r) = V -I/Zeik.r one then 
has 

I (k,k') = 10 ' (50) 

Other probes could lead to similar results, like the hyperfine 
coupling to nuclei of the metaL The concept of spin polariza
tion is only useful when the probe can be considered pointlike, 
otherwise one must use the more general coupling Yr RKK Y , 

which in any case is the fundamental quantity, From (19) 
one now obtains, observing that for L ' = 0 one must have 
1= L, and the column interchange in variance of(21), 
s(R) = Y(R )(Na l21o)S], 

s(R)= _ 91TN; f (2L+l)(-~ (kl dkk 2 

2EFNaL=0 1Tk F Jo 
XjL(kR )£'" dk ' , ~' 2 2 jL(k 'R )JL(k,k '») Jo k - k 

(51) 

Ifin addition one takes JL (k,k') = JL = constant, as dis
cussed in the previous section, then 

91TN 1 
'" 

s(R) = - __ e I (2L + I)JLJ/(kFR )S] , (52) 
2EFNa L=O 

and the asymptotic limit becomes the well-known [cf (3)] 

91TN 2 
[ 00 ] cos2kFR 

s(R)~ - __ e I (-I)L(2L + I)JL J s] . 
2EFNa L = 0 (2kFR)-

(53) 

It is clear from this that it is impossible to generalize from the 
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spin polarization back to the RKKY interaction, as the cal
culation in the previous section showed. This is most clearly 
seen by comparing (52) with (23). The coupling to apointlike 
probe S2 does not contain the information relevant for the 
coupling to a probe with structure, whereas the reverse is 
true because one may shrink a structured probe to a math
ematical point, with more or less justification in the physical 
reality. 

APPENDIX A: RECURSION RELATION FOR I,(x) 

In this appendix is constructed a recursion relation for 
the integral (a Cauchy principal value) 

1
00 y2. 

lI/(x) = dy 2 2 }I(y) , 
o Y-X 

(AI) 

wherejl is a spherical Bessel function. The following stan
dard recursion relation holds 

!j1_1 (y) - (I + l)jl+1 (Y) = (21 + 1)(d/dy)jl(Y)· 
(A2) 

Operating with the integration in (AI) this gives 

Illi _ I (x) - (I + 1) III + I (x) 

£00 2 d 
= (21 + 1) dy / 2 d-NY). 

o Y -x Y 
(A3) 

By a partial integration, and using 

; ( y/~ x2 ) = ; (y2 ~ x2 ) 

2yx
2 

d ( y ) 
(y2 _ X2)2 = - x dx y2 _ x 2 ' (A4) 

Eq. (A3) becomes 

IllI _ I (x) - (l + 1)lIi + I (x) 

= x ~ '['00 dy 2 Y 2 (21 + 1)jI(y) . (A5) 
dxTo y-x 

Using another standard recursion relation 

(21 + l)Ny) = y[;/_1 (y) + jl+ I (y)] , (A6) 

one gets in (A5) 

IllI_1 (x) - (I + l)lI/+1 (x) 

d foo y2 
=x- dy V/-I(y)+jl+l(y» 

dx 0 y2 _ x 2 

d 
=x dx [lI/_1 (x) + lI/+1 (x)]. (A7) 

Introducing 

FI==lI/_1 + lI/+ I (A8) 

and t = lnx this becomes the simple differential equation 

(dldt)FI +(l+l)FI =(2/+1)lI/_l, (A9) 

with the solution 

FI = exp [ - (I + 1) J dt ]{ (21 + 1) J dt III _ I 

xexp[(l +1) J dt] + C/ } 
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(AlO) 

where CI is a constant. Then one has 

2/+1f I CI 
lI/+1 (x) = -lI/_I(X)+ ~ dxxlI/_l(x) + 1+1""' 

x x 
(All) 

To find the constants CI look at the x = 0 values: 

lI/(O) = 100 

dy jl(Y) =.Jf lOO dy y-1/2JI + 112 (y) (A12) 

= v'21T r( 1:1 )/ re ;2 ). (Al3) 

In fact, using the recursion relation (A2) one sees immedi
ately that 

\ll!/-1 (0) - (I + 1)11 + 1(0) = - (21 + I)jl(O) . 

So for I = 0 one gets 

11(0) = 1, 

and for I = 1,2,. .. 

1 
II + I (0) = --1/_ I (0) . 

1+1 

One also easily shows that (cf Appendix B) 

lIo (0) = 1T/2 . 

This is equivalent to the result 

(/- I)!! {1T/2 for I even, 
11(0) = X 1 

I!! for I odd, 

(AI4) 

(AI5) 

(AI6) 

(A17) 

where (even)!! = 2.4· ... ·(even) and (odd)!! = 1.3·5 ..... (odd), 
and Or! = 1 and (-I)!! = 1. Letting x~ in (All) gives 

21 +1 . (CI ) lI/+1 (0)= -1/_1 (0)+ --1/ _1 (0)+ lIm --I 
I +1 x_o Xl+ 

I ( CI ) = --lI/_1 (0) + lim -- . 
1 + 1 x-_o Xl + I 

Comparing with (A 15) it follows that for 1 = 0,1,2,. .. one 
must have CI = 0, and (All) becomes 

21+1l
X 

I 1/+1 (x) = -1/_I(x)+ -1-1- duulI/_l(u). 
x + 0 

(AI8) 

This is valid for I = 1,2,3,. .. , while for I = 0 one must keep 
the form (A 11) with Co = 0 since II _I is logarithmically sin
gular at X_O (cf Appendix B). 

APPENDIX B: INTEGRAL I,(x) 

In this appendix is calculated the integral (a Cauchy 
principal value) 

(Bl) 

wherejl is a spherical Bessel function of the first kind. The 
results are (BlO) and (B13). Consider first some values of I 
for which the standard decomposition 

jl(Y) =.t;(y) siny + ( _1)/+ If -1-1 (y) cosy (B2) 

does not include more singularfthany-2. These integrals are 
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relatively simple to calculate by contour integration and are 
tabulated. First 

f'" Y siny 1T 1T 
][o(X) = dy 2 2 = - cosx = - -xYo(x), 

o Y -x 2 2 
(B3) 

where y, is a spherical Bessel function of the second kind. 
Next 

L, (x) = foo dy ~ cosY
2 

= - cosxCi(x) - sinxSi(x) 
o y-x 

= - xj _, (x)Ci(x) - xy_l(x)Si(x) , (B4) 

where Ci(x) and Si(x) are the sine and cosine integrals. 
Further 

][,(x) = foo dy siny _ f'" dy Y cosy 
o y2 _ x 2 0 y2 _ x 2 

= - xj,(x)Ci(x) - xYl(x)Si(x) . (BS) 

For I = 2 and further on the integrals will have singularities 
of the integrand aty = 0 when split in this way, and these 
will give an important contribution, as seen in the following. 
For example 

][ix) = - (1T/2)[XY2(X) + 3/X2] . (B6) 

In Appendix A it was shown that ][, is finite at x-o [cf 
(AI7)] for I = 0,1,2,.·· 

][,(0)= \/21T r( 1~1 ) r( 1~2), (B7) 

while it follows from (B4) that due to Ci(x) -lnx 
L,(x)- -lnx. (BS) 

According to the recursion relation of Appendix A one 
should have 

][, (x) = - L, (x) + ~ J dxL 1 (x) 

as can easily be verified by a partial integration. Aside from 
this special case the recursion relation (AlS) holds. 

Consider the expansion 

xy,(x) = - ! 
n = - /, - 1+2,··· 

(1- n -I)!! n 
--'-----'-- X , 

(I + n)!! 
(B9) 

which has a number of terms that are singular for x-a, the 
strongest being - (2/- 1)!!/x'. For example, for I = 2 there 
is one singular term 

-3/x2
, 

which is exactly substracted out in (B6). In accordance with 
the general result that ][, is finite for x-a [and for I = even 
equal to 1T /2 times the n = 0 term in (B9)] it is now first to be 
shown that for I = even 

][,(x) = - ~ (xy,(X) + 

- ~ (xy,(X) + 

II I2 (I - n - 1 )!! xn) 
n - -', - , + 2... (I + n)!! 

'II ~ , (I + m - I)!! _1_) 
'II ~~4.... (I - m )!! xm . 

(BIO) 

This is constructed with the right behavior at X_O. By the 
principle of induction it is sufficient to show that if (B 10) is 
true for some even value of I then it is also true for I +2. This 
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is done by the recursion relation proved in Appendix A, writ
ten in the form (AlS) 

]['+2 (x) = -][,(x) + 21 +3 (XdUU'+l][,(U). (B11) 
X'+2 Jo 

Using the standard relation 

d du [U'+2y ,+, (u)] = U'+2y ,(U) (BI2) 

one obtains by inserting (B 10) in (B 11) that 

][ () () 21 + 3 1T LX , + 2 21 + 3 '+2 X = -][, x - ---- duu y,(u)- ---
X'+2 2 0 X'+2 

X!!.... I' (l + m - I)!! (X duu' + , - m 

2 'II ~ 2.4.... (I - m )!! Jo 
21 + 3 1T , 

-][,(x)- -'-2-- [x +2y ,+, (x)+(2/+1)!!] 
X + 2 

_ (21 + 3)!!.... I' (I + m - I)!! _1_ 
2 m ~ 2,4 .... (I - m + 2)!! xm 

!!.... [(21 + 3)y, +, (x) _ xy,(x) + (21 + 3)!! 
2 X'+2 

+ I' ( 21 + 3 _ 1 ) (I + m - 1 )!! _1_ ] 
'II - 2.4.· I - m + 2 (I - m)!! xm 
1T ( m ~ , + 2 (I + m + 1 )!! 1 ) 

- - XY'+2(X)+ I - , 
2 m ~ 2.4 .. · (1- m + 2)!! xm 

where the relation similar to (A6) for y, was used. This 
proves (BIO). 

For I = odd one can generalize (B4) or (BS) 

][,(x) = - xj,(x)Ci(x) - xy,(x)Si(x) -
(I -Y3 12 b ~/) 

1/=0 Xl I 21' 

(BI3) 

The last term subs tracts the singular terms from the second 
term. Using (B9) and the expansion 

• 00 ( _ 1) kX2k t-' 
SI(X) - I ---.:--'---

k ~ 0 (2k + 1 )(2k + I)! 
(BI4) 

the term is 

I I X2k + , + n _--.:(,--_1 ),-k--.:(_I_-_n_-_l-,-)_!! _ 

k=Oll= " '+2.... (2k + 1)(2k + 1)!(1 + n)!! 

= I I 
I..=Om-O.l,2.··· 

2(k t- 'lilt' ,( - l)k(2/_ 2m - I)!! 
x 

(2k + 1 )(2k + 1 )!(2m)!! 

The sums run up to 2(k + m) +1 -I = -2, i.e., up to 
v = k + m = (I - 3)/2 and can be written as 

(I i12 i X2V1' -, (-I)k(2/-2v+2k-l)!! 

,--0 k-O (2k+l)(2k+l)!(2v-2k)!! 

whereby (for 2v<J - 3) 

b(l)= i (-I)k(2/-2v+2k-l)!! 

" k ~ 0 (2k + 1)(2k + 1)!(2v - 2k )!! 
(BIS) 

For example 

b ~) = (21 - 1 )!! . (BI6) 

Now again use Appendix A, i.e., the recursion relation 
(Bll), to prove (BI3) by induction. First consider the 
integral 
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QI(X) = - LX duul +2 [Mu)Ci(u)+YI(u)Si(u)]. (BI7) 

Using again (BI2) which also holds forjl one obtains 

QI(X) = - f dU{ :u [U'+2jl+1 (U)]Ci(U) 

+ ~ [U'+2YI + 1 (U)]Si(U)} 
du 

= - Xl+2 (j1+1 (x) Ci(x) + YI+I (x) Si(x)] 

+ LX du UI+ 1 (jl+ 1 (u) COSU + YI+I (u) sinu] . 

By (C9) and (C7) then 

QI(X) = - Xl +2 [;1 + 1 (x)Ci(x) + YI + 1 (x)Si(x)] 

+(_I)li
x 

dUUI+ 1f_I_2(U) 

= - Xl +2 [;1 + 1 (x)Ci(x) + YI + 1 (x)Si(x)] + 2( -1) I 

X ~ {) ( -1 )(1 + k + 2)/2 (I + I + 1,k) 
4. k.par(/) 2k + 1 
k~O 

X LX du U l
-

k
, 

where par (I )=parity of integer I = even or odd. The result 
therefore becomes 

Then from (BII), (BI3) and (BI8) one has 

III + 2 (x) = - x [ - jl(x) + (21 + 3)j, + 1 (x)/x ]Ci(x) 

- x[ - y,(x) + (21 + 3)y, + 1 (x)/x1Si(x) 
(I~/2 b (I) 

+ 2. v 
v~o X'-1-2v 

I (/+lk) 
_ ~ {j (_I)(I-k)/2 2' 

/;;:'0 k,par(l) 2k(/_ k + 1) 

X 21 + 3 _ (I ~)/2 b ~) 21 + 3 
Xk+1 v~o X(l-1-2v) 2v+3' 

Then using the relation (A6) on the first two terms, reorga
nizing the k-sum (since I = odd) as k = I - 2Jl, summing 
over Jl from 0 to (l - 1 )/2, and changing variable to 
v = Jl -1 [summing,u from 1 to (l -1 )/2] in the remaining 
sums, one obtains 

(BI9) 

This in fact proves (B 13) because III +2 must be finite when 
x---+O, and the last two sums have the correct form to produce 
the required subtractions. 

According to (B13) the subtraction term should be 
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_ (I ~/2 b ~ + 2) • 

2.. XI+I-2v v=o 

It should then hold that in particular 

(l + V)(21 + 3) (21 + I)!(21 + 3) b (I +2) ____ :--__ 

o - 21 l!21 

= (21 +3)!!, 

which agrees with (BI6). Then for the remaining terms (for 
1 <.p <. (I - 1 )/2) it should hold that 

b(I+2) = _b(l) 2(,u-I-l) 
I' I' - I (2/L + 1) 

(I + V -2Jl)(21 +3) 
+ (-1)1' 2'-21'(2/L + 1) 

(B20) 

Since according to (B 15) b ~) = 0 for v < 0 one may include 
/L = f\.in (B20). For completeness the remainder of thi~ ~p
pendix is used to verify explicitly (B20). From the defiOltlOn 
(B 15) separate the k = Jl term 

b (I +2) _ 1''01 (- l)k(21 - 2Jl + 2k + 3)!! 
I' - k~O (2k + 1)(2k + I)!(2Jl - 2k)!! 

+ -,,(_-_I~) -.:1'(,-2/_+,-3..:..)!_! 
(2/L + I )(2/L + 1)1 

and 

2/L -2 - 21 b (I) 

2,u+I 1'-1 

I' - 1 ( - 1) k (21 - 2/L + 2k + 1 )!! 

= k~O (2k + 1)(2k + 1)!(2Jl-2k -2)!! 
X (2p -2 -2/) 

(2/L + I) 
Observing that 

(2/- 2/L + 2k + 3)(2Jl + 1) + (2/L - 2k )(2/L - 2 - 2/) 

= (21 +3)(2k + 1) , 

one obtains by adding the two sums 

I'f l (_I)k(2/_ 2,u + 2k + 1)!!(21 + 3)(2k + 1) 

k ~ a (2k + 1)(2k + 1)!(2Jl - 2k )!!(2Jl + 1) 
+ (- 1)1'(21 + 3)!! 

(2/L + I)(2/L + I)! 
= 21 + 3 f (- I) k (21 - 2Jl + 2k + 1 )!! 

2Jl + I k ~ 0 (2k + 1)!(2,u - 2k )!! 

Then (B20) becomes 

f (-I)k(2/-2,u +2k + I)!! 
k ~ a (2k + 1)!(2Jl - 2k)!! 

= ( - 1)1'221' - 1(/ + V - 2/L) . (B21) 

Using definitions (2n)!!(2n + I)!! = (2n + 1)!, (2n)!! = 2n n!, 
and (C3) (see) for the Hankel symbol, this may be written as 

f (- I)k (2/- 2/L + 2k + I)! 
k ~ 0 (2k + 1 )!(I - Jl + k )!( Jl - k )! 

= ( _ I) 1'221' (21 + 1 - 2Jl)! (B22) 
(1- 2/L)!(2/L + I)! 

The left-hand side can be further rewritten with 
P = /L - k (O<.P<.,u) in terms of binomial coefficients 
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f (-I)P (2/-2p+I)! 
P = 0 (2f.l - 2p + I)!(/- p)!p! 

= (_ I)P (2/-,2f.l)! f (-I)p( 1)(21 + 1-2P ), 
I. p=o p 2f.l+1-2p 

whereby (B22) becomes 

f (-I)p( 1)(2/+1-2P )=22P (2/+1- 2f.l) 
P = 0 P 2f.l + 1 - 2p (I - 2f.l) 

X (2f.l ~ J . (B23) 

An equivalent version is 

f (p - (/ + 1»)(2/ + 1 -2P ) = 22p (21 + 1-2f.l) 
p=o p 2f.l+1-2p 1+1 

(
1+ 1 ) 

X 2f.l+l . 
(B24) 

This is proved in Appendix 0 and therefore completes the 
independent proof of (B20). This was known to be a correct 
relation as mentioned after (BI9) and therefore suggested 
the validity of the unusual relation (B23) and (B24). As will 
be seen from Appendix 0, the independent proof given there 
would not have been possible without this prior knowledge 
of the right-hand side. 

APPENDIX C: RELATIONS OF SPHERICAL BESSEL 
FUNCTIONS 

In this appendix are derived relations combining the 
spherical Bessel functions with trigonometric functions. 
These relations are used in the other appendices. Standard 
relations are 

jl(x) = J;(x) sinx + ( _1)1 + If -1-1 (x) cosx (CI) 

and 

(C2) 

The functionsJ; satisfy recursion relations 
(/= 0, ± 1, ± 2,···)J;_1 + J;+I = (21 + 1)J;lx and 
fo = x -I ,fl = X -2 . In the present context it is however 
more convenient to have a closed form ofJ;. Using other 
standard relations it is relatively easy to obtain such a result. 
Let the Hankel symbol be given by 

(Ilk) _ (l + k )! 
+ 2' - k !(I - k )! 

(C3) 

and let 

par(n) parity of integer n = even or odd. (C4) 

Then one obtains for I = 0,1,2,··· 

J;(x) = 2 ~ (_ l)pac(l)t5 ( _ 1)(1 + k )/2 (l + !,k) . 
1 kL::o k,par(l) (2x/ + I 

(C5) 

For example 

1 1 3 1 15 6 
fo = -, fl = 2' f2 = 3" - -, f3 = -4 - x2' 

X X X X X 
(C6) 
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Similarly 

f (X)=2/:;;,;,l iC (_I)(I+k+l)/2 (/+~,k) -1--1 ~ uk,par(/-l) , 
k= 0 (2x)k + 1 

(C7) 

for I = 0,1,2,. ... For example 

1 3 15 
1-1 = 0, f2 = - -, f3 = 2' f4 = - -3 + 

X X X X 
(C8) 

1-5= ~45 - ~? 
Furthermore, it is easily shown that 

jl(x) cosx + Y/(X) sinx = (-1)1+ If _1_1 (x) (C9) 

and 

J/(X)YI(X) = ( - 1):t;(x)f -1-1 (x) cos2x 

+ Hf-I-I (X)2 - J;(x?] sin2x. (ClO) 

Also 

Mx)jl(x) = ( - 1)1 + 1J;(x)f _ 1- 1 (x) sin2x 

+ Hf-I-I (x? - J;(x?] cos2x 

+HJ;(X)2+f_I_I(X)2]. (Cll) 

APPENDIX D: A SUM OF PRODUCTS OF BINOMIAL 
COEFFICIENTS 

In this appendix is proved the relation between nonneg
ative integers I and f.l 

f.' (- 1) p( 1)( 21 + 1 - 2p ) = 22p (21 + 1 - 2f.l) 
p~o P 2f.l + 1 -2p (/-2f.l) 

X(2f.l ~ J. (01) 

for O<p < (/- 1)/2. It is obviously satisfied for f.l = 0 and 
any I. First is performed a series of algebraic rearrangements 
that aim at producing a relation between polynomials in I. 
Divide out the p = f.l term [except ( -1) "]: 

f (- 1) P (~)( ~~ -~f\-:: . .zfp) 2
2p

(21 + 1 - 2f.l)( ~p + I) 
P ~ 0 C.)( 71 + I - 2" ) (I _ 2f.l)( ~)( il + 1 -- 2p ) 

f (- 1) p f.l!(/- f.l)!(21 + 1 - 2p)! 
p = 0 p!(/- p)!(21 + 1 - 2f.l)!(2f.l + 1 - 2p)! 

22Pf.l!(l - f.l)! 

(2f.l + 1 )!(I - 2f.l)! 

Now use, four times, (2n +1)! = (2n + 1)"2 nn! and move 
over (2f.l + 1)" 

f ( - 1) p f.l!2
/
- P(21 + I - 2p)!!(2f.l + 1)" 

p ~ 0 p!2/- P(21 + 1 - 2f.l )"(2f.l + 1 - 2p )!! 2" - P( f.l - p)! 
_ 2 P(/- f.l)! 
- (l - 2f.l)! ' 

pto ( - 1) p( ;) (2f.l + 1)(2f.l ~ ~L·t~~2f.l + 3 - 2p) 

X (21 + 1 - 2p)(21 - 1 - 2p) ... (21 + 3 - 2f.l) 
J.l - p factors 

= 2't (/- f.l)(l- f.l -1) .. ·(/ - 2f.l + 1) . 
f.l factors 
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It is convenient to write this in terms of the factorial polyno
mials defined by 

x(n)== x(x -I) .. ·(x - n + 1),. 
n' factors 

(02) 

The desired polynomial relation then becomes 

toe -I) p( ;)(P + D(P)(I +! - p)(I' -pi = 21'(/-p)(I') . 

P (03) 

From this it is evident that the two sides are polynomials in I 
of degree p. Furthermore the right-hand side is completely 
characterized by the p zeros 

1= p, p + I, ... ,2p -I. (04) 

It is therefore sufficient to show that the polynomial on the 
left-hand side has the same zeros, whereby the polynomials 
will be identical for all values of I and p. Write 

p=l-m 

and then the left-hand side must vanish for m = 0, 
1, ... ,(/- 1)/2. First 
(p + ~yp)(l + ~ -p)(I'-P) = (I + ~ - m)(P) 

X(I + D(I')/(I + D(P). 

The (I + !y 1') is nonzero for all integer I and p and can go 
outside the sum over p. Then reorganize, using the definition 
(D2) 

(I +! - mYp) 

(I + D(P) 

(/ + p(p+m) (I + ~ _ p)(m) 

(I + !)(m) 

Now 
d(m) 

(I +! _ pym) = -- (Xl + (I/2)-P)x= 1 

dxm 

makes the left-hand side of (03) proportional to 

d (: [Xl + I t (P) I I' - p( - ~) p] 
dx p = 0 \p x x = 1 

= d(: [xI+ (1/2)(1 _ ~ )"] 
dx x X= 1 
d(m) 

= -- [xm + (1I2)(X _1)/- mL= 1 • (D5) 
dxm 

Doing the differentiation by the Leibniz rule produces as the 
term having the smallest power of x -1: 

(
xm +(1/2) d(: (x _I)/-m) 0:: [(x _1)/-Zm ]x= 1 . 

dx X= 1 

The smallest power possible is then obtained for 
m = (I - 1 )/2 and is equal to 1. Thereby all terms of (05) 
vanish. This completes the proof of (0 I). 

APPENDIX E: INTEGRAL lF~(x). 

In this appendix is calculated the integral (O<m<J) 

lF~(p)= laP dxx2-JI(x). (El) 

This is an example from a class of general standard integrals 
of Bessel functions. Relations pertinent to the present work 
are given below. Using (BI2) one obtains the recursion 
relation 
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lF~ (p) = p2 - mjl + 1 (p) + (I + m)lF~+11 (p) . (E2) 

Similarly, using the standard relation 

xMx) = (I - l)jl_1 (x) - xed Idx)jI_1 (x) (E3) 

one obtains for I - m + 3 > 0 

lF~ ~I (p) = (/- m + 3)lF~(p) - p3 - mMp) . (E4) 

Using these two recursions one may generate alllF~ starting 
with the following, which are obtained by direct integration 

JFg(p) =PJI(P), (E5) 

IF: (p) = Si(p) - sinp, 

lF~(p) = 2 -2cosp - P sinp . 

(E6) 

(E7) 

For example, to produce lF~, starting with IF: three steps 
with (E2) give JF! and then two steps (E4) give lF~. 

A~ENDIX F: INTEGRALS Adx) AND B,(x) 

This appendix calculates the integral (1;;>0) 

A/(p) = i P 

dx X3jl (X)YI (x) , (Fl) 

wherejl andYI are spherical Bessel functions. The recursion 
relation derived in the following holds for any product of two 
spherical Bessel functions in the integrand, hence for exam
ple also for 

B/(p) = f dx X3jl(X)j/(X). (F2) 

The leading power of x in the integrand of (FI) for x----..o is 
- x 2/21 + I and the integral is well behaved for all p. For 

p----..o one has 
3 

A ( ) p + 0 ( 5) (F3) 
I P ~ - 3(21 + I) p, 

P
(2/+4) 

B ( )~ + O( 2/+6) (F4) 
I P - (2/+4)[(2/+1)!!]2 P . 

The following is a standard integral 

S(x) = LX dtt 2/ +3Mt)YI(t) 

X2/+4. • 

= 4(1+1) [It(X)YI(X)+lt+l(X)YI+I(X)]. (F5) 

A partial integration gives 

A ( ) - [d -21 dS (x) 
I P - xx --

o dx 

=p-21S(p) +21 f: dXX- 2/ - IS(x) 

4 

= 4(:+1) [Mp)YI(P)+jl+I(P)YI+I(P)] 

I 21 + "4T+1 [A/(p) + A/+I (p)]. 

Hence 

1+2 
Al +1 (p) = -- A/(p) 

I 
4 - if U/(P)YI(P) +jl+1 (P)YI+l (p)] . (F6) 

In particular, for I = 0 one gets, using (ClO), (C6), and (C8) 
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Ao(p) = ap4(jO(P)YO(p) + jl(p)YI(p)] 

= A(2pcos2p - sin2p) . (F7) 

The case of 1= t must be calculated separately. The integra
tion is elementary and gives 

AI (p) = - H 4Si(2p) +2pcos2p -5sin2p ] , (F8) 

where Si(x) is the sine integral 

Si(x) = IX dt sint . (F9) 
Jo t 

This completes the calculation of AI' For BI one obtains 
similarly 

B/ +I (p)= 1~2 B/(p)- i; (j/(pf+jl+I(P)2]. 

(FlO) 

Furthermore, using (CII), (C6), and (C8), for I = 0 

BoCp) = !p4(jOCp)2 + Up)2) 

= A(2p2 +1 -2psin2p - cos2p) , (FIt) 

and by elementary integration of (F2) for 1 = 1 

HI (p) = H 4Cin(2p) +5cos2p +2psin2p -5 + 2p2] , 
(F12) 

where Cin is the cosine integral 

C · () LX d I - cost mx= t . 
o t 

This completes the calculation ofB/. 

APPENDIX G: INTEGRALS C,(x) AND D,(X). 

In this appendix the integral (/)0) is calculated: 

C,(p) = f dx x}jl(x)[Mx)Ci(x) + y,(x)Si(x)] , (01) 

wherej, andy, are spherical Bessel functions of the first and 
second kinds and where Ci and Si are the cosine and sine 
integrals. The result is given in terms of the recursion rela
tion (012) and the auxiliary function D, defined in (04) and 
(G6) together with the starting function CI(P) given in 
(020). According to Appendix F one may express CI in 
terms of Al and HI as 

C/(p) = (P dX( dB/ex) Ci(x) + dA/(x) Si(X»). (02) 
Jo dx dx 

Then using the recursion relations for A, and BI , (F6) and 
(FlO), one obtains by a partial integration of the second 
terms 

CI + I (p)= 1~2 C,(p)- i~ [J,(pf+j/+,(p)2]Ci(p) 

4 - if (j,(P)YI(P) + jlt I (P)YI +, (p) ]Si(p) 

1 
+ 2fllIMp)+D,+,(p)], (03) 

where 

According to (C9) one may write this as 
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D,(p) = J: dXX]I(x)(-l)I+'f_I_, (x) , 

where, by (C7), and for 1=0,1,2, .. · 

(G5) 

f~ (X)=2'~' 8 (_I)(I+k+I)/2 (/+~,k). 
I I £." k,par(l-I) k + I 

k~O (2x) 

Using the functions IF~ of Appendix E one then obtains 

'-I 
D(p)=(-l)'+' "'!j (_1)(I+k+1)/2 , £." k.par(l - I) 

k=O 

X (l + !,k) IF' ( ) 
2k k P , (06) 

where the Kronecker delta is defined in (C4) and the Hankel 
symbol in (C3). This completes the calculation of D/. For 
example, we have 

Do(p) = 0, (07) 

D,(p) =psinp +2cosp -2, (G8) 

DzC p) = .2.. sinp -3cosp -6 . (09) 
P 

The leading term ofD/(p) for p----'>O is obtained using 
Xjl(X)Y/(x)~ - (21 + 1)-1, so that for I) 1 

1 p4 
D,(p)= - ---+ O(p6). (010) 

4 21 + 1 
It is usually convenient to write the recursion relation for (;1 

in the form obtained from (03) by the use of (F6) and (FlO), 
in terms of a new function 

C/(p) = C/(p) - H/(p) Ci(p) - A/(p) Si(p). (011) 

It then becomes 

- - 1 
C1 t-l (p) = [(I +2)!/]CI(p) + - [DI(p) + D,+ I (p)1. 

21 
(012) 

For 1 = 0 one has 

Co(p) = - !D,(p), (G13) 

and 

Co(p) = Bo(p) Ci(p) + Ao(p) Si(P) - aDI(P)' (G14) 

where .0.0 , Bo' and DI were given in (F7), (F11), and (G8). To 
start the recursion one then needs (;, or C,. A direct partial 
integration gives 

Using (F8) and (F12) this reduces for f = 1 to 

Cl(p) 

= ~ (P dx [Si(2x) sinx - Cin(2x) cosx] - aPsinp. 
2 Jo x 

(G16) 

Neither this integral, nor CI, seem to be reducible to stan
dard functions. In the remainder of this appendix is given 
various forms that may be helpful in the evaluation. First 
perform a partial integration of (G 16) 

C,(p) = HSi(2p)Si(p) - Cin(2p) Ci(p)] - !psinp 

- (P dx sinx [Si(x) cosx - Ci(x) sinx J. (017) 
Jo x 
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Using the standard relation 

f(x)= ('" dt sint 
Jo t +x 

= Ci(x) sinx - Si(x) cosx + (1T12) cosx (GIS) 

one obtains 

Ct(p) = HSi(2p) Si(p) - Cin(2p) Ci(p)] -lpsinp 

+ (Pdxsinxf(x)-~Si(2p). (GI9) 
Jo x 4 

Alternatively, using (FS) and (FI2) 

Ct(p) = iCi(p)(5cos2p +2p sin2p -5 +2p2) 

- ASi(p)(2p cos2p -5sin2p) (G20) 

+ (P dx sinxf(x) - ~ Si(2p) -lp sinp . 
Jo x 4 

The integral in (G 16) maybe reduced by the definitions ofSi 
and Cin and elementary trigonometric relations 

(P dx [Si(2x) sinx - Cin(2x) cosxl 
Jo ~ 

25
1' dx IX du. . ( ) = - -smusmx-u 
o x 0 u 

(G21) 

= (P dx (X du sinu sin(x - u) . 
Jo Jo u x - u 

For p-.ao one obtains fromf(x)-(l/x) + O(x -3) 

(P dx sinxf(x)- f dp sinp __ sinp + Ci(p) 
Jo x p2 P 

__ cosp -2 sinp + O(p-4), 
p2 p3 

(G22) 

while for p-.o usingf(x)-.1T12 for x-.o 

i
p 

dx sinxf(x)~~Si(p)~~p. 
o x 2 2 

(G23) 
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It is shown that an assumption of "historical homogeneity" -or the persistence of spatial 
homogeneity in time-leads to the synchronous (time-orthogonal) form 
dsz = - dt Z + Y AB (t lEA ® eB, of the metrics for general spatially homogeneous (Bianchi) 
cosmologies. The eA are group-representation I-forms associated with the spatial symmetry 
group of the given cosmology, and are independent of any particular space-time theory; in 
particular they do not depend on Einstein's equations and the local physics. Expressions for the eA 

in the canonical basis used by Estabrook, Wahlquist, and Behr (EWB) have been tabulated in the 
companion paper on "Spatially homogeneous neutrino cosmologies" (SHNC). In the present 
paper explicit expressions are given for the scale factors YAB(t ). These do correspond to the choice 
of the canonical basis to describe the symmetry but, in contrast to the eA

, they also depend on the 
space-time physical theory. Here the YAB(t) come out as observable geometric-kinematic 
quantities (generalized Hubble constants) which also appear in the solutions of Einstein's 
equations for a given cosmology. Central to the discussion is the matrix C(t) which relates the 
time-independent canonical basis describing the symmetry to a time-dependent orthonormalizing 
basis. With the imposed requirement that the Riemannian geometry of the evolving spatial 
hypersurfaces retain its quasi-canonical form in time ("quasi-canonical gauge") it is shown that 
C(t ) is a product of a diagonal matrix i> and a rotation matrix R; and a table of these forms ofC(t) 
for the various Bianchi types is given. The simple Hubble-constant expressions for the metric scale 
factors YAB(t) for all types come solely from the diagonal factor i> in C. The metric, then, in all 
casestakestheformds2 = - dt 2 + YAB£A®eB = - dt 2 + (e1ja)2 + (eIIj(3)2 + (e lll jy)2. Thus, 
the specializing assumption of Misner and of Ryan and Shepley, requiring C to be symmetric, does 
not limit the form ofthe metric but does restrict the relation between the invariant symmetry basis 
and the quasi-canonical orthonormal basis to the cases where the orthogonal factor R reduces to 
the identity, i.e., to those cases where the two bases remain parallel at all times. Thus, the gauge 
assumed by them is not compatible with the preservation ofthe quasi-canonical form ofthe spatial 
geometry in almost all cases where there is degeneracy involved in the spatial curvatures. 

INTRODUCTION AND SUMMARY 

As is well known, requiring (a) spatial homogeneity and 
(b) spatial isotropy of spacetime means that it is dissectable 
into spacelike hypersurfaces on each of which there acts a 
six-parameter Lie group which has (a) a three-parameter 
simply transitive subgroup and (b) a three-parameter iso
tropy subgroup. These two requirements lead to certain re
stricted forms (Robertson-Walker) of metrics for spacetime. 
Except for a time-dependent scale factor in front of the spa
tial part of the metric, these forms are independent of time 
and of the content of spacetime, i.e., of the local physics 
embodied in the specific structure of the stress-energy tensor 
in Einstein's equations. 

posed by Robertson-Walker. By subsuming under the con
cept of spatial homogeneity not only (instantaneous) 
"geographic" homogeneity but also "historical" homogene
ity-i.e., the requirement that there exists a global time pa
rameter t with respect to which history evolves the same at 
every point of space-we can show that the broader forms of 
metrics for spatially homogeneous cosmologies (Bianchi 
types) have the general form 

In accord with what one may call "the modest Coperni
can principle," that there is no privileged spatialloeation in 
the universe-Hon the average things everywhere are the 
same" -one should require only (a) spatial homogeneity, 
and not necessarily isotropy. Spatial homogeneity alone 
(three-parameter simply transitive Lie group) leads to re
strictions on the metric, substantially broader than those im-

ds2 = _ dt 2 + d~, 
dcr = CA deA ® CB dEB -YAB(t )eA ® eB

• 

The £A are invariant-basis I-forms which are determined for 
each Bianchi type purely group theoretically from the sym
metry group (structure constants GA 

BC) of the homogeneous 
space of that type. The eA and the structure constants GA 

BC 

are tensors with respect to GL(3,R) transformations con
stant over the entire space. Various representations of the eA 

depending upon which invariant basis of the Lie algebra is 
chosen have appeared in the literature. In this and the com
panion paper (SHNC) we have adopted the canonical basis 

1938 J. Math. Phys. 21(7), July 1980 0022-2488/80/071938-14$1.00 © 1980 American Institute of Physics 1938 



                                                                                                                                    

of Estabrook, Wahlquist, and Behr (EWB) for the Bianchi 
Lie algebras, and in SHNC we have given the associated 
invariant basis forms EA. We establish the canonical basis of 
the Lie algebras as follows: By analyzing the two lower indi
ces ofG\/ into one upper index with the help of the Levi
Civita tensor density, we define a structure-constant matrix 
A km (tensor density of weight w = -1) which represents all 
the structure constants G\/. Using the freedom allowed by 
GL(3,R) transformations, Akm is put into canonical forms 
AKM

, for each type, in which only three independent ele
ments appear. In the canonical forms the symmetric struc
ture-constant matrix A(KM) is diagonal, with elements ± lor 
0; the antisymmetric structure matrix A IKM 1 has at most only 
one nonvanishing element AII.I1l=n. These serve to classify 
the Bianchi types. 

In all but two type categories-VI and VII-n may be 
made equal to 0 or 1, in each case defining a single type. In 
categories VIh and VIIh an infinite number of types corre
sponding to every value of ± n2 (O<;n <; 00) occurs: 

h == - n2 (type VIh ), h = + n2 (type VIIh ). 

The problem of canonical metric forms is now evident. 
The EA I-forms and their dual vector fields eA ,though depen
dent upon the spatial symmetry and the choice of basis of the 
Lie algebra, are independent of any particular spacetime the
ory; in particular, they do not depend on Einstein's equa
tions and the local physics. In contrast, the Y AB (t ) do depend 
on the spacetime theory and the local physics. In the present 
paper explicit expressions are given for these "generalized 
scale factors" YAB (t) in terms of observable geometric-kine
matic quantities which also appear in the solutions of Ein
stein's equations. 

The CA d are time-dependent transformation coeffi
cients relating the invariant-basis triad to a geometrically 
defined metric-orthonormalizing time-varying triad 
("orthonormal triad") Id of which the basis forms are 

d -dA - -}.. = CA E . The CA d (t) and CB d (t) and their scalar prod-
uct Y AB (t ) = CA d (t )CB d (t ) depend on the appropriate solu
tion of Einstein's equations in the following manner: 

Spatial homogeneity for all times implies "historical 
homogeneity," i.e., on a cosmological scale, history-and 
therefore the measure of time-is invariant under the three 
spatial invariant translation fields eA ; the latter in turn are 
related to the orthonormal frame fields Id by the reciprocals 
Cd A of the time-dependent transformation coefficients CA d. 

From historical homogeneity we arrive at first order linear 
differential equations in the time, with the structure 

CD a = CD b (S + W)b a. 

Here Sb a are the orthonormal-triad components of the rate
of-strain tensor or, geometrically, the extrinsic curvature of 
the hypersurface of homogeneity; and W b a = - Wa b are the 
(three independent) orthonormal-triad components of the 
angular velocity of the orthonormal triad relative to a Fer
mi-Walker transported triad, i.e., the angular velocity of the 
orthonormal reference triad with respect to a gyroscopically 
stabilized inertially guided reference frame. The choice of 

W23= -WI W31 - -W2 W12== -W3 
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is only partially free in some of the types; in other words, for 
some Bianchi type solutions there is an inescapable rotation 
of the reference triad with respect to the "inertial compass." 

The orthonormalizing transformation matrix C is a 
product of a diagonal matrix i> and a rotation matrix R. (The 
accent above a letter indicates a diagonal matrix.) It is non
singular. From this, and the antisymmetry ofW, there re
sults the Double-conjugate-pair theorem which implies at 
most block diagonal structure of C in almost all cases if the 
quasi-canonical (diagonal) form of the time-evolved sym
metric structure matrix upon which the spatial curvature 
depends 

F(t )=A C T FoC 
[C=C-1; .::1 -detC; Fo canonical (diagonal) form of 
A(KM)] is to be preserved. 

A table of the forms ofC and simple Hubble constant 
expressions for the metric scale factors for the various Bian
chi types are given. The metric scale factors come solely 
from the diagonal factor in C, a fact which has tended to 
obscure the incompleteness of certain procedures in the lit
erature. Thus, the specializing assumption on the form ofC, 
made by Misner, and Ryan and Shepley, respectively, does 
not limit the form of the metric but does restrict the relation 
between the invariant basis and quasi-canonical orthonor
mal basis to the cases where the orthogonal factor R reduces 
to the identity, i.e., to those cases where the two bases remain 
parallel at all times. This gauge assumed by them is not com
patible with the preservation of the diagonal form for F(t) in 
almost all cases where F has degenerate eigenvalues. 

A. Definition of spatially homogeneous spacetime, 
establishment of the cosmic time-orthogonal form of 
the metric 

Spacetime is assumed to have a (pseudo-) Riemannian 
structure with some (as yet unspecified) metric ds2 of signa
ture (3,1). Such a spacetime is defined to be spatially homo
geneous if all of the spacetime may be foliated into a one
parameter family of spacelike 3-surfaces-hypersurfaces
which are totally homogeneous; in other words, there exists 
a linearly ordered splitting of spacetime into 3-spaces which 
are (1) instantaneously homogeneous, and (2) historically 
homogeneous. A parameter for the linear order is called a 
"cosmic time coordinate t ", and a convenient admissible 
choice for t will be described shortly. We must first, howev
er, make precise the key phrases "instantaneously homogen
eous" and "historically homogeneous" which together char
acterize "total" spatial homogeneity. 

(I) Instantaneous homogeneity: "Geography does not 
matter": The first expression means, in accord with what we 
may call the "modest Copernican principle" (modest be
cause we are assuming only homogeneity, not necessarily 
isotropy), that in each of the hypersurfaces-space at any 
one time-all spatial locations are equivalent with respect to 
all relevant properties. In other words, there exist within 
each hypersurface three linearly independent vector fields 
such that all well-defined scalars, vectors, tensors, etc., are 
unchanged under transport (Lie differentiation giving zero) 
along the directions of these vectors fields. In particular, 
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they leave the metric tensor ds2 within each hypersurface 
invariant; such isometry-generating fields are of course 
called "Killing-vector fields." 

In the companion paper I (Spatially Homogeneous 
Neutrino Cosmologies-SHNC) and in this paper, we intro
duce a canonicalized (EWB) basis. In this basis the Killing 
vector fields are labeled Zr (r = 1,2,3), and their dual Killing 
forms ~r [vector-, dyadic-, and exterior-form sets, without 
indices are boldface; all indices on boldface Latin or Greek 
letters are labels indicating the member of the triad or tetrad 
to which we are referring]. 

Prior to introducing the EWB basis-in an arbitrary 
basis-let the Killing vector fields be labeled Zi' Let the 
structure constants of the Lie algebra comprised of these 
Killing vector fields be - Gk

iJ. Within the three-dimension
al spacelike hypersurfaces we may choose a basis consisting 
of three linearly independent vector fields 

EJ = alZ" (1) 

which are invariant, i.e., the Lie derivativ~r commuta
tor-of EJ with respect to Zj equals zero: 

[Zj,EJ ] = O. (2) 

Expanding this relation and rearranging, we have 

(Zja{JZ, = - al[Zj,Z,] = alGkisZk. (3) 

Applying this formula to the expansion of the commutator 
of E j with EJ we find, after a cancellation, 

[Ej,EJ ] = ala/Gk,tZk = GdljEd' (4) 

where the G's are transforms ofthe G's in the invariant basis. 
Now if we adopt for the set of first order differential equa
tions (2) the initial condition at some point Po: 

(5) 

we have that the commutation coefficients Gdlj which result 
from the commutation (4) ofthe E's with each other at Po are 
the negatives of the structure constants - Gdlj in the Lie 
algebra of the Killing vector fields ("reciprocal relation"2). 
Since, however, the E's by their definition are invariant vec
tor fields, the commutation coefficients of the E's must be 
independent of location within the hypersurface, and we 
have the reciprocal relation to the Killing structure con
stants holding everywhere: 

[Ej,EJ ] = GkiJEk. (6) 

It is to be noted that in general the Killing fields agree in 
value (same vectors) with the invariant fields only at a single 
point; the only exception, as may be seen in Appendix II of 
SHNC, is the Bianchi type I where the two fields are identi
cal. In all other cases except for type IX, the point Po is at the 
origin of the parameter space, Le., if vectors are specified by 
from one to three parameters x I ,x2

, x 3
, Po is that point where 

all the x's which occur are equal to zero. In the exceptional 
case of type IX, Po is defined by Xl = 1T/2, x 2 = x 3 = O. 
These statements may be verified by substituting in the ta
bles in Appendix II of SHNC. We also note that the invar
iant basis vectors may not in general be orthogonal (better: 
"metric-orthonormalizing"), i.e., they may not correspond 
to an orthogonal metric in which the coefficients 
Yrs = E"oE, are given by Drs' 
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(2) Historical homogeneity: History is the same every
where (but it may matter, because all relevant properties, 
though independent of geography, are not necessarily the 
same "everywhen"). This second homogeneity requirement 
means then that the equivalence of location exists also with 
respect to development looking forward in time or looking 
backward in time. This property of historical homogeneity 
means that the three-dimensional isometry group generated 
by the three Killing vector fields acts not merely on the 
three-dimensional spaces but also on four-dimensional spa
cetime according to 

(7) 

w here K~ is the holonomic vector field ( timelike congruence) 
associated with the time coordinate. The condition (7) ex
presses the principle of historical homogeneity in that it re
quires the time-coordinate vector field E4 parameterizing 
the spatial hypersurfaces to have vanishing Lie derivatives 
(Le., to be unchanged under translations) with respect to the 
Killing fields Zj (see Appendix). We note that since the two 
vector field sets, the three Z fields, and the three E fields each 
constitute a basis for the three-dimensional hypersurface in 
which they lie, the determinant of the transformation (1) is 
not zero, and we may write 

(8) 

Because of the linear independence of the E's we may infer 
from Eq. (7) that 

[Ei,K~ ] = O. (6') 

Equations (6) and (6') constitute a system of relations gov
erning Ea , (if = 4, 1,2,3). 

There remains a freedom to choose both direction and 
magnitude ofE4 (Ref. 3 and Ref. 4, pp. 106 and 147). Start
ing with the given basis Ea we choose another invariant basis 
(e l • ,e2• ,e3• ,e4,) which is a linear transform of the E's with 
time-dependent coefficients, but for which we require that 
the spatial vector fields lie solely in the 3-spaces: 

(9) 

and that the conditions (6) and (6') be maintained with the 
e's, with transforms of the G's which we shall now call 
Gk '.,. It turns out that these requirements can be met with 

I } 

the Gk 'r)', again time-independent structure coefficients 
(constants),3.4 which justifies our calling the new basis, 
(e4, ,er) "invariant." A convenient choice for the time direc
tion, which goes with the possibility of synchronizing clocks 
by light rays throughout each spatial hypersurface, is to de
fine e4, to be "orthogonal" to the hypersurfaces, i.e., such 
that the time-space cross terms in the metric vanish5 (see 
Appendix). 

The vector fields er have as their duals three invariant 
I-forms er which constitute a form basis, and there are bilin
ear combinations of the invariant basis forms, the e's, in 
terms of which the spatial metric may be expressed 

(10) 

By their definition as invariant forms under the symmetry 
group which has been prescribed for all times, the e's cannot 
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involve the time, but the C's can. We note that the spatial 
metric goes into orthonormal forms by representing it in 
terms of (generally independent) orthonormalizing basis 
forms).. d = 0' del'. We also introduce a fourth basis form 
E

4
' =dt =)..4 dual to e4,. Then the metric takes the form 

ds2 = - dt 2 + rur = - E4' ® E4' + ri'f (t )Ei' ® ~. 

= - ()..4)2 + ()..1)2 + ()..2f + ()..3)2 (10") 

with no cross terms involving E4' ® Ei'. Thus, we have a global 
"hypersurface-orthogonal" and "synchronous" metric in 
which clocks at all points of space are synchronized at each 
time. 

The matrix of spatial metric scale coefficients in Eq. 
(10) 

ri'f (t ) = C/ (t )~, d (t ) or y(t) = C(t )C(t yranspose (11) 

is one offunctions of time alone; in the fully isotropic 
cases6 the matrix reduces to the unit matrix multiplied by a 
single overall scale factor-a function of time alone. 

Quite generally, for any spatially homogeneous cosmol
ogy, the spatial metric rur belongs to one of two categories: 

General: Either dif is such that its isometry group is 
one of the nine types of simply transitive three-parameter 
isometry groups classified by Bianche; 

Particular: or else dif is a Kantowski-Sachs metric8 

where there is a four-parameter isometry group whose three
parameter subgroup does not act transitively on 3-surfaces, 
but acts transitively on 2-spheres. The particular Kan
towski-Sachs case has been treated in Ref. 8. 

We shall discuss here only the general category of the 
nine Bianchi types. By a purely spatial transformation from 
any original choice of group generators, the structure con
stants - Gd 

'g'h' of the isometry-group Lie algebras-i.e., 
Killing vector algebras-of the nine types may be put in a 
canonical arrangement 

(

G I
'2'3' 

Ad'f'-IGd' f'g'h' G 2' 
=2 g'h,E - 2'3' 

G3
'2'Y 

C'"m 
G\1I1 

DF II G lI
1I11 -:::::>A - G ~IIII 

0 

no 

G I
'3'1' 

G2
'3'1' 

G3
'3'1' 

G'; ) III 

=( ~:o bo D (ao = 1,0 bo,co = 
0 

(noco = 0) 

± 1,0) 

(12) 

used by Estabrook, Wahlquist, and Behr9 whose notation we 
follow: (Gli

u III = - G\1I I and G li
ll III GIII'1i = 0 by the 

Jacobi identity). Normalizing a o to 0 or + 1, and bo and Co to 
o or ± 1, and listing all possible cases leads to Tables II and 
III of the Bianchi-Behr types which we will discuss in detail 
in the sequel. The deeper meaning of the Behr parameter 

h -n6/aoho (13) 

will become clear in our later development. 
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B. Canonlcalizatlon of the structure constant matrix for 
the spatially homogeneous symmetry types 

We have not found the completely explicit procedure 
for the canonicalization in Eq. (12) in the available litera
ture; on the basis of references we surmise that it is contained 
in the unpublished Hamburg thesis ofC.G. Behr (1962). 
Since it brings out some subtle points, and is very useful for 
the subsequent analysis, we find it desirable to develop in 
detail. 

The way in which the canonicalization in Eq. (12) is 
accomplished is as follows: The square "structure constant 
matrix" 

Ak'm'=!Gk'g'h,~'g'h' 

can be written as the sum of a symmetric structure constant 
matrix 

A(k 'm')=G(k' u'v' Em')u'v' (14) 

and a skew-symmetric structure constant matrix 

Alk·m'I=Glk'u'v,~'lu'v'. (15) 

We may term the dual of A[k'm'l the "Bianchi vector": 

Ik' 'I Glk' 'Ig'h' ni'=~Ei'k'm,A m = ~Ej'k'm' g'h'~ 

= Gk'i'k' (16) 

and we have 

Alp'q'l = Ej'P'q'n
f

• (16') 

We note also that the Jacobi identity--condition for associa
tivity in the overlying group--telescopes to Ak'm'nm , 

= A(k'm')n
m

, = O. 

That the appelation "Bianchi vector" is justified, i.e., 
that the nj' transform as covariant vector components under 
a general nonsingular linear transformation (space 
independent) 

ef' = GJ,eg, Ef' = ~G{, 

G{GJ' =Oh g 

h J' h E=£,Gf" 

(17) 

of the invariant basis triads, may be seen from the tensor 
transformation behavior of the structure-constant array and 
from the fact that the nj' constitute the vector trace of this 3-
index array: 

G k
gh = (E\[eg,eh ]) = G~,G~'GrGu'v'w" (18) 

Setting the index k = h, we have 

ng, =G~,nv' (19) 

Corresponding, Nk'm'l and Nk'm'l transform as contravar
iant 2-index relative tensor components of weight -1 as 
may be verified from the expression derived from Eq, (18) 

or 

and 

Nkml = !iJ G~, G ';Nu's'l. 

where !iJ ::=detG
p 

q'. 
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With the "Bianchi vector" n recognized as an invariant 
irreducible part ofGk 

gh there are two general classes of possi
bilities: Either n vanishes, in which case we have the "non
vector types" (called "class A" by Ellis and MacCallum10

), 

or n does not vanish, in which case we have the "vector 
types" ("class B" in Ref. 10). 

In all types where Nkm) exists, i.e., in all types but I and 
V, reduction of ek , Nk 'm')em , to diagonal form while simulta
neously orthonormalizing the positive definite metric form 

d~ = £i'Yi'j' ~', 

which transforms contragrediently relative to Nkm), is some
thing of a variation on the standard problem of simulta
neously reducing two cogredient quadratic forms-the posi
tive definite one becOJl~ng a sum of squares with unit 
coefficients and the other one becoming diagonal. In our 
case the canonical form can be attained in three stages as 
follows: 

(1) A combined rotation and pure strain, e.g., Gh ,r, on 
the form basis [Eq. (17)] transforms the metric to a sum of 
squares (orthonormal quadratic form with exte'rior form ba
sis A I', A2', A 3); the matrix is transformed to the unit matrix: 

i' ., h' i" k' k' h' k' 
£ Yi'f ~ = A Gh , Yo' Gk ,1 A = A = A bh'k' A . 

(Stage 1) 

Simultaneously, the dual vector basis e l" e2" e3, undergoes 
the contragredient transformation [G g> in Eq. (17)], and 
Nkm) transforms contragrediently relatively to Yij [with the 

additional weight factor.@]. The form basis AI', A2
', A 3', (and 

the dual vector basis: 11"12,, and 13,) are metric-orthonorma
lizing, but not yet aligned with the principal directions of the 
symmetric structure matrix. 

(2) The preceding transformation, which has put the 
metric in orthonormal form, is now followed by a pure 
rotation 

(Stage 2) 

to the basis IT, l2' lj defined by the principal axes ii, b, c, of 
Nkml. The symmetric structure matrix then assumes the di
agonal form 

Nkin)=A(k)t/<m = diag(iibC). 

For convenience we shall designate this form of Nkm), and 
the corresponding basis, quasi-canonical. The contragre
diently transforming metric remains orthonormal under this 
orthogonal transformation of the basis from AI', 'A2

', A3' to 
AI,'A2,'A3• 

The reduction to quasi-canonical form is of course not 
unique. By Sylvester's Law ofInertia for quadratic forms the 
numbers of positive, negative and zero elements in the dia
gonalized A (km) are respectively invariant whatever transfor
mations are performed on the basis to reach or maintain a 
diagonal form of Nkm)--and this will be true whether or not 
the transformation coefficients are time dependent. The pos
sible invariant types are thus immediately deducible and are 
listed in Table I. The classification is standarized by taking 
the signatures to be nonnegative, always, and the A(ll) = a 
nonnegative. 

(3) Though, after the first two stages, Nkm) is diagonal 
(quasi-canonical) it is not yet in the canonical EWB form in 
which only ± l's and O's appear on the diagonal. This form 
which we shall write 

(Stage 3) 

is attained by a final pure strain transformation along the 
principal axes of Nkm) so that the non vanishing diagonal 
elements are normalized to ± 1. At the same time the metric 
remains diagonal but no longer orthonormal. We emphasize 
the point since the relation we infer for this final canonicaliz
ing transformation will be useful subsequently, interpreted 
in a reverse manner, i.e" when, with a time-dependent trans
formation, we undo the canonicaJization of NKMl-leaving 
it in diagonal form-while restoring the normalization of the 
diagonal d~. 

The final transformation-of the nature of a pure 
strain-relates the metric-orthonormalizing frame 
1" 12 , 13 to the A(KMl--canonicalizing frame CI , CII , ell : 

I, = GT leI ae, , Iz = GzlICII pcn , 

(21) 

TABLE I. The possible types of simply transitive 3-parameter isometry groups which act transitively on 3-spaces-the Bianchi-Behr types. The classification 
comes from all possible ways of satisfying the matrix-algebraic inequalities for Nkm): 

rank -2X index.;;O';; rank ("index"~number of positive coefficients). 
The left-hand inequality follows from our convention that the signature must be nonnegative and from the algebraic identity 

signature ~ index minus number of negative coefficients = 2 X index minus rank. 

Rank of Index of SIGN SIGN SIGN 
Atkm) AU-m) n2 a b c 

0 0 0 0 0 0 
0 + 0 0 

2 I 0 + 0 
2 2 0 + + 0 
3 2 0 + + 
3 3 0 + + + 
0 0 + 0 0 0 
I 1 + + 0 0 
2 1 + + 0 
2 1 + + 0 
2 2 + + + 0 

Bianchi-Behr 
Type 

I 
II 
Vio 
VIIIo 
VIII 
IX 
V 
IV 
III 
Vio 
VIIIo 
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TABLE II. Nonvector Bianchi-Behr Types. The requirements listed in the last column are those which must be satisfied by the pure strain transformation 
needed to go/rom a quasi-canonical basis in which the metricis orthonormal, and the symmetric structure constant matrix is diagonal, to a canonical basis in 
which that matrix has diagonal elements 0 or ± L 

Dimension of 
the derived 
Lie algebra Bianchi-Behr 

Nonvacuous requirements 
on pure strain reduction 
coefficients = rank of A"m) 0 0 bo Co Type 

0 0 0 0 
I 0 0 II 
2 -I 0 VIo 
2 I 0 VIIo 
3 -\ VIII 
3 \ IX 

where we have introduced convenient abbreviations for the 
pure strain components. Because A (km) is a relative tensor the 
transformation involves the determinant 

(22) 

The transformation coefficients satisfy the requirements 

a = .J (G,1)2ao = aoa- If3r, (23) 

b = .J (G" 2)2bo = bo f3 -Ira, (24) 

(25) 

in those types where these equations are not vacuous because 
of the vanishing of a, ii, or c (and ao, bo, or co). 

Quite generally, for both vector and nonvector cases, 
the reduction is to a canonical form in which a--->-(Jo = 0 or 1, 
and b-bo = 0, - 1, or + 1 (likewise with the values of Co 
when no = 0). In all cases reduction is accomplished by a 
rotation-strain which we need not deal with explicitly fol
lowed by a rotation and finally a pure strain transformation. 
The latter is in the form ofEq. (21), with conditions (23) and 
(24), and-for nonvector types-Eq. (25). For vector types 
Eq. (25) is vacuous, and instead we have the condition 

r = iilno· (26) 

We consider first the nonvector class. As a consequence 
of its transformation behavior, Nkml, which is now totally 
symmetric, may be reduced by the sequence of nonsingular 
linear transformations indicated above to canonical form 
diag(A 1.A2.A3)=diag(ao,bo,co), (ao = 0,1; bo, Co = 0, ± 1). 
The possible cases are listed in Table II. The last column in 
Table II corresponds to the applicability of Eqs. (23) to (25). 
In Type I all the equations are vacuous. In Type II only Eq. 
(23) applies, in Type VIo and VIIo only Eqs. (23) and (24) 
apply, and consequently only the ratio 

f3
a 

= I a
b
-_11/2, and the coefficient r = lab 11/2, (27) 

are uniquely determined. Finally in Types VIII and IX all 
three coefficients are determined. In all these types the di
mension of the derived Lie algebra is the same as the rank of 
A(km). 

We now consider the vector class. Upon multiplying 
Eqs. (23) and (24) together and substituting from Eq. (26) we 
find that the combination 
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none 
fJla = iilr 
fJla = ( - iilb)'/2 r = ( - iib)'!2 
fJla = (iilb)'/2 r = (iib) '/2 

a = ( - bC)'/2 fJ = ( - ca)'/2 r = (iib)'!2 
a = (bC)1;2 fJ = (ca)'/2 r = (iib)'/2 

n2 ii2 

o = --= h (vector types) (28) 
aobo ab 

is an invariant under transformation. Each value of h will 
characterize a different type. There are thus 2X 00 +3 
types, with Type III a singled out special case of 
VIh (h = - 1). The transformation coefficients are restrict
ed only by the Eq. (23) requirement 

f3la = (alao)(nolii) (29) 

and that ofEq. (26). These are equivalent to Eqs. (27) but are 
stronger: Eq. (29) is non vacuous in all vector types except V 
and Eq. (26) is non vacuous in all vector types without excep
tion. All types with the range - 00 < h < ° are designated 
types VI h • Those with range ° < h < 00 are designated VIIh • 

Correspondingly for both types VIh and VIIh 

(30) 

takes values in the range ° + to 00. The special case 
h = - 1, no = 1 is designated type III in the original Bian
chi classification. Though it is not conventional, we may 
even regard types IV and V as limiting cases where, fixing 
no = 1, by a suitable choice of G3, 3 (Eq. 26), and letting 

aobo- ± ° we have 

limh = lim l/(aobo) = ± 00. 
(ao,bo)- ± 0 

In this context, contrary to usual practice, we could intro
duce a unified notation 

(31) 

for all the Bianchi types-in particular the vector types; in 
the latter no is not zero and Co, which is equal to zero, need 
not be indicated. In summary we have the following possi
bilities for vector types given in Table III. 

C. Conversion from the canonical invariant basis to a 
metric-orthonormalizing basis whose time dependence 
is governed by Einstein's equations 

We have denoted the invariant-basis I-forms in the ca
nonical reduction by £A; they and their duals, the invariant
basis vector fields eA corresponding to the canonical repre
sentation of the Lie algebra, satisfy 

{£A,eB ) = {jAB' (32) 
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TABLE III. Vector Bianchi-Behr types. The coefficients of the transformation effecting the reducton from quasicanonical to canonical frames in all vector 
cases except type V satisfy the equations 

.!:... ~ Gu ' = aon = l!....., (=G3111 = n. 
f3 G, ' ano ano no 

In type V only the equation for r applies. 

Dimension 
of derived Limiting value Bianchi- Our 
Lie algebra or range of Behr symbol 
=1+ rank A no au bo Co h = n~/aobo type Sf/on 

a"b" 

2 0 0 ±co IV Sl.l ~ 
1,0 

I 0 0 0 ±co V Si,-±- ex 
0,0 

3 no= Ih 1"2 I -I 0 -co<h<O VI. Sn". ni. 
\.--1 

3 I I -I 0 -I III SI. 
, 

I. , 
nu= Ihl"21 0 O<h<co VII. S"n.n;1 

1.1 

The invariant-basis fields are generally nonholonomic and, 
corresponding their dual forms are generally nonc1osed; i.e., 
the commutators of the former and the exterior derivatives 
of the latter are not zero and define coefficients which are the 
structure constants of the isometry group. Explicitly, the 
invariance under the isometry group generated by the Kill
ing vectors with structure constants - GM

JK means that 

[e e] GM e deM = - GMJKeJ/\ eK. J' K = JK M' (33) 

The right-hand relation here is the Maurer-Cartan equation. 
One can use orthogonal holonomic coordinate triads (}j and 
their dual forms dx j as bases, and the e's and e's are deter
mined purely group theoretically in terms of these. Explicit 
representations of the e's and the e's as functions of up to 
three variables in such a basis, corresponding to the canoni
cal reduction of Estabrook, Wahlquist, and Behr8 (and 
therefore different from Taub'sll), are given in Appendix II 
of the companion paper "Spatially Homogeneous Neutrino 
Cosmologies (SHNC)." 

As described also in SHNC, for greater ease in applying 
the basic Cartan structure formulas, it is advantageous, to 
make a real (generally time-dependent) affine transforma
tion, Cj K (t ), substituting instead of the invariant basis e's a 
metric-orthonormalizing basis of forms 'Ai so that with 

'Ai = eJC/, eJ = 'AkCk J (C/C/ = 8;), (34) 

we have 

da2 = ('A1)2 + ('A2? + ('A3? = YLNCk LCm N'Ak®'Am. 
(35) 

Thus we have 

yLNCk LCm N = 8km or YLN(t) = 8km CL kcNm (36) 

and the scale factors YLN(t ) for the Bianchi-type metrices are 
determined as soon as the transformation coefficients 
CB a(t ), relating the time-dependent metric-orthonormaliz
ing triad to the invariant basis triad are known. From Eq. 
(10) and from the invariant forms listed in Appendix II of 
SHNC the metric 

(37) 
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would then be fully determined as a function of time and 
three holonomic coordinate variables. 

We can establish the relation between the canonical in
variant basis eI , en, em and a general admissible metric
orthonormalizing basis II' 12, 13 in two stages by formally 
reversing the last two stages of the canonicalization proce
dure-i.e., first applying a pure strain described by a, fl, Y 
(Functions of time whose relation to the post-strain values, 
G, b, c, are indicated in the last columns of Tables II and 
III. )-and second performing a rotation. The admissible 
strain-rotations are determined by a set of conditions which 
relate to maintaining the canonical array (indicated in the 
upper left-hand comer of Table IV) for the time evolvent of 
the structure constant matrix in all cases where it does not 
vanish identically-these conditions together with the re
quirement that the metric takes the orthonormal form (35) 
determines the possible families of orthonormalizing bases 
for the different types. Technically, what is determined is an 
admissible subgroup ofthe full gauge (automorphism) group 
of the canonical structure matrix. The specific particular 
structure of the appropriate family in any given physical case 
is then determined by solving Einstein's equations on the 
level of the connection. 

Specifically, how shall the transformation coefficients 
CB a(t ) be determined? Corresponding to the orthonormal 
basis forms there are the dual orthonormal vector fields 

(37') 

which define an orthonormal triad at every point of space 
and at different times. While independent of position in 
space within each hypersurface, these triads are functions of 
time: Upon going from the invariant frame to the orthonor
mal frame the invariant-basis structure constants, Ge

AB of 
any given isometry group are transformed into time-depen
dent commutation coefficients Cfgh (t) for the metric orthon
ormalizing triad: 

[Ig ,Ih ] = Cfgh If' (38) 

The commutation coefficients are functions only of time ac
cording to the transformation 

Cfgh (A!, [lg,lh ]) = CK fCg LCh MGK
LM (39) 
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and inversely, 

GD - C D-C PC- qcm 
FG - m F G pq' (40) 

Since everything is to be considered in spacetime we 
also introduce a timelike vector field 14 orthogonal to the 
spacelike hypersurfaces. (This can be the normal gradient of 
any well defined scalar in the hypersurfaces.) It and its dual 
I-form, J... 4 are given by the holonomic time quantites 

J...4=dt, I4=d,. (41) 

So that we now have an orthonormal tetrad field which is 
generally time-dependent. In spacetime we also have com
mutation coefficients between the timelike vector field 14 and 
lk . By the Maurer-Cartan equation these commutation coef
ficients appear in the exterior derivatives of the orthonormal 
tetrad basis I-forms: 

dJ...a = - C\,vl J...J.1/\ J...v (11lvl means Il < v). (42) 

With J... 4 = dt we have 

(43) 

The vanishing of these six coefficients means that the hyper
surface-orthogonal vector field 14 is geodesic and nonvortieal 
(If 14 represents the 4-velocity of matter world lines then 
these have zero acceleration and zero rotation relative to a 
Fermi-Walker transported triad, i.e., relative to an inertially 
guided gyroscopically stabilized frame of reference). This 
interpretation is seen from the relation of the C4 J.1V to the 
corresponding Ricci rotation coefficients (See Appendix) 

C4k4 =rk44 Ik,(14;4), C4km = -2r4[km] =14'(lk,lm], 
(44) 

which have an immediate kinematic meaning as acceleration 
and vorticity. 

As a second application ofEq, (42) we can obtain the 
differential equations governing CJ S by comparing the exte
rior derivative of J... 4 represented in two different ways. This 
is done in SHNC. Here we shall present the dual derivation. 
We substitute the expressions 

14 = C4IVeIV' Ii = C/eK (45) 

into the commutation relation for 14 and Ii and obtain 

[14,1;] = [C4IVeIV,CiKeK 1 = C4
IVC/eK 

= C\iIu = C"4jCUKeK' 

where we have used the condition of Eq. (43) that the time
measuring vector field 14 is geodesic and nonvortical. Mak
ing the immaterial specialization that the time coordinate is 
not changed at all when we go from the invariant eA basis to 
the orthonormallJ.1 basis (C4

IV = 1), we infer 

C/ = C"4iCu K = - (S + W),."C" K_ -(8+ W)C=C 
(46) 

and, correspondingly, 

CK ' = - CK"C'4u = (S - WYu CK"-C(8 + W) = C. 
(46') 

Here the right-hand sides come from the definition by the 
coefficients C fgh of kinematic quantities 8 and W in accord 
with 
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- C(gh)4=r4(gh) = - 5gh = - Shg, 

- C[gh]4 = r gh4 -Wgh = - W hg · (47) 

The 5gh are the orthonormal triad components of the rate
of-strain tensor or, geometrically, the extrinsic curvature of 
the hypersurface of homogeneity; and 

W fg = - Wgf == €fghWh (48) 

represent the three independent orthonormal components of 
the angular velocity of the orthonormal spatial triad relative 
to a Fermi-Walker transported triad, I.e., the angular veloc
ity ofthe orthonormal reference triad with respect to a gyr
oscopically stabilized inertially guided reference frame 
("compass of inertia" in Weyl's term). The choice of 
Wab= - we (a,b,c = 1,2,3 et eye!.) is partially free only in 
some of the types and solutions; in other words for many 
Bianchi type solutions there is an inescapable rotation of a 
naturally chosen reference triad with respect to the "com
pass of inertia. " 

In solving Eqs. (46), assuming that Sand Ware 
known-say from solving Einstein's equations for given 
physical conditions (see Appendix I) we have to assign initial 
values C" K (to) at some time t = to' This transformation from 
the generally nonorthonormalizing but invariant basis to an 
initial orthonormalizing basis at t = 0 obeys the relations 
Hsted in the last columns of Tables II and III interpreted as 
an inverse transformation. For even if the initial Cu s(to) can 
be chosen diagonal, meaning that initially the orthonormal 
triad is parallel to the invariant triad, from then on an evolu
tion of the orientation and magnitude of the members of the 
orthonormal triad takes place and the C" K (t) need not be 
diagonal. They will evolve according to Eqs. (46) and will 
remain diagonal ifand only if(5 + W)/ = Oforallf #g. But 
then 

(S + W)fg = (S + W)gf = (S - W)Jg = 0 (f #g). 

Thus the condition for the C's to be diagonal is that 8 be 
diagonal and W = O. Actually, this result may be considered 
to be a corollary of a general theorem which we shall now 
establish. 

The C-matrix may not be fully diagonal-only block 
diagonal, When Eqs. (46) are written out one establishes im
mediately the following Double-conjugate-pair Theorem: If 
two pairs of conjugate off-diagonal elements of the C-matrix 
are known to be zero then the corresponding pairs of conjugate 
elements ofS and Ware zero. 

For instance, set C I
III

, C2
11I

, C3 I, C3 II equal to zero in 
that subset ofEq. (46) which is relevant. We then have 

(S13 + (2)C3
11I = 0, 

(523 - Wt)C3
I11 = 0, 

(SI3 - ( 2)C/ + (523 + Wt )C2
1 = 0, 

(SI3 - (2)Ct II + (523 + W1)C2 II = O. 

Because the matrix of C's is nonsingular, 

C/I1(CtIlC2II - ctC/)#O, 

we have that 
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513 + UJ2 = 0, 513 - UJ2 = 0, .'.513 = 0, UJ2 = 0, 
(46b) 

5 23 - UJ I = 0, 523 + UJ I = 0, .'.523 = 0, UJ I = 0. 

That the converse is also true, i.e., that the block diagonal 
structure of the C matrix is both necessary and sufficient for 
the vanishing of the corresponding elements ofS and W, 
follows immediately from the same differential equations 
which led to (46a). Assuming the conditions ofEq. (46b) we 
have 

C· III - _ S C III C· III - S C III 
I - II' 2 --22' 

C' I SCI C." __ SC" 
3=-33' 3- 33 

(51 SII' 52 ==-S22 , 53 S33)' 

The initial vanishing of these off-diagonal elements then im
plies that they remain zero thereafter. 

Under the conditions of the Double-conjugate-pair 
theorem the remaining four equations of the total set (46) 
break up into two pairs of coupled equations, one pair for C I I 

and C2 I, and the other pair for CI II and C2". The coefficients 
are identical and so likewise are the forms of the solutions for 
the two pairs. We need find the solution then for only one 
pair, e.g., C I I and C2 I. The equations then read 

- (\1 = SIC/ + (512 - UJ)C2
I
, 

- C2
I = (5 12 + UJ)C/ + S2C2I 

First we give a preliminary survey of results. In the fol
lowing, in the context of solving the differential equation 
system (46), we shall again prove (in matrix notation) the 
Double-conjugate-pair theorem; we will then make consid
erable application of the theorem because in almost all types 
the block diagonal structure is the most general that can 
occur if the following basic condition is satisfied: The orthon
ormalizing basis is chosen to coincide at all times with the 
characteristic directions of a symmetric tensor F and its eigen
vectorn which are theevolvents in timeofA(KM) and no; F and 
n also completely determine the intrinsic curvature of the spa
tial hypersurjaces. 

Nondiagonal structure (in particular, proper block di
agonal) of the C matrix occurs only if a degree of symmetry 
exists in the geometry of the hypersurface-degeneracy in 
the eigenvalues of F. Contrapositively, nondegeneracy in F 
implies diagonal structure of the C matrix. This situation of 
non-degeneracy can occur in particular solutions of all types 
except in I, II, IV, and V where degeneracy is built in the type 
structure. 

Though non-degeneracy in F is sufficient for diagonal S 
and vanishing ro, it is not necessary. In fact it will turn out 
that invariance of the diagonal structure-and degeneracies 
when they occur-of F implies that S is also diagonal in all 
cases (afortiori in Types I and V when it is chosen diagonal:). 
With F degenerate S is always diagonal but we mayor may 
not have ro vanish. We may have solutions with vanishing 
ro-and therefore diagonal C matrix-also in cases where 
degeneracy is inescapable, e.g., in types I, II, IV, and V. The 
general situation however when degeneracy in F occurs is 
that ro does not vanish and the C matrix does not remain 
diagonal but develops into a product of a diagonal matrix 0 
and an orthogonal matrix R with the rotation angles given by 
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the time integrals of roo The fact that C is representable as a 
product RO is a specialized form of the general polar decom
position of an arbitrary nonsingular matrix. Other than in 
type I and totally symmetrical IX, where general rotations 
are involved, the orthogonal matrix has at most block diag
onal structure (rotation about one axis only). But in general, 
in cases of degenerate F, C is certainly not symmetric con
trary to Ryan and Shepley's assumption.4 Evidently they are 
assuming a gauge which does not preserve the quasi-canoni
cal form ofF. In our gauge the C's are symmetric only when 
diagonal. Restricting the orthonormalizing transformations 
in this way limits the possible solutions to those where ro 
vanishes and S remains diagonal at all times. While the latter 
condition is generally no restriction (see Table IV) the re
quirement of vanishing ro arbitrarily restricts solutions in 
almost all types in cases where there is some symmetry in the 
intrinsic geometry. Fortunately, however, this restriction 
does not affect the possible canonical forms of metrics for all 
the types because these metrics depend only on the diagonal 
factor 0 in the product C = RO or C = O-IR- I O-IR T. 

This can be seen from Eqs. (II) or (36) which become 

'Y = CC T = O-IRTR(O-I)T = (0-1)2. (36*) 

However, R (and ro) playa role in the physics and geometry. 
We proceed now to the detailed analysis. The two other 

sets of quantities, besides Sand W, which play an important 
role in the theory are then the symmetric "dyadic" 

F(km) = C(k deCrn)de 

and the "Bianchi vector" 

(49) 

(50) 

It is clear that F and n bear the same relation to the commu
tation coefficients that ao, bo, co, and no bear to the structure 
constants. In fact we see that they are time evolvents of: (1) 
the symmetrized, and (2) the (dualized) antisymmetric parts 
of the structure constant matrix introduced in Eqs. (14) and 
(IS) respectively. They transform from any initial values 
they may have by the transformation formulas (19) and (20), 
with the transformation coefficients now being functions of 
time which satisfy the differential equations (46). Substitut
ing the definitions (49) and (50) in the transformation for
mulas and taking for the initial values the canonical values 

FOKM = diagFo(K)=diag(Fo(l),Fo(lI),Fo(lIl» 

-diag(ao,bo,co), 

we have 

pf(t) = LlCK eCMfFo(K)8KM, 

ng (t) = Cg I1I(t )no. 

(51) 

(52) 

(53) 

The differential equations (46) govern the transforma
tion coefficients C, K (t). There is a certain amount of free
dom in the choice of the orthonormalizing frame, i.e., one 
may choose the ro components so that certain conditions are 
maintained. These together with the differential equations 
(46) restrict the transformation coefficients C, K. 

Two very useful results may be established. 
(1) By proper choice of ro (and therefore of the metric

orthonormalizing C's) F may be kept diagonal (quasi-ca
nonical) at all times 
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F -diag(a,b,c)=diag(F(1), F(2), F(3» - F. 

In the types I and V where F is identically zero the C's may be 
chosen to diagonalize S instead. 

(2) The general intrinsically defined vector in the pure 
differential-geometric structure of the vector types is the 
"Bianchi vector" n. There are of course also three principal 
axis directions of the symmetric quadric F (modulo possible 
degeneracies). Fortunately the directions picked out coin
cide here: In all vector types, the third direction oJthe stan
dard orthonormalizingJrame (Le., the frame which also 
maintains F, or S, diagonal), may be chosen in the direction oj 
n which then has only the one non-vanishing component n. 

That For S may be diagonalized simultaneously with 'Y 
is evident, since this can always be done with two symmetric 
quadratic forms if one of them ('Y in this case) is positive 
definite. What is the bonus here is that, due to the persistence 
of the Jacobi identity 

F·n=O 

-condition for associativity in the commutation of the 
evolving basis-vector fields-the eigenvector n may be main
tained in the third principal direction of F. 

As has been remarked, F and n also have a geometrical 
meaning. They are related to the intrinsic curvature of the 
hypersurfaces of homogeneity. In fact, the Riemann curva
ture form of the 3-geometry on the spatial hypersurfaces is 
entirely composed of F and n. 12 The nonvanishing elements 
in the matrix of Riemann curvature 2-forms are 

RI2 = - (n 2 - cD +AB)AI I\A2, 

R 13 = ( - n2 + bB - AD )11. I 1\ 11.3 + n(B - D + a)A 21\ 11.3, 

R23 = - n(A - D + b )11. I 1\ 11.3 

+ (- n2 + aA -BD)A2I\ A3. 

The Ricci curvature tensor is 

[

R -4n2 +2aA 

R = n(b -a) 

o 

n(b - a) 

R -4n2 +2bB 

o 

where the Ricci curvature scalar is 

R = 6n2 + !(a2 + b 2 + c2) - (bc + ca + ab ) 

and the abbreviations A, B, and D have been introduced: 

A =~(b + c - a) B =!(c + a - b), D =~(a + b - c). 

F and n vanish identically for Bianchi type I. Thus, all 
spatial hypersurfaces for type I solutions are fiat, in contrast 
to the general situation for the five "spatially curved" non
vector types II, VIo, VIIo, VIII, IX and the 3 +200 spatially 
curved vector types III, IV, V, VIh , VIIh • 

With the quasi-canonical choice for the orthonormal 
triads, Eqs. (52) and (53) become 

III _ 
P(t) =..::i L (CK PfFo(K), 

III __ 
O=..::i L CK PCKqFo(K) 

1947 

K~I K~I 

(p#q), 

( = 0 for g = 1,2 except in type V). 
(54) 
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In matrix notation Eq. (54) may be rewritten 
, '-~ -,-
F =..::i (FoC) C = ..::iCIfoC, (54') 

As explained in the preceding the most general form of C or 
C is that of a product of a diagonal matrix and a rot~tion 
matrix (special case of polar decomposition) C = RD and 
C = O-IR-I = O-IR T. Here the diagonal matrix D repre
sents the pure strain-the inverse of the transformation giv
en by (21}--needed to go from the canonical to the quasi
canonical but orthonormal form of the spatial metric 
da2 = (e I/a)2 + (e II/P)2 + (e lII/y)2 

= (11. 1)2 + (11.2)2 + (A3f 
and the rotation R represents an additional gauge transfor
mation, i.e., one which preserves the orthonormal form of 
da2 and the quasi-canonical form ofF. We may write Eq. 
(54') , 

F =..::i RO-IFoORI =RFoR-1 , (55) 
where we have set, in accord with Eqs. (23)-(25) , 

..::iO-IFoO Fo-diag(aJ1y/a, boya/p, cpP /y). 

Eq. (55) can only be satisfied as follows for various canonical 
structure matrix degeneracies, with which are listed the as
sociated admissible rotation matrices and types: 

1. a#b #c#a: only R = Ro (the identity). 
Nonvector: All VIo. Axially unsymmetric Vllo, VIII and 
completely unsymmetric IX. 
Vector: All VIh • Axially unsymmetric Vllh • 

2. a = b #c: R = Rz rotation about the z axis 

Nonvector: Axially symmetric Vllo, VIII and z-rotational 
IX. 
Vector: Axially symmetric VIIh • 

3. b = c#a: R = Rx rotation about the x axis 

Nonvector: All II, x-rotational IX. 
Vector: All IV. 

4. c = a#b: R = Ry rotation about they axis 

Nonvector: y-rotational IX. 
Vector: None. 

5.a=b=c=O: Rx,Ry,Rz 

Nonvector: extrinsically anisotropic I extrinsically isotropic 
I: RxRyRz if Sl = S2 = S3 

if SI #S2' no Rz ; 

if S2 #S3' no Rx; 

ifs3#sl' no Ry; 

Vector: V with quasi-canonical n = (O,O,n), level Rz only if 
Sl =S2 

6. a = b = c#O: RxRyRz. 
Nonvector: isotropic IX. 

All these cases, which comprise all possible instances of 
Bianchi-Behr types, are listed together with the asociated S, 
ro and C quantities in Table IV. 

Ifis of interest first to derive the conditions on S, ro and 
C for the completely isotropic cases (isotropic IX and as
sumed extrinsically isotropic I). Under these conditions we 
have that the C matrix can only have the form of a uniform 
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TABLE IV. 

Degeneracies of 
diagonal elements 
of the canonical 
structure matrix 

[~n ~ ~] 

None 

a=b#c 

b #c =0 

Possible Bianchi 
types and 
admissible 
R"R,.,R, (+ identity Ro) 
preserving canonical form 
of the structure matrix 

Nonvector: 

All VI" 

IX Ro 

Vector: 

All VI. (III) 

VII" Ru 

Non- Vector: 

R, 

VIII R, 

IX R, 

Vector: 

VII" R, 

Nonvector: 

All type II 

IX 

Vector: 

NonVector: 

IX R, 

R, 

Nonvanishing 
elements of the 
extrinsic 
curvature 

[

5, 512 
5" = 5 12 52 

513 523 

5, 52 

5, 52 53 

5, 52 53 

5, 52 53 

5, 5, 53 

5, 52 53 

5, =52 53 

5, = 52 53 

5, = 52 S3 

5, 52 = 53 

5452 = 53 

5, = 5, 53 

53=5,#52 
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Nonvanishing 
elements 
of 
W'j:::::=UJ/.. 

None 

None 

None 

None 

None 

w, 

w, 

None 

Gauge subgroup of 
admissible pure 
strain-rotation 
matrices C""RD 

iJ == diagonal strain 
matrix). These are 
metric-orthonormalizing 
while preserving the 
quasi-canonical form 
of the structure matrix 

o 

o 
leal'" 

o 

o 

Ihl"'~a 
n 

[

COSo 

a -s~nO 

o 

sinO 
cosO 

o 

[

COS 

loci'" - ~ino 

[

cosO 

a -~ino 

o 

sinO 

cosO 

o 

/3cosO 

- /3sinO 

[

Ibla l'" 
Ibal"2 0 

o 

a~J 
sinO 

cosO 
o 

o 
cosO 

-sinO 

cosO 
o Si~O ] 

cosO 

[

cosO 

Ibal"2 0 
-sinO 

o 
lalb I'" 

o 

si~Ol 
cosO 

Si~O ] 
cosO 

Parameters in C 
matrices expressed 
in terms of 
basic intrinsic and 
extrinsic quantities 

The lower limit in 
the integrals is the 
orthonormal triad is 
aligned with the 
invariance triad, i.e., when 
a = ao, b = bo, c = Co 

a = e IScll 

a =e 15.,/1 

O=fw.,dt 

0= f W3 dt 

a=e 15,,{1 

0= f w, dt 

a = e IS,(tr 

f3 = e I." ,fl 

O=fw,dt 

0= f w, dt 

O=fw,dt 

Ibal'" =e 

a = e IS ", 

0= - fw,dt 
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TABLE IV. 

Degeneracies of Possible Bianchi Nonvanishing 
diagonal elements types and elements of the 
of the canonical admissible extrinsic 
structure matrix R"R",R, (+ identity Ro) curvature 

[ ~ n 

n 

~1 
preserving canonical form 

[S, 5" 513

1 b of the 5" = S" 5, 5" 
0 S" 523 5, 

a=b=c Nonvector: 
Unsymmetric I Ro 5, 5, S3 
Axial I R, 5, =5,,,,,5, 
Isotropic I and IX R"R "R, 5, = 5, = 5,==5 

Vector: 

Axial Of isotropic V R, 5,=5, S, 

dilation multiplied by a general rotation 

C = aR, (R = RxRyR,). (56) 

From the properties of the rotation matrix we then have 

(Clat l = (Cla)T = aC-1=aC 

or 

CT =a2C, 
Applying this to the transpose of Eq. (46) we get 

( - azq = CT (5 - W) = a 2C(5 - W) 

or 

aZC = a 2C[W - 5 - (Ina2
)' 1]. 

Comparing with Eq. (46), and noting that Cis nonsingular, 
we find that 5 is a scalar multiple of the identity matrix with 
the multiplier, or diagonal element s, equal to - (Ina)' . It 
follows that 

(57) 

This is the specially totally symmetrical case. Similar forms 
for the dilation factors hold in the more general cases of 
lesser symmetry when the matrix C is only block-diagonal or 
diagonal, as will now be seen. 

The diagonal case is self-evident because then S - W 
must be a diagonal matrix which can only hold ifW = 0 and 
S is diagonal. In a typical (e.g., z-rotational) block diagonal 
case we can write the C matrix in the form 

( H=:= ( co~O 
-smO 

sinO) 
cosO ' 

, (a a= o 
where H- 1 = H T and where we assume that 

a =l=r or iiy=l= 1 (ii=a- I
) 
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~)), (58) 

Nonvanishing Gauge subgroup of Parameters in C 
elements admissible pure matrices expressed 
of strain-rotation in terms of 

W,,==UI, matrices C==RD basic intrinsic and 
extrinsic quantities 

iJ == diagonal strain 
matrix). These are The lower limit in 
metric-orthonormalizing the integrals is the 
while preserving the orthonormal triad is 
quasi-canonical form aligned with the 
of the structure matrix invariance triad, i.e., when 

a = "0' b = bop C = Co 

lSd, 

None R, a=e 

Ul J aR,R,R, 
Cll 1'(.{}2, lU3 

[ cos8 sin8 

n~J 
a=e IS,d( 

UlJ a - ~in8 CDs8 
0 8= J UI,dt 

in order not to be in the previous completely isotropic case. 
We then have 

CT = (
H- 1 

o 
From the transpose ofEq. (46), into which we substitute this 
expression, we get 

-c' (a
0

2 0) ( , Z r + C ~ 

(

' 2 - a 
=C o ~)(W-S). 

Comparing with Eq. (46') which can be written 

-C' (Ct
o
'2 0) ('2 y2 =C(5+W) ~ ~) 

and noting that C is nonsingular, we find 

S+W= (
a
0

2 

~) (W _ S) (~2 
_ (Ina2 0)' 

o lnr 
The antisymmetric and symmetric parts of the matrices on 
the two sides of this equation must be separately equal and, 
as iirol= 1, this holds iffW I3 = W23 = S13 = SZ3 = 0 (conju
gate elements likewise), which is again a proof of the Double
conjugate-pair theorem. The remaining equation is 

S = - C~a l~r). (59) 

Thus 5 is again a diagonal matrix here, with elements 

so that the intrinsic axial symmetry is reflected in an extrin
sic axial symmetry as well. The diagonal factor in Cis: 
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(~ 
o 

o 
o ) o . 

roe - Is, dt 

(60) 

To find an expression for the only remaining time-dependent 
parameter in C, i.e., B, we substitute Eq. (59) for S into the 
differential equation (46) with C given by Eq. (58) and we 
find 

or 

(cosB r 

(sinB r = ill3 cosB, 

Differential equations for F and n may be derived from 
the finite evolution Eqs. (54) and (55) by differentiating and 
using Eqs. (46) and (46'). We obtain (setting the rate of vol
ume expansion -..d / Ll =B): 

a = (2s 1 - B)a, b = (2s2 - B)b, i: = (2s3 - B)c 
(alltypes), (62) 

(a - b )W21 = (a + b )S21' et cycl. (all types). (63) 

In particular 

a(S - W)3J = 0, b (5 - W)32 = 0 (all except VIII and 
IX). (64) 

Using Eq. (46) we obtain for all vector types 

nJ=0=(5-W)3IC3II1nO= -(5-W)3Jn (n n3(t», 

nz = 0 = - (5 - W)32C31I1nO = (5 - Wbn, (65) 

n = - S3C/IlnO = - S3n. 

In the one vector type, V, where F = 0, and S is chosen 
diagonal instead, wlln and n is an eigenvector ofS; thus, 
again the direction of n may be chosen as the third direction 
of the standard orthonormalizing frame. This can be seen as 
follows: Consider any well-defined spatial vector appearing 
in a structure enlarged relative to the homogeneous spatial 
hypersurfaces, e.g., an embedding spacetime or, more spe
cifically, Einstein's theory specifying a coupling of this spa
cetime with the local physics. On general symmetry grounds 
(spelled out for instance by applying the commutation alge
bra-time evolvent of the isometry Lie algebra-to the com
ponents of the vector) such a vector will have to be parallel to 
the common direction of wand n whenever a nonvanishing n 
exists. But such a well-defined vector is the energy flux, t, 
which satisfies one of the Einstein equations [Eq. (2.23) of 
SHNC]: 

t - F X S = - Bn + 3S·n 

or (Type V) 

t = - Bn +3S·n. 

It is evident that t being parallel to n implies that n is an 
eigenvector ofS in any type V solution, and can be associated 
with the third principal-axis direction of S. On the same 
general symmetry grounds we may expect that only the third 
component, ill3' of the angular velocity vector w may be non-
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vanishing in the standard orthonormalizing basis for vector 
types, and this is confirmed by looking at the specific equa
tions. [Actually these considerations should be examined in 
more detail-and will be, elsewhere-because while the 
"vectors" nand w originate in the same irreducible tensor 
symmetry type-that of antisymmetric tensors-t origi
nates in a different symmetry type]. 

Leaving aside Type V where no problems arise, since 
Eqs. (63) and (64) are vacuous in that case, vector types are 
the only ones where the question of consistency could arise 
between Eqs. (64) and (65). We see however that Eqs. (65) 
require 

(66) 

which is consistent with Eqs. (64). Both of these components 
must vanish by the preceding argument. We note that be
cause of Einstein's equations this implies vanishing of the 
corresponding components of the stress tensor. 

The explicit equation in the system (63)-valid for all 
types-gives 

(67) 

or, in all cases where a = b #0, i.e., in axially symmetric 
cases of VII, VIII, and IX, 5]2 = O. 

We note also from Eqs. (62) that in this case the first 
two diagonal elements of S are equal: 

SI =S2' 

A corresponding conclusion follows for the other cases of 
degeneracy: b = c, a = c, etc. 

Combining the foregoing requirements with the analy
sis indicated above of the gauge subgroup, i.e., the subgroup 
of pure strain-rotations which leave quasi-canonical forms 
of the structure matrix invariant, we again arrive at the re
sults tabulated in Table IV. By virtue of the conditions im
posed, the solutions for differential Eqs. (46) for the various 
types reduce to simple quadratures and block-diagonal form 
in almost all cases. The final canonical form for the metrics 
which results from this analysis is 

ds2 = _ dt 2 + rAB£A <iii £B = 
2 (£1)2 (<<:11)2 (<<:111)2 -dt + - + - + - , 

a (3 r 
(68) 

where, for each of the Bianchi types in turn, expressions for 
a, (3, r in terms of the Einstein solution-quantities e - ssd', a, 
b, c, n (or h) maybe read out of the last two columns in Table 
IV. 

ACKNOWLEDGMENTS 

One of us (M.A.M.) acknowledges with pleasure the 
hospitality and very valuable scientific insights provided by 
Dr. J. F. Plebaiiski at the Centro de Investigaci6n y Estudios 
Avanzados, I.P.N. in Mexico City and the stimulating dis
cussions there with Dr. Plebanski, Dr. Roy Kerr, and Dr. 
Andrzej Krasinski. He also wishes to express his apprecia
tion to Dr. Paul Melvin and Dr. Stanislaw Bazanski for stim
ulating discussions, and to Dr. John Milnor and Dr. John 
Stachel for reading this manuscript. Travel support by Tem
ple University is also gratefully acknowledged. 

M. A. Melvin and T. R. Michalik 1950 



                                                                                                                                    

APPENDIX: SYNCHRONOUS FORM OF THE METRIC 
FOR HOMOGENEOUS COSMOLOGIES-RELATION 
BETWEEN STRUCTURE AND RICCI COEFFICIENTS 

The necessity and sufficiency of the requirement of his
torical homogeneity, i.e., that each successive hypersurface 
constructed by measuring off equal parameter intervals 
along a timelike geodesic congruence normal to an initial 
homogeneous hypersurface should maintain spatial homo
geneity, is fundamental, and should be proved rigorously: 

Let t be a parameter along a timelike curve, i.e., the 
tangent vector to the curve is d/dt. Historical homogeneity is 
formally expressed by the existence of an entire congruence 

of timelike curves S a(t;}' I 'Y2'Y3) parametrized by Y I' Y2' Y3 
such that the Killing vector fields Zk operating in successive 
spacelike hypersurfaces of homogeneity connect points of 
equal t. The analytical expression of this property is the 
transport law 

(AI) 

where eiv -o/ot is the tangent vector field to the timelike 
congruence. [An excellent diagram illustrating this property 
of a vanishing Lie derivative of one vector field like Zk , with 
respect to another, like eiv ' is given in problem 8.14 Ref. 13.] 

By the antisymmetry property of the commutators, the 
"historical homogeneity" or "conservation-of-homogene
ity" equation (AI) implies the "global-time existence" 
equation: 

!.t' z, (eiv ) = [Zk ,eiv ] = O. 

As argued in the text of the present article immediately fol
lowing Eq. (7)-by the completeness of the e and Z bases, 
respectively-we also have the vanishing of the 
commutators 

- [eK,eiv ] = [eiv,eK] = !.t'eJeK) = O. 

This equation guaranties that the metric, initially in the syn
chronous form (with giv K = 0), will retain this property 
from one homogeneous hypersurface to the next. For we 
have 

!.t'dg4k) = !.t'I,(I4·l k) =!.t' c'\e.,(Civ4eiV,Ck JeJ ) 

= CkJ(eiv·eJ) =givJCkJ = 0, 

where again we have made the immaterial specialization 
[Eq. (46)] that C iv 4 = 1. This establishes that historical ho
mogeneity is sufficient to maintain a synchronous metric. 
That it is also necessary follows by tracing the steps in reverse 
order. 

The Ricci coefficients defined by 

appear in expressions for covariant derivatives. In Rieman
nian geometry the F 's are related to the structure coeficients 
by the zero torsion condition: 

la:p-IP:a=- [la,lp] = - C I"ap II" , 

F1lap -FI"Pa = - Cl"aP' 

With,u set equal to 4, this gives the vanishing of Fk44 and 
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F 4 [km J with the kinematic significance of zero acceleration 
and zero vorticity as described in the text. 
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Gravitational effects of a c number neutrino field in spatially homogeneous geometries are 
analyzed. At the basis of the description of the geometries is an arbitrary timelike congruence with 
aligned tetrad reference frames, i.e., on,e basis vector of the tetrad frame at each point of space
time is aligned along the congruence. The remaining three basis vectors of the tetrad lie in 
<Irthogonal :!p<l~dike hypersurfa~es, and for these there are three alternative ~hoices: (1) invariant 

reference triaa:5, ie., which conform to the isometry group of the space with structure constant~ 
GCgh ; (2) orthonormal reference triads simulating a Euclidean structure at each point; (3) 
holonomic coordinate triads in terms of which metrics are usually given. The relations between (1), 
(2), and (3) for all nine Bianchi-Behr types are reviewed. The relatively compact vector-dyadic 
(Jcmalism used by Estabrook, Wahlquist, and Behr is introdu~ed; it has the a.d vantage that it lives 
directly the Bianchi-Behr classification of cosmoiogic solutions, and represents these solutions in 
terms of the orthonormal frame components of interesting physical quantities such as shear rates, 
volume expansion rates, and rotation with respect to inertially stabilized directions. The coupled 
Einstein-Dirac equations for the gravitational neutrino field and the neutrino stress-energy 
tensor are derived, and the coupling equation5 are replaced by a set in whkh the neutrino 
amplitude is eliminated. and instead there appear the neutrino current (J, /0 = \ll) (vector 
bilinear covariant) and the "eikonal momentum" P = V J, the gradient of the phase function/(x) 
which appears in the neutrino spin or amplitUde tP = X (t )e if(x). Solutions for an nine Bianchi types 
are classified. Further, with the two assumptions: (1) axial symmetry of the geometry, (2) 
alignment of the neutrino m<Jmentum density t with the Bianchi vector n (in the symmetry 
direction), a new exact solution is found explic.tly. It is of type vn I, • This solution goes over >nrc a 
solution for type V when a parameter in the solution is set equal to zero. This is to be expected from 
the fact that type V may be regarded as a limiting case of type VUh when a = b-o. 

1. 'NT~OOUCTION 

This investigation of the neutrino in general relativity 
takes place on the "third level" 1 of approach which treats 
the neutrino as a classical ("c-number") field satisfying the 
coupled Elnstein-Dir<l~ equations. Here, the Dirac e~uatlon 
is a field equation which can be derived by varying the field 
Lagrangian. Variation of the general relativistic Lagrangian 
density (V - g)[R + Lfield ] with respect to the metric gives 
the neutrino stress-energy tensor as a source in Einstein's 

. 1 equatlQns. -
E~sentially, this approach studies the effect of smgle 

neutrino states on the geometry of spacetime. Such a neu
trino state would need to be one of tremendous energy 
(~I078 GeV) to generate even the small cosmologic curva
ture ofthe present universe (radius - {OW light years). It is 
certainly of more physical interest to examine the gravita
tional effects of a collection of less energetic neutrinos as 
manifested by a many-neutrino state and stress-energy ten
sor taking account of statistics. Unfortunately, an exact 
many-neutrino treatment in general I"elativity is difficult. 

choQ5ing the expamiQn coefficient5 in such a way that the 
general many-particle wavefunction has the proper symme
tries under the interchange of pairs of particles. Second 
quantization puts the theory into operator language. It gen
eralizes from the many-particle wavefunction to a quantum 
field, wlth the eXp<ln5LOn coefficients naw becoming opera
tors which satisfy commutation or anticommutation rela
tions appropriate to the statistics being considered. Thus, in 
the context of a second quantized theory, the role of the c
number field equation is to provide the eigenfunctions which 
multiply the creatiQn and annihilation operators in the ex
pansion of the general many-partide field. 

The role of the <"·number field theQry is to pI"Qv\de a. 
single-particle wave equation whose solutions are eigenfunc
tions which should form a complete set of single-particle 
states into which the general many-particle state is expand
ed. Statistics can be made an inherent part of the theory by 

A quantized field theory for fermions has been devel
oped for one particular geometry, that offtat space. There 
are infinitely many other geometries to consider, and the 
quantization procedure may be different for each. (n par
ticular, the symmetries or Killing vector fields of (he space
time play an important role in determining conserved quan
tities, and these, in turn, give information about which 
quantum numbers are relevant. It is also conceivable that the 
spacetime under consideration may not possess any Killing 
ve~t~rs, fn the nQmtatic spatially hcmcgeneou:! ~(J~molo
gies, for example, there are, in general, no timelike Killing 
vectors. The global energy associated with a localized stress
energy-momentum distribution is therefore not a conserved 
quantity, and the general time dependent state cannot be 
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expanded in energy eigenstates. There are, however, other 
symmetries. This investigation considers the neutrino field 
only in those spacetimes which possess the symmetries of the 
spatially homogeneous cosmologies. 

Construction of an exact many-particle solution of the 
Einstein-Dirac equations out of single particle solutions is 
seriously hindered by the nonlinearity of Einstein's equa
tions. The situation is not entirely hopeless, however. In 
some cases it is possible to treat the general relativistic many
fermion system with success in a self-consistent manner.3 

Although the work here is not a many-neutrino theory, 
the study of the gravitational effects of single neutrino states 
is a first step towards a more relevant many-neutrino theory. 

2. BIANCHI COSMOLOGIES 

A. Invariant Basis to Orthonormal Tetrad Field 

It is well known4 that the geometry of the Bianchi cos
mologies can be described by the metric 

~ = - dt 2 + tW, (2.1) 

where the infinitesimal squared distance within the hyper
surfaces of homogeneity is given by 

dcr = Y AB (t )£A ® £8 (2.2) 

(Roman letters 1-3, Greek 0-3). The metric coefficients Y AB 

are purely time dependent, and the I-forms £ A constitute an 
invariant form basis while their duals, the vectors e A , consti
tute an invariant vector basis.5 

The eA , viewed as operators, satisfy a Lie algebra with 
structure constants which are the negatives of those of the 
isometry (Killing vector) Lie algebra of the different Bian
chi-Behr types: 

_ i a 
[eA,eBl = GRABeR' eA=eA -.' (2.3) 

ax' 
where the holonomic coordinate tetrad and its dual 

(2.4) 

are not specified initially but are to be found later as suitable 
bases for the e's and £'s. Following the Estabrook, Wahl
quist, and Behr convention,6 the eA are chosen to give the 
canonical group algebra: 

[ e l ,ell ] = COen ) , [ en ,elIl ] = aOe) - noen , 
[em ,el ] = noel + boell , (2.5) 

where the constants ao, bo, co' and no have the values for the 
different Bianchi-Behr types given in Table I. 

Instead of the invariant frames, it is advantageous to 
introduce a field of orthonormal frames (i.e., frames which 
put dcr in diagonal form). This consists of a homogeneous 
field of spacelike triads of orthogonal basis vectors 10 which 
lies within the successive hypersurfaces of homogeneity and 
a timelike vector field 10 which is orthogonal to these hyper
surfaces. The orthonormal basis vectors and their dual 1-
forms 'A 0 and 'A 0 are related to the in variant basis quantities 
by 

1953 

a 10=-, at 
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(2.6) 

TABLE I. Values of structure constants for the different Bianchi-Behr 
types 
(h ==n~/aobo). 

Bianchi-Behr type no ao bo Co 

0 0 0 0 
II 0 1 0 0 
VIo 0 I -1 0 
VIlo 0 1 I 0 
VIII 0 I 1 -\ 
IX 0 \ \ 1 
V 1 0 0 0 
IV \ 1 0 0 
III or VL I 1 1 -I 0 
VIh(O>h> - 00) no#1 -I 0 
VIIh (0 < h < 00) no 1 0 

where Cb A and CB a are matrices of a real affine transforma
tion. They depend only on time and satisfy 

(2.7) 

The orthonormality requires 
- c- d 

YABCe ACd
B = Oed or YAB(t) = OedCA CB . (2.8) 

Note that there is no reason to impose symmetry condi
tions on Cb A at this point. In fact, such an imposition as 
occurs, for instance, in the treatise of Ryan and Shepley5 

substantially reduces the generality of the analysis as is dem
onstrated in the companion paper (SMHC) where a classifi
cation ofthe possible cases is given.4 

Upon going over to the orthonormal frame, the invar
iant basis structure constants of the different isometry 
groups (Ge

AB ) are transformed into commutation .::oeffi
cients for the spatial subset of the orthonormal tetrad. These 
commutation coefficients are functions only of time accord
ing to the transformation 

Cfgh=('A f, [lg, Ih ]) = GRABCR fC/Ch B. (2.9) 

(following Misner, Thorne and Wheeler, ( ) denotes the 
contraction of a I-form with a vector.) 

The remaining commutation coefficients (those involv
ing 10) can be computed by taking the exterior derivatives of 
the orthonormal basis I-forms 

d'A"= -C"ll'vl'AI'A'Av, (2.10) 

where Iii vi means an ordering of indices so that Ii < v. Be
cause 'A 0 

:::;: dt 

d'A° = - COIl'vl 'AI' A 'Av = O. (2.11) 

Also, 'A a = CB a~B = CB °efdxi so that 

d'A 0 = CD aCb D 'A 0 A 'Ab - CO leb I 'A
c A 'Ab (2.12) 

= - caOb 'A 0 A 'Ab - caleb I 'Ac A 'Ab. 

The overdot indicates differentiation with respect to time. 
The res~lt of(2.11) and (2.12) is that COI'V = 0 and COOb 

= - CD °Cb D. SO all commutation coefficients are either 
zero or functions of time alone. Any quantity capable of be-
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ing expressed in terms of the commutation coefficients will 
therefore be constant on a given hypersurface of 
homogeneity. 

B. The Dyadic Formalism 

The geometry of spacetime will be described with the 
dyadic formalism of Estabrook, Wahlquist, and Behr.4

,6 

This formalism, although generally applicable, is particular
ly useful when a preferred timelike congruence exists. It is 
advantageous here because it manifests the spatial homo
geneity, permits the immediate Bianchi-Behr classification 
of cosmologic solutions, and represents these solutions in 
terms of the orthonormal frame components of interesting 
physical quantities such as shear and volume expansion. It 
will be introduced here in a way that makes contact with 
more familiar quantities. 

In general, with a timelike congruence, there are six 
dyadics: a, n, w, S, n, and F. We define these in three equiv
alent ways, in terms of (l) the Ricci rotation coefficients 
(l/-l'V.)" = r /-lya = - rY/-la )' (2) the commutation coeffi
cients ca /-lV' or (3) contractions of the connection I-forms 
W liV = r I'm iva with the orthonormal tetrad l/-l' 

a = the triad components of the acceleration of the ti
melike congruence (or world lines of matter with 4-velocity 
10): 

aa = raOO = - rOaD (Ricci), 

aa = - COaO = COOa (commutation), (2.13) 

aa = - (woa,lo) (connection). 

n (or V==,I X n) = the triad components of the angular 
velocity of the congruence (or world lines of matter with 4-
velocity lo) relative to a Fermi-Walker transported triad. n 
(or V) is called the vorticity (measures deviation from 3-
normality of the timelike congruence): 

na = !EabCrObc (Ricci), 

na = - iEabcCOcb (commutation), 

n2] 
-On I = - (ro01a,lb J) 

(connection). (2.14) 

I t follows from (2.11) that a = n = 0 for Bianchi cosmolo
gies. The timelike congruence is therefore geodesic and does 
not rotate with respect to Fermi-Walker transport. [From 
here on a and n will be omitted from our consideration ex
cept for brief appearances in (3.5) and Appendix III where 
they are included for completeness.] 

0) (or W == I X 0» = the triad com ponen ts of the angular 
velocity of the orthonormal triad la relative to a Fermi
Walker transported triad: 

1954 

Wa = !EabCrCbO 

Wa =!EabcCbctJ 

(Ricci), 

(commutation), 

o W2 ) 
-Ow 1 = (roab ,10) 

(connection). (2.15) 
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S = the triad components of the rate of strain tensor. S 
is not traceless and therefore includes the shear 0' and the 
volume expansion 8 = TrS: 

Sab = - ro(ao) (Ricci), 

Sab = Crab )0 (commutation), (2.16) 

Sab = - (roO(a,lb) (connection). 
The dyadic S describes the extrinsic curvature of the 

hypersurface of homogeneity. In particular, if the separation 
of two nearby members of the timelike congruence is de
scribed by the separation vector r = r ala' then the time rate 
of change of this separation is given by 7 

r = - r·S + rXw, (2.17) 

where the dot and the cross operator have the vector-dyadic 
meanings. From (2.17) one immediately gets the generalized 
Hubble equation for the relative rate of change of the magni
tude of r and an equation giving the rate of change of the unit 
vector in the direction of r (r): 

f ~ A e 
- - = N1·r +t ' 

r 

;.. A fA = ~ -r=r·u+ -r+!UI-rXw, 
r 

(2.18) 

(2.19) 

where e is defined above, 0' =S - tel is the shear dyadic, 
and I is the unit dyadic. 

The two remaining dyadics F and 0 are defined as fol-
lows (cJ> :==TrF): 

(F - ~cJ>l)ad = !ECb(dra) cb, (Ricci), 

Fad = ~C(a cbEd)Cb (commutation), 

no = irab b (Ricci), 

na = ~Cbab (commutation). 

(2.20) 

F - !cJ>1 and oXI (or Ecedne) are the respective symmetric 
and antisymmetric parts of a dyadic 

A - ~cJ>I==,F + oXI - !cJ>1. 

The commutation triadic C~bd is then 

C~bd = [IXALbd = AaJ E Jbd' 

which is related to the connection and to F and 0 by 

C~bd = - (lu'robd ) = FaJEfhd +c5ab n d -c5ad n b' (2.21) 

It will be seen that F and 0 are time evolutions of the 
structure constants ao, bo, co, and no appearing in the canoni
cal form (2.5) of the Lie algebras. The Jacobi identity satis
fied by the structure constants evolves into the relation be
tween commutation coefficients F·o = O. 

F and 0 are related to the intrinsic curvature of the hy
persurfaces of homogeneity. In fact, the Riemann curvature 
tensor of the 3-geometry on the hypersurfaces is entirely 
composed out of F and 0 as is shown in Appendix I, where all 
curvature quantities and the Ricci and Einstein tensors are 
derived. 

From the analysis in Appendix I it is clear that all quan
tities of interest can be computed from a knowledge of F, S, 
0, and w. The freedom to choose a convenient orthonormal 
frame exists, and a particular choice of frame will determine 
w. Thus, the variables F, S, and 0 are all that are needed to 
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specify the geometry and the geometrical quantities in Ein
stein's equations. 

The components of Einstein's equations 
(G = -2 T withc = 1 andG = 1!417')become(seeAp-/-LV p.v 

pendix I) 

p = H0 2 
- S:S - F:F + !<P2 _6n2] (- ~Goo = p), 

t = FxS - On +3n·S (!G01 = t l ), 

S = 2T + SXro - roxS 
- OS -2FXF + <PF + FXn - nxF 

+ [ - (TrT) + !02 - !S:S 

+ iF:F - i<p2 + !n2] I (G = -2 T). 

(2.22) 

(2.23) 

(2.24) 

Here p Too is the energy density, (t) U= T Oa is the momen
tum density, and T represents the dyadic of the components 
of TIl" with spacelike indices. By differentiating (2.22) and 
(2.23) one arrives at the contracted Bianchi identities 

p = - 0 p - T:S + 2 n·t, (2.25) 

t = - Ot + tXro - t·S +3n·T - (TrT)n + FXT. 
(2.26) 

From (2.12) the following differential equations for the time
dependent transformation matrix Cb A and its inverse CB a are 
obtained: 

CR a = - CaObCR b = CR b [S + W]b a, (2.27) 

Cd
A = - [S + W]/Cb A. (2.28) 

Solution of (2.27) allows the metric Yab to be computed 
from (2.8). Then, using the canonical basis triads of Appen
dix II, the metric may be written in a coordinate (holonomic) 
frame. As mentioned earlier, the imposition of symmetry on 
Cb A reduces the generality of the analysis because such an 
imposition must be consistent with (2.28). Symmetry of C b A 

and its consistency with (2.28) implies conditions on Sand ro 
which vary with Bianchi-Behr type, but are specializations 
away from a completely general analysis. Such a specializa
tion is made implicitly in the book by Ryan and Shepley5 

who follow Misner. A detailed discussion is given in the 
companion paper (SMHC).4 

It is possible to relate F and n to the canonical set of ones 
and zeros in Table I because in the orthonormal frame F and 
n are expressed in terms of the commutation coefficients by 
(2.20). Using (2.9) one can express the orthonormal frame 
commutation coefficients Ca 

gh in terms of the invariant 
frame commutation coefficients GA 

GH (group structure con
stants ao, bo, Co, no): 

Fab(t) = Fab(t) =L!CKaCMbF~M, (2.29) 

(2.30) 

where L!=detCb A, Fg-M=diag (ao, bo, co), and n OA =(0,0, 
no)' It is now clear from (2.29) and (2.30) that F and n are 
simply time evolutions of the group structure constants 
Ga gh' Differential equations for F and n may be derived by 
simply differentiating (2.29) and (2.30) and using (2.27) and 
(2.28): 

i= = - OF + S·F + F·S + FXro - roXF, (2.31) 
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il = nXro - n·S. (2.32) 

Equations (2.31) and (2.32) are independent of Ein
stein's equations and do not involve the stress-energy tensor 
at all (except through the coupling to Einstein's equations). 

The solution for a given cosmologic model, then, in
volves the specification of the energy content of the universe 
in the stress-energy dyadics, and the solution ofEqs. (2.22)
(2.28), and (2.31) and (2.32). 

Finally, the Bianchi-Behr classification can be repro
duced in the orthonormal frame. From (2.30), the vanishing 
or nonvanishing of Do implies the vanishing or nonvanishing 
ofn(t) so that the Bianchi cosmologies are readily classified 
into vector (n#O) and nonvector (n = 0) types. Also, ifF~M 
= 0 (types I and V), then F = 0 from (2.29). 

I t is convenient and allowable for types other than I and 
V to choose the orthonormal frame such that F is diagonal 
and n is in the third direction. (Recall that the evolving Ja
cobi identity is written F·n = 0.) For types I and V the orth
onormal frame is chosen to make S diagonal because F = 0 
for these types. Let the special choices for F and n be written: 
F = diag (a, b, c) and n = (0, 0, n3). 

From (2.31) and (2.32) the signs of a, b, c and n are 
conserved 6 as the cosmologic model evolves unless the solu
tion passes through a singularity. Thus, using Table lone 
arrives at the Bianchi-Behr (Table II) classification in the 
orthonormal frame based on the conserved signs of a, b, c, 
and n2

• 

3. THE DIRAC EQUATION AND NEUTRINO CURRENT 

The neutrino will be described by the generalized Dirac 
equation 

yl'-V I'- '/I + m'/l = 0, (3.1) 

where the rest mass m of the neutrino will be taken to be zero 
and the yl'- are a set of 4 X 4 matrices satisfying I yl'-,yVj 
= 2gl'-v. Orthonormal frames are used exclusively here so 

thatgl'-V = 'Tfl'-v = (-1, 1, 1, 1) and the yl'- are just the same 
as they are in special relativity. V I'- is the spinor covariant 
differentiation operator which when acting on the column 
spinor '/I gives 

TABLE II. The possible types of simply transitive 3-parameter isometry 
groups which act transitively on 3-spaces-the Bianchi-Behr types, 

SIGN SIGN SIGN Bianchi-Behr 
n2 a b c type 

0 0 0 0 I 
0 + 0 0 II 
0 + 0 Vlo 
0 + + 0 VIIo 
0 + + VIII 
0 + + + IX 

+ 0 0 0 V 

+ + 0 0 IV 

+ + 0 III 

+ + 0 VI. 

+ + + 0 VII. 
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(3.2) 

and when acting on the row spin or W = il[/trf1 (adjoint 
spinor) gives 

(3.3) 

The spinor connection r I-' is defined so that the spinor 
covariant derivative of yl-' (and hence g 1-', is zero. In the 
orthonormal frame r I-' is given by8 

r I-' = - !ra {3l-'r"'y{3 + YI-'I, (3.4) 

where the ra {3 I-' are the Ricci rotation coefficients, I is the 
unit matrix, and Y I-' is an arbitrary imaginary vector which 
is zero for neutral particles but is proportional to the electro
magnetic vector potential for charged particles. 

If a timelike congruence is introduced, and the dyadic 
formalism is applied, the spin or connection may be written 
in terms of the dyadic quantities and the Dirac equation in a 
general spacetime becomes 

yl-'(dl[/,ll-') + !rf1W~+!<Pr] -y.C!rf1(roXY) + n]jl[/ 

+ f!y·[a+y1l(OXY)] - YI-'Yl-' + mJ 1[/= O. (3.5) 

The ordering of the yl-' is important since not all of the yl-' 

commute. 
Specializing to the cases of a zero rest mass neutrino, 

subject to and generating the geometry of the Bianchi cos
mologies, we have m = a = 0 = Y I-' = O. Also 

yl-'(dl[/,ll-') = rf1if!+ (y·(3'dl[/), (3.6) 

where (3 'd 1[/ is the exterior derivative of 1[/ intrinsic to the 
hypersurface of homogeneity. The Dirac equation together 
with the equation for the adjoint spinor become 

if! = rf1( y. (3 'd 1[/) + [ - rf1y.n + !( ro.~) - !O - l<Pr] 1[/, 
(3.7) 

W= (,3'dW.y)rf1 + W[ - !«(J).~) + rf1y.n - ~O -l<Pr], 
(3.8) 

where r=rf1y'rr, and where we have introduced the ma
trices 

~k =(y,Yj - Yjy;)/2 (i,j,k = 1,2,3 et cycl). 

The neutrino (I[/v) and anti neutrino (1[/,,) wavefunc
tions are obtained from 1[/ through the use of projection 
operators: 

I[/y = !(1 + iYs)l[/, when (1 - iYs)l[/v = 0, (3.9) 

1[/" = W - iYs)l[/, when (1 + iYs)l[/" = 0, (3.10) 

Of course, this has the effect of reducing the four equations 
of (3.7) to two equations for the two independent compo
nents of I[/y and 1[/". 

Whenever an explicit representation of the yl-' is called 
for, the following real representation will be used: 

rf1= [~(12 ~2], y' = [~ 

where the (1 k are the Pauli matrices and I = [6?]' In this 
representation, I[/y and 1[/" are given by 
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1[/ = [;;;,], 

IV 1[/2 

(3.12) 

where v = + 1 for the neutrino wavefunction and v = -1 
for the antineutrino wavefunction. The neutrino-antineu
trino sUbscripts on 1[/ can be dropped from now on as it is 
understood that 1[/ is represented by (3.12). 

It is useful to obtain a set of differential equations for the 
bilinear covariants composed of iP, yl-', and 1[/ because the 
neutrino stress-energy tensor will contain only products of 
dyadics and bilinear covariants. If (3.9)-(3.11) are used, the 
only nonzero bilinear covariants are the vector 
(V l-'=iWyIII[/) and the axial vector (A I-' = Wryl-'I[/). Fur
thermore, V I-' and A I-' are not independent, but by virtue of 
(3.9) and (3.10) satisfy A I-' = - vV I-' so that A I-' can be en
tirely eliminated. V I-' is a pure imaginary lightlike vector 

v·v = (Vo)2, (3.13) 

and if J 1-'= - i V II, then J I-' is a real current density (J °>0) 
whose covariant divergence is zero and which is in principle 
measurable. 

Now, if the spacetimes and their contents are to be ho
mogeneous, then J I-' must depend only on time so that a 
measurement of J I-' will not provide a means of distinguish
ing one point from another on a hypersurface of homogene
ity. The pure time dependence of J I-' can be accomplished by 
having 1[/ = x(t)e ;J(x,t) where X is a purely time-dependent 
spinor and/is a real function of space and time which will be 
determined following the discussion of the neutrino stress
energy tensor below. 

To find the differential equations satisfied by J 1-', sim
ply take the time derivative of Wyl-'I[/ and use (3.7) and (3.8) 
to get 

jO = _ OJ o + 2n.J, (3.14) 

j = - OJ - roXJ +2nJ° -2V( PXJ), (3.15) 

where (3'd f = P, the "eikonal momentum." The four equa
tions (3.14) and (3.15) are not independent because of(3.13), 
but they will replace the four equivalent equations (also not 
independent) contained in (3.7). When a solution of (3.14) 
and (3.15) is known 1[/ may be recovered if desired: 

1[/ = !Q 1!2[ ~t ]e;<peif(x,t), (3.16) 

-IVU 

where Q==.JO - J2; U=(J 3 + ivJ')/Q and ¢ is a 
time-dependent phase factor which satisfies the following 
equation: 

v 
- -<P. 

4 
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When a cosmologic model has been solved, the right-hand 
side of (3.17) will be a known function of time and tP can be 
found by integration of (3.17). Equation (3.16) is derived by 
solving J I" = ifryl"1ft for the components of the spinor X in 
terms of the components J I" and (3.17) is derived by requir
ing that (3.16) satisfy the Dirac equation. 

The Stress-Energy Tensor: The neutrino stress-energy 
tensor is obtained by a standard variation of the neutrino 
field Lagrangian9

: 

i - -
T I"Y = "2 [IftYcl" Vy)lft- IV(I"Ift}YV)Ift] (11= 1). (3.18) 

This stress-energy tensor is derived and applied in the con
text of standard Riemannian geometry. We do not interpret 
spin density in a geometry with torsion here. 

If the spinor covariant derivatives are removed with the 
aid of the Dirac equations (3.7) and (3.8) (specialized for the 
Bianchi cosmologies), and if the previously defined stress
energy dyadics are introduced, (3.18) becomes 

if ° P = p.J + -;;; <PJ , 

if if 
t= PJo + -(nxJ)- -(F"J), 

2 2 

T = H PJ + J P] + v (JXS - SXJ] -
4 

(3.19) 

(3.20) 

if F'r 
2 ' 

(3.21) 
where F'=F - ~<PI. 

In the flat space limit, P becomes the space part of the 
lightlike momentum 4-vector P I" = (E, P). The stress-ener
gy dyadics in flat space become 

p = p.J = EJo, (3.22) 

t = PJ o, 

T = HPJ + JPJ. 

(3.23) 

(3.24) 

If both the spacetime and its contents are to be homo
geneous, then (3.19)-(3.21) must depend only on time so 
that a measurement of TI"v will yield no information about 
position on a hypersurface of homogeneity. Because J I" and 
the dyadic quantities are purely time dependent, it is clear 
that T I"V will be purely time dependent ifP is a real function 
of time only.P is a I-form whose orthonormal, invariant and 
holonomic components are given by 

(3 >d/= P= P , b - C- b P eA - C- b P ....Adxi - I dx i 
- - bl\. - A b - A bt: i -.i . 

(3.25) 

In terms of the partial derivatives of I , the orthonormal 
(Pb ), invariant (HA ), and holonomic (p) components ofP 
are respectively 

Pb = Cb Ae~ I,i' 
HA = e~ l.i=eA I, 
Pi = I.r 

(3.26) 

(3.27) 

(3.28) 

Now, a necessary (but not sufficient) condition that HA 
(and hence Pb) be a function only oftime is 

[eA ,eB ] I = O. (3.29) 

[The operator eA which contains only partial derivatives 
with respect to spatial coordinates must give zero when ap-
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TABLE III. Representations of H A and P j and the functional fonn of/for 
each Bianchi-Behr type. 

Bianchi-Behr Possibly Functional form 
type non vanishing H A and P; of/ 

H, = p,; H" = P2; H II , = P3 PiX; 
II H" = P3; Hili = - p, p,X, + P3X3 
III H, =H" = P3; H," =2p, p,X, + P'%3 
IV H,,, = p, p,X, 

V HIIl=p, p,X, 

VIo.VI. H II , = (no + I)p, p,X, 
(h ¥ -1) 
VIIo.VII. Hill = (nt, + 1)'/2 p, p,X, 
VIII None 0 
IX None 0 

plied to H B (t ).] In general, the group algebra for the nine 
Bianchi types is given by (2.5) so that (3.29) becomes 

CoHIll = 0, (3.30) 

- noHI - boHu = 0, (3.31) 

aoHI - noHII = O. (3.32) 

By evaluating (3.30)-(3.32) for each Bianchi-Behr type 
according to Table I, and using the canonical triads of Ap
pendix II to relate H A and p i for each type, the first column 
of Table III results. The possibly nonvanishing HA and Pi 
are yet to be determined, but they can be at most functions of 
time. If this is so, then the general solution of (3.28) is 

I = Pi~' (3.33) 

and the second column of Table III results. [The arbitrary 
function of time which could be added to (3.33) is assumed to 
be absorbed into the time dependent spinor X(I ).] 

When 1ft = X (t )e if withl given by (3.33) is substituted 
into the Dirac equation, one gets an equation equivalent to 
(3.17) but in a more general form: 

. ()Xi ·XI P v iLl' V .m. P j I = I - + 2 + - UJ2 + - 17 + ln2 - - '¥ 

XI 2 2 4 

X2 [ P .A P i if A .] + - 3- 1V 1- -UJI + -UJ3 +vn l +m3 , 
XI 2 2 

(3.34) 

where X I and X 2 are the two independent components of the 
spinor X. Because the rhs of(3.34) is a function of time alone, 
we must set Pi = 0 in order to satisfy (3.34) for all xi. Thus, 
the Pi and HA are not functions of time but constants. 

The vanishing or nonvanishing of the components of P 
in the invariant basis is related to the Lie derivatives of the 
invariant basis triad as follows: For all types except type III, 
if [eA ,eB ] = 0, then there exists a possibly nonzero, con
stant, invariant cth component ofP where the indices a, b, 
and c are all different and undergo cyclic permutations. For 
type III, the Lie derivatives of em with respect to eI and ell 
are not independent. In fact, [eI ,em] = - [en ,em]. This 
additional symmetry not only admits the existence ofpossi
bly nonzero first and second invariant components ofP, but 
also implies the equality of these components. 
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A differential equation for P may be derived by taking 
the time derivative of (3.26) and using (2.28): 

p = - S· P - roXP. (3.35) 

Two algebraic identities satisfied by Til" are noted briefly lO: 

TIlJ Il J"- p(JO)2 - 2(t·J)JO + J·T·J = 0, (3.36) 

Till" = TrT - p = O. (3.37) 

T has several properties which make its physical in-
1"" . 

terpretation difficult. First is the fact that the energy density 
p is not always positive definite. Of course, this prob~em .ex
ists even in the unquantized flat space theory. Exammatlon 
of (3.19) for type IX ( P = 0, <I> > 0) shows that p > 0 for the 
neutrino, but p < 0 for the antineutrino. For type VIII, 
P = O. If lei> a + b, then p > 0 for the antineutrino, but 
p < 0 for the neutrino. 

Next, the neutrino momentum density 4-vector roll is 
not always lightlike. In general, 

rol"ro I" = - p2 + tot = p2(JO)2 

- (p.J)2 + v[ P'(nXJ)]JO 

+ 1(nXJ)·(nXJ) - !(nXJ)·(F·J) 
- v[ P·F·J]Jo - 1<1> [J·F·J] 

+ 1(F·J).(F·J). (3.38) 

Consider types VIII and IX where P = n = 0 and F = diag 
(a, b, e). Equation (3.38) becomes 

tot - p2 = - Ha(b + e)(J1)2 + b (e + a)(J2f 
(3.39) 

For type IX, ro I" is timelike (ro I"ro I" < 0) because a, b, and e 
are all positive, but for type VIII, rol" can be spacelike if 
e< - a and e< - b. 

The simple relation (3.23) between t and P is lost in the 
general expression (3.20) so although P becomes the space 
part of the neutrino momentum vector in flat space, its 
curved space interpretation is not clear in general. 

Unlike the electromagnetic field wherepem = 0 implied 
T = 0, the vanishing of the neutrino energy density p 
d~~~n not, in general, imply the vanishing of either J O or T 1"'" 

Cases can arise wherep = 0, but J°=lO and Til" =10. The 
curious occurence of the "ghost" neutrino 1 1.12 is also possi
blewhen Tl"v = ObutJ°=lO. Then, the neutrino does.not act 
as a source of gravity because T 1"" = 0, yet the neutnno re
sponds via the generalized Dirac equation to the background 
geometry which is the solution of the vacuum Einstein equa
tions. Thus, the ghost neutrino provides a way to study neu
trino behavior in a background geometry without making a 
weak field approximation. 

Can the properties mentioned above be ruled out? By 
constructing the most general first order, Riemannian space
time, spinor field equations with their associated La~r~n.
gian, Anderson 13 has shown that if the general rela~lV~stic 
neutrino field equation is to be obtained from a vanatlOnal 
principle, then the use of the Weyl equation as the n.eutrino 
field equation "forces" the use of (3.18) as the neutn~o 
stress-energy tensor. Thus, if the neutrino is treated with the 
approach used here, the difficulty in the physical interpreta-
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tion ofTI"" appears to be unavoidable. Letelier l4 has shown, 
however, that in a geometry with torsion the ghost neutrino 
does not occur. 

4. SOLUTIONS 

Now specialize to the vector cosmologies (n =I 0): types 
III, IV, V, VIh , and VIIh • For these types in general there are 
three dyadics F, S, and T, five vectors n, t, ro, J, P, and two 
scalars p and J O

, which must be determined as a solution of 
the structure equations (2.31) and (2.32) and the coupled 
Einstein-Dirac equations. A general simplification is ob
tained immediately by choosing the orthonormal frame to 
diagonalize F (or S when F = 0 the case of type V). The 
Einstein-Dirac equations are still quite complex after this 
initial simplification. 

In analogy with the example provided by the vector 
cosmologies with electromagnetic fields l5 (where a general 
theorem states that the Poynting vector is aligned with the 
vector n), we specialize the alignment of the neutrino. That 
is, we look only at those cases among the vector cosmologies 
where the momentum density vector t is aligned with n 
(nxt = 0). [See also the argument4 suggesting that this is 
the general situation, SMHC following Eq. (65).] 

For all vector types it is possible to choose n to be in the 
third direction. This follows from the Jacobi identity F'n = 0 
for types III, IV, VIh and VIIh and from S'n = kn 
(k = const) for type V where F = 0 and S is diagonal; 
n X t = 0, so that t must be in the third direction also. It then 
follows for all vector types except type III and, except for the 
special case VIh with h = -~, that ro, P, and J are in the 
third direction and that 513 = 523 = T 13 = T 23 = O. For 
type III, the preceding statement would be true if the addi
tional assumption P3 = 0 were made. 

The alignment of all vectors in the third direction is a 
great simplification, and results almost always from the 
alignment of t with n = (0, 0, n3)' 

Exact solutions are still difficult to find unless one ex
amines cases of axial symmetry (about the third direction) in 
the rate of strain. This implies 5 11 = 5 22 and 5 12 = 0 and is 
consistent with types V and VIIh because 5 11 = 5 22 requires 
a = b. In this case lU I = lU2 = 0 can be chosen for types V and 
VIIh [See Table IV in SMHC.] 

The following differential and algebraic equations are 
obtained for type VIIh from (2.22)-(2.24), (2.31) and (2.32), 
(3.14) and (3.15), (3.19)-(3.21), and (3.35) for the nXt = 0 
axially symmetric case: 

811 = -2 5i 1 - 5 115 33 +2 nL 
• 2 52 2 533 =511 - 33 -n3' 

n3 = - 533n 3, 

jo = _ ()J O + 2n
3
J

3
, 

j3 = - ()J3 + 2n3Jo, 

P3 = - 533 P3' 

a = - 5 33a, 

p = ~(5~1 +25115 33) - ~n; = P3J 3 + (V/2)aJO 

= T33, 
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t3 = n3(S33 - SII) = P3Jo + (V/2)aJ3. (4.9) 

to which may be adjoined (3.16) and (3.17). 
An exact solution 16 of (4.1)-(4.9), comprises the follow

ing quantities which depend on the time t: 
Bianchi vector n [whose square measures the sectional 

curvature of the type Vllh space]: 

e 8 (0,0, rl); (4.10) 

Neutrino current time-component: 

J O = ijj 'fIJI: JOt -I; 

Neutrino current: 

J = ij/ylJl: ejO(O, 0, t -I); 

Eikonal momentum: 

p = V /: e{ 8(I
J
-:; 8) - ~ ii} (O,O,r l

), 

where 

'" = X (t )eif(x); 

Momentum density t: 

e8(1 - 8) (0,0,r2
); 

Stress tensor density T: 

8(1-~[~ ° o 
o 

0] ° , 
r 2 

Energy density p = T ()(): 

8(1 - 8)t-2
; 

Strain rate = extrinsic curvature S: 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

,--[~ ~ n (4.1~ 
Bianchi-classifying dyadic F cd = !C(C gh ~ )gh, 

(here the commutation coefficients CCgh are the time evolu
tions of the structure constants G C GH) F: 

a 

o 
1 

o 
Neutrino spinor amplitude IJI: 

!f!r[ iv:.] 
-lYe 

[
. 8(1-8) vew] 

xexp I(PI XI - Int - -- t) . 
JD 2 

Here 

e = ± 1, according to J3 = eJ°. 

(4.17) 

(4.18) 

A dimensionless time has been used, i.e., time is measured in 
units of some initial time r = 1/$33 which defines the con
stant parameters jO, ii, 8,PI' and £las the values taken by 
these physical-geometric quantities at this initial time. 

8 is the dimensionless strain-rate ratio 

8=$11 / $33 = $11' 
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where $33 = 1/rhas been taken as the unit strain rate. 
The eikonal momentum coefficient PI has the value 

8(1 - 8) v _ 
PI==- JO -"2 a 

in the metric-simplifying coordinate basis introduced in the 
next paragraph. 

To find the metric we use the type Vllh invariant basis 
forms (Appendix II, this paper). We substitute into the ca
nonical formula (68) at the end ofSMHC, with the Hubble 
type time-dependent parameters (Table ~V, SMHC) evaluat
ed for the present solution (ii = 1 with t chosen properly): 

a= .B=£lexp[ - J~Sldt] =(j(tltt
j
=£llt 8 = 1/t 8

, 

r = nino = 8/(not). 

The result of the calculations is 
A2 

ds2 = -dt 2 + t 2 -dXi 
82 

+ t 2 e-2AX'(dX~ + dX~ +2A dX2dX3). 

The metric may then be simplified by an affine transforma
tion, and takes the form 

Metric: ds2 = - dt 2 + t 2dx2 + (e - 8xt 05)2[dy2 + dz2]. 
(4.19) 

This significant simplification of the metric has been ob
tained by transforming the coordinates used in Appendix II 
for type Vllh by a rotation about the XI axis (em direction) 
followed by a change in scale: 

° 8-1y'I-A 

° o o 

o v'2 v'2 
x 2 2 (4.20) 

o v'2 v'2 
2 2 

(for the definition of A see Appendix II, type VII). Thus, the 
explicit coordinate representation of the metric (4.19) and 
the definition of PI differ from what one would obtain using 
the untransformed basis vectors of Appendix II. 

The differential and algebraic equations for type V with 
nxt = 0 and with axial symmetry in the rate of strain are 
just (4.1)-(4.9) with a = O. An exact solution of these type V 
equations can also be found, 16 and this solution is just (4.10)
(4.18) with ii = 0. Although the type V solution is similar in 
form to the type Vllh solution, these are really two distinct 
solutions. Each corresponds to a different geometry invar
iant under different isometry groups. Also the relations 

r = eiilt, 8 = $11 = enoii, 
which hold for Type Vllh , do not apply to Type V. 

By evaluating the Weyl tensor in the NP formalism one 
finds that both solutions are of Petro v type D. (See Appendix 
III.) 

In both solutions 8 = 1 means an isotropic solution 
with a ghost neutrino field, but these solutions cannot ap-
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TABLE IV. Comparision of the early time limit of a radiation dominated 
Friedmann model with the neutrino solutions. 

Radiation dominated 
Friedmann (early time limit) 

Type V and VII" 
neutrino solutions 

Avg. Hubble 
. e 

expansion=" :3 

Energy 
density p 

I 

21 

3 

8f' 

28+1 
31 

8(1 - 8) 
12 

proach isotropy from an initially anisotropic state. 
The behavior of all quantities is to have singularities at 

t = 0, have some finite value at t = t, and decrease continu
ously to a limit of zero as t ---+ 00 • 

It is interesting to compare the early time limit of a 
radiation dominated Friedmann model 17 with the neutrino 
solutions given by (4.10)-(4.20) [Table IV]. 

The neutrino Hubble expansion is greater than the 
Friedmann rate when 15 > ! and because the neutrino energy 
density is maximum when 15 = ~ it is always less than the 
Friedmann energy density. 

Now examine the motion of a single neutrino in the 
third (orthonormal) direction. With the aid of Appendix II it 
is easily seen that motion in the third orthonormal direction 
(3) corresponds for types V and VUh to motion in the first 
holonomic direction (a 1)' [This occurs because the triad of 
invariant basis vectors e A was chosen to put (2.5) and Table I 
in a canonical form according to the Estabrook, Wahlquist, 
and Behr convention.] In the holonomic frame, the third and 
second components of the neutrino 4-momentum Ilft van
ish. JII' is lightlike and thus, 

J/I,JII' = iloIlO + Illill = O. 

The energy of the neutrino as measured by a stationary ob
server with 4-velocity UI' is 

E= -JI UI' = -IloUo=Ilo I' . 

Therefore, with the metrics of either solution 

E 2 = gll(Il\)2. 

(4.21) 

(4.22) 

Along any geodesic Ill'zl' = const. Evaluating JI ftz" for 
types V and VII h with the Killing vectorsz" from Appendix 
II will show that JII is a conserved quantity. Thus (4.22) 
gives the expression for the red-shifting energy of a single 
neutrino traveling in the 13 direction: 

E(t) = III It. (4.23) 

In the wavefunctions for the two solutions, the constant 
PI appears in a position that would be occupied by JIl in a flat 
space limit. If III andpl are equated, then 

(4.24) 

This implies that the magnitude of P3 is just the red-shifting 
energy of a single neutrino. The energy density p, however, is 
not always expressed entirely in terms of E (t ): 

p= [E(t)+ ~~ ]J o
. (4.25) 
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For type VUh ,P contains a contribution from the intrinsic 
curvature parameter a as well as from the red-shifting 
energy. 

J ° as a Probability Density?: The interpretation of J 0 as a 
probability density is certainly suggested by the fact that 
P»O and by the fact that JI' is the conserved probability 
current in a flat space limit. For the solutions found here, J O 

is a function of time alone so that J 0 is constant over each 
hypersurface. If JO is interpreted as a probability density, 
then the position ofthe neutrino on any hypersurface is total
ly uncertain just like the case of a plane wave in flat space. 
Can the wavefunction be normalized so that the 3-volume 
integral of JO equals one? 

JO depends only on time so it may be taken outside of an 
integral over 3-space: 

f J O d'l/' = Jor·. (4.26) 

The productJor will be constant and normalization will be 
maintained only if the time variation of J ° is inversely pro
portional to the time variation of r. But, J O and 'Y satisfy 

cj/' = (}'Y, (4.27) 

jO = _ (}J o + 2n.J. (4.28) 
It is easy to see that the time variations of J O and rare 
inversely proportional for all nonvector cosmologies (n = 0) 
and for those vector cosmologies where n·J = O. (Thus, Brill 
and Cohen are able to normalize the wavefunction for their 
type I solution.8

) Otherwise, the normalization will not be 
conserved. Unfortunately, the solutions presented here have 
n·J # a and thus J or is not constant. 

It is possible, however, to interpret J O as a one-dimen
sional probability density and require normalization over a 
length L only in thex ()3) direction. (The spatial dependence 
of If/ is exactly like that of a plane wave traveling in the x 
direction.) Let 

f
L!2 

J0(g1l) 1/2dx = 1. 
-L!2 

(4.29) 

This normalization will be conserved for both solutions pre
sented here. 

APPENDIX I 

The purpose of this appendix is to derive the Riemann, 
Ricci, and Einstein tensors in terms of the dyadic quantities. 

Starting with the connection i-forms wI''' = rJLVu'Au, 
we have for the Bianchi cosmologies 

WOa = - Sad 'Ad , 

Wab = Wab'A° - C'abd'Ad . 

(11) 

(12) 

The curvature 2-form &t I'v is then computed in a direct 
manner from the exterior derivative of the connection 1-
form: 

:Jlll'v = diil'" + iii' a 1\ (;)U v . (13) 

The result is 
:Jll°a = [5 + S·S + W'S - S·W]ad'A° 1\ 'Ad 

- [(SXA)afd + (AXS)dfa]A! 1\ 'Ad, (14) 

:Jllab = [lC'+C'·S-C'·Wjabd +2 (WXA)lbajd]'A°I\'Ad 

+ [SafSbd + C'afgC\d - C'abgC'gdf]A! 1\ 'Ad , (15) 
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where, for example, [C',SLbd = C~bcscd and 

[SxAlald = EagcSJA~ . 
The components of the Riemann tensor may now be 

read from 

:?II p v = R p vlat31 A a I\}./ . 

The result is 

Roaod = [S + S·S + W·S - S,W]ad , 

ROald = 2 [(SXA)a[dl 1+ (AXS)l/d]a]' 

(16) 

(17) 

(18) 

RubOd = 2(WXA)[bald + [(:' + C'·(S - W)1abd' (19) 

Rabid = 2suI/Sbd ] + (3)Rabld , (110) 

where the Riemann tensor intrinsic to the hypersurface of 
homogeneity is 

(3) Rab - 2 [C,a C,gb _ C'abgC' ] 
Id - gl I d I g[d/] . (Ill) 

The convenience of having the commutation triadic C' 
appear explicitly in (12)-(111) reflects the relative complex
ity of the 4-index Riemann tensor components as compared 
to the Ricci tensor (R~ = Rap va)' 

The Ricci and Einstein tensors (Gpy = Rpy - ~pv R) 
and the Ricci scalar (R = RP p) can be expressed explicitly in 
terms of the dyadic quantities 

Roo = 8 + S:S , (112) 

ROl = GOl = [F)<S - On +3 n,S]/' (113) 

R = - S - roXS + SXro - OS -2F·F + <1>F 

+ Fxn - nxF + [F:F -!<1> 2 +2n2]1 . (114) 

R= -28-8 2 -S:S+F:F-!<1>2+6n2 , (115) 

Goo = H - 8 2 + S:S + F:F - !<1>2 +6n2
] , (116) 

G = - S - roXS + SXro - OS -2F·F + <1>F + FXn 

- nxF + [8 + W2 + !S:S + ~F:F - !<1>2 - n2]I, 
(117) 

where n 2 = n'n (FX' S)=E F sga S'S = sags and , - leg a , . ga' 

Rand G are the dyadics of components of Rpv and Gpv with 
spacelike indices. 

Type I: 
e l = (1,0,0), 
£1 = (1,0,0), 
ZI = (1,0,0), 
; 1 = (1,0,0), 

Type II: 
e l = (0,1,0), 
£1 = (0,1, - XI)' 
zJ = (0,1,0), 
;1 = (_ X 3,1,0), 

ell = (0,1,0), 
Ell = (0,1,0), 
ZII = (0,1,0), 
;I1 = (0,1,0), 

° 1 

° 
ell = (0,x\,1), 
E" = (0,0,1), 
zn = (0,0,1), 
; II = (0,0,1), 

° 

Equations (110) and (18) are seen to be just the equa
tions of Gauss and Codazzi l8 as applied to the Bianchi cos
mologies. The Ricci tensor and the Ricci scalar intrinsic to 
the hypersurfaces of homogeneity are 

(3)R = -2F.F + <1>F + Fxn - nxF + [F:F -!<1> 2 +2n2]1, 

(118) 

(3)R = F:F _ 1<1> 2 +6n2 
2 , (119) 

respectively. 

APPENDIX II 

The purpose of this appendix is to present for each Bian
chi type a canonical set of reciprocal group generators (in
variant basis vectors) eA and Killing vectors ZB along with 
their respective duals eA and; B. Taub l9 has given a set of 
such vectors, but his vectors do not always put the group 
algebra in the canonical form chosen by Estabrook, Wahl
quist, and Behr. The relation of the canonical triads given 
here to those of Taub will be made explicit for each type by 
giving the matrix of transformation (B ~ ) between the two 

sets of triads (eAb,,, = B ~ ebT,,"). 
Let Of' eA , and la be, respectively, a triad ofholomonic, 

invariant, and orthonormal basis vectors. Let dX i, eA and }"U 

be, respectively, a triad ofholonomic, invariant, and orthon
ormal basis I-forms dual to the various vector bases. The 
relations between these bases are 

Of = ~eB = CBa~a , dX i = e~eA = Cb Ae~}"h, 
i -b .-A eA =eAoi =CA Ib' eA=f:idXi=ChA}"b, 

la = Ca BeB = Ca Be~oi , }"a = CB aeB = CB a~dXi, 

where Cb A and C B a are defined with (2.6) and (2.7) and satis
fy (2.27) and (2.28). 

The anholonomic components are projected, so that e;1 
is the ith holonomic component of the second invariant basis 
vector, etc. The group Lie algebra for each type is given by 
(2.5) and Table I as follows: 

em = (0,0,1), 
£111 = (0,0,1), 
Zm = (0,0, I), 
; m = (0,0, I), 

em = ( -1,0,0), 
EIII = ( -1,0,0), 
zm = ( -1, - X 3,0), 
; III = ( -1,0,0), 

° 
~ ); 

-1 
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Type III: 
el = (O,?',I), 
€I = ~(O,e - x, ,1), 
ZI = (0,1,1), 
t l = M - X2,1,1), 

Type IV: 
el = (0, - eX, ,0), 
€I = (0, - e - x',xle - X,), 
ZI = (0, -1,1), 
;1 = (X2 +X3, -1,0), 

Type V: 
el = (O,?' ,0), 
€\ = (O,e - x, ,0), 

ZI = (0,1,0), 
;' = (-X2,1,0), 

Type VI h and VIo: 
e, = (O,?' ,ekX

,), 

€' = ~(O,e - x',e - kX,), 

Z, = (0,1,1), 

t' = !( - X 2 - kX3 , 1,1), 

elI = (0, - ?',1), 
€II = ~(O, _ e- X ',I), 
ZII = (0, -1,1), 
tIl = !(X2 , -1,1), 

( 

1 -1 

BR b = ~ ° 

elI = (O,x\?',?'), 
€II = (O,O,e - X,), 

ZII = (0,0,1), 
; II = ( _ X 3,0, 1), 

B"~( -~ : 
elI = (O,O,?'), 
€II = (O,O,e - X,), 

ZII = (0,0,1), 
;II = (-X3,0,1), 

( 1 ° 0) 
BRb = ° 1 ° ; 

001 

elI = (0, - ?, ,ekX ,), 

€II = ~(O,e - x',e - kX,), 

ZII = (0, -1,1), 

tIl = !(Xz - kX3, - 1,1), 

-1 

° . 
° 

° ) 
(1 + no) 

eIII = (2,0,0), 
€III = (~,O,O), 
zm = (2,2X2,0), 
tIll = (!,O,O), 

em = (1,0,0), 
€III = (1,0,0), 

zm = (1,x2 + X 3,x3)' 
tIll = (1,0,0), 

em = (1,0,0), 
€III = (1,0,0), 

zm = (1,x2,x3)' 
; III = (1,0,0), 

For type VI, the constant k (called h in Taub) cannot equal one or zero. If k = 0; then type VI becomes type III. The 
values of k and no are related by: k = (no - 1)/(no + 1) or, no = (k + 1)/(1 - k). Therefore, if k #0, then no# 1 as indicated 
in Table I. Type VIo arises when k = - 1 so that no = 0. 

Types VUh and VIIo: 

X ( - sinDX\ ) e, = ~ , O,nosinDXI - cosDX\, D ' 

( 
- COSDX\) 

ell = eAX
, O,nocosDX\ + sinDX\, D' €II = - e - AX, (0, - sinDX1,D [cosDX1 - nosinDX\J), 

em = (D - 1,0,0), Em = (D,O,O), 
Z\ = (0, -1,0), zn = (O,no, - D - I), 

;' = ([2A 2 -IJX 3 + AX2, -1, - A), ;11 = D(X2 +2AX3,0 -1), 

( 

-1 no ° ) 
B R

b = ° -D- 1 0, 

° ° D-\ 
where 

D-VI-A 2 

Zm = D - 1(1, - X 3,x2 + 2AX]), 
; III = (D,O,O), 

(2A is called h in Taub.) From the requirement thatthe matrixBR bbe real, one finds A = noD. This impliesD = l/(n~ + 1)1/2. 

When A = 0, no = 0, and type VIIo is generated. 
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Type VIII: 

eI = (A,BX2 - 1 ,B), em = (A - !,BX2 -1,B), 

EI = (2, - 2A,2AX2 + B), 
ZI = (0, - i?', - 1), 

ell = (-2,2A -1,x2 -2AX2 -B), 
Zm = !( - e - x',C - 2i?',2D), 

{;I = (E,O, -1), {;m = (_ E - C, _ e- X ',I), 

where 
A X 1(I-X\), B=2X\-I, C_(X2)2e- X

" D==X2e- x'-I, E==2(i?'-X2); 

Type IX: 

e I = A (sinX3sinX\, - cosX3,cOsX\cosX3), 
ell = A ( - cosX3sinX\, - sinX3,cosX1sinX3), 

em = (0,0 -1), 
ZI = (0, -1,0), 
ZII = A ( - cosX2sinX\,cosX\sinX2, - sinX2), 
zm = A (sinX2sinX\,cosX\cosX2, - cosX2), 

( 

-1 
BR

b = 0 
o 

where A -cscX\. 

APPENDIX III 

EI = (sinX3' - sinX\cosX3,0), 
Ell = (- cosX3, - sinX\sinX3,0), 
Em = (0, - cosX\, -1), 
{;I = (0, -1, - cosXj), 
{; II = ( _ cosX2,0, - sinX\sinX2), 
{; m = (sinX2,0, - sinXjcosX2), 

- ~ ~), 
o -1 

Much of the work on neutrinos in general relativity makes use of a null tetrad and the NP formalism,20 or its updated 
GHP form.2\ The relation between the orthonormal tetrad used in this paper and the null tetrad of the NP formalism is given 
by 

I/L = B /L v Lv, L /L = A /L v I v' (III 1 ) 

where the I/L are the four orthonormal basis vectors, and the L /L are the four null basis vectors (Lo=I, L\ =n, L2 -m, L3=m). 
Also 

o 
-1 0 

o 
o 

~ .] , 
-I 

+i 

1 0 
-1 0 

o 1 
o i 

~ .]. 
-I 

(1112) 

Of course, we have B /L vAv a = /) /L a. The relation between the dyadic quantities (Ricci rotation coefficients EWBr a pE) and the 
NP spin coefficients (NPrS fJa) is found by the transformation 

r S - B SA P + B SA PA Era - B SA PA Era (1113) NP fJa - P fJ.a a fJ a EWB pE - a fJ a EWB pE • 

The results of (1113) will be written in terms of the GHP formalism2\ which we shall abbreviate slightly. In this formal
ism, the six NP spin coefficients K, U, p, r, /3, and E remain unchanged. The other six spin coefficients are obtained by a prime 
operation (v = - K', f.l = - p', A = - u', 1T = - r', a = - /3', r = - E'), which corresponds to the following inter
change of the null basis vectors: I~n and m~m. We then introduce the abbreviations 

K±=K±K', p± p±p', u±=u±u', T±=r±r', /3±=/3±/3', E±=E±E', 

and we have 

a + iro = \./2" {d\ - !(K+ + r +)12 - (i/2)(K_ + T _)13 J, 

n + in = (\l2"12){ pJ\ + !(r + - K+ - 2 /3+)12 + (i/2)(T _ - K_ - 2 /3-)13l, 

y =F - !<PI + is = \12" 
2 

2iE+ 

i 
2(T_-K_+2/3_) 

- !(T + - K+ +2/3+) 
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i 
2(7. - K_ + 2/3-) 

- i(p+ + u +) 

- !(T + - K+ +2/3+) 

i(u + - P+) 
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The inverse relations are 

K+ = (v'2/2)[Y3 , - (n2 + iIl2) - (a2 + i(2)], (1117) 

K_ = (v'2I2) i[Y 12 + (n3 + iIl3) + (a3 + i(3)]' (1118) 

P+ = (v'2/2) i[Y ll - iO + ~4>] = (v'2/2) i[Y" - TrY], 
(1119) 

p_ = v'2(n, + ill,), 

cr + = (v'2/2) i(Y22 - Y 33), 

cr - = v'2Y 23' 

(11110) 

(11111) 

(11112) 

r + = (v'2/2)[ - Y 3, + (n2 + iIl2) - (a2 + i(2)], (11113) 

r - = (v'2I2) i[ - Y 12 - (n3 + if13) + (a3 + i(3)], (11114) 

fJ+ = (v'2/2)[ - Y 3, - (n2 + iIl2)], (11115) 

fJ- = i (v'2/2)[ - Y 12 + (n3 + if13)], 

E+ = - (v'2I2) iY II , 

E_ = (v'2/2)(a, + iw,). 

(11116) 

(11117) 

(11118) 

One can now proceed to evaluate the components of the 
Weyl tensor. For the homogeneous cosmologies, the only 
nonzero intrinsic derivatives are those taken along the time
like direction. Thus 

11¢ = D '¢ = D¢ = (1Iv'2)¢, 8¢ = 8f/J = 8'f/J = O. 
(11119) 

The Weyl tensor components for the homogeneous cosmolo
gies become 

Wo = (1Iv'2)u - (p + P +3E -l)cr 

+ (r +:P' - jj' +3 [3)K, (11120) 

W, = (1Iv'2) /J - (p -l) [3 + ([3' + r ')cr - (p' + E')K 

+ (r' - jj')E, (11121) 

W2 = H - (1Iv'2)(f' + p' + f) + (r - r' + jj' +2fJ)fJ' 

- (r - r' - jj) fJ - (E' + p')(E + E + p - P> 
+ (P' - p' - l' - E')E + (jj' + fJ + r - r ')r ' 
-2K'K +2cr 'cr J, (11122) 

W3 = (1Iv'2)/J' - (p + E)K' + (r + fJ)cr' + (E' - p')[3' 

+ (:P - jj)E', (11123) 

W4 = (1Iv'2)u' - (p' + p')cr' 

+ (E' - E')cr' + [3 fJ' - jj + r ' + T)K'. (11124) 

The spin coefficients evaluated for the type Vllh solution are 

E = E' = - ieK = ier = - ier ' = ieK' = - ie fJ 

(11125) 
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cr = cr' = (v'2I4)t-'{(1 - 8) + iaj, 

p= p'= -(v'2I4)r'{(1 +8)+ia). (11125) 

The spin coefficients for the type V solution are just (11125) 
with a = O. Substitution of (11125) into (11120)-(11124) re
sults in Wo = W, = W3 = W4 = 0 for both solutions. For the 
type Vllh solution W2 = (8t-2/12){ (8 -1) - ia). W2 for the 
type V solution is again obtained by setting a = O. Thus, both 
solutions are of Petrov Type D. 
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